JP2759129B2 - In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezing - Google Patents
In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezingInfo
- Publication number
- JP2759129B2 JP2759129B2 JP16235589A JP16235589A JP2759129B2 JP 2759129 B2 JP2759129 B2 JP 2759129B2 JP 16235589 A JP16235589 A JP 16235589A JP 16235589 A JP16235589 A JP 16235589A JP 2759129 B2 JP2759129 B2 JP 2759129B2
- Authority
- JP
- Japan
- Prior art keywords
- situ
- ground
- pressurized space
- cylindrical housing
- cell liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、非粘性の砂質地盤や礫質地盤を原位置で
凍結した上で当該地盤の水平方向応力を直接原位置で求
めるために使用される原位置試験装置に関する。The present invention is used to freeze in-situ sandy ground or gravel ground in situ and directly determine the horizontal stress of the ground in situ. In-situ test apparatus.
従来の技術 地盤工学の分野においては、地盤の原位置における応
力状態の推定、確認が重要な事柄の一つである。粘性土
地盤については、原位置の応力状態を測定することに、
ある程度成功している。2. Description of the Related Art In the field of geotechnical engineering, it is one of important matters to estimate and confirm a stress state at an original position of a ground. For cohesive ground, measuring the in-situ stress state
Some success.
しかし、砂質地盤、礫質地盤といった非粘性土地盤に
ついては、いまだ原位置の応力状態を正確に測定するこ
とができないでいる。However, for non-cohesive ground such as sandy ground and gravel ground, the in-situ stress state cannot be measured accurately yet.
従来、原位置地盤を一次元状態で凍結させると、原位
置地盤の応力、ひずみの状態が実情のままに保存され、
この凍結地盤に孔を形成しその孔壁の水平方向ひずみを
拘束した状態で同孔壁(地盤)を融解させると、実地盤
の水平方向応力を求められることに着目した原位置地盤
凍結による地盤の水平方向応力を求める原位置試験方法
が既に研究され、特願昭62−328031号及び特願昭63−25
0531号明細書及び図面に記載されている。Conventionally, when the in-situ ground is frozen in a one-dimensional state, the state of the in-situ ground stress and strain is preserved as it is,
A ground formed by in-situ ground freezing focusing on the fact that when a hole is formed in this frozen ground and the hole wall (ground) is thawed while restraining the horizontal strain of the hole wall, the horizontal stress of the actual ground can be obtained. The in-situ test method for determining the horizontal stress of the steels has already been studied, and Japanese Patent Application Nos. 62-328031 and 63-25
It is described in the specification and drawings of No. 0531.
4本発明が解決しようとする課題 上述した特願昭62−328031号、特願昭63−250531号明
細書及び図面に記載されている原位置試験装置は、いま
だ細部にわたる研究に不十分な点があり、所期の目的を
十分達成するまでに至っていないので、この点が解決す
るべき課題となっている。4. Problems to be Solved by the Present Invention The in-situ test apparatus described in the above-mentioned Japanese Patent Application Nos. 62-328031 and 63-250531 and the drawings are still insufficient for detailed research. This has not been achieved enough to achieve the intended purpose, and this is an issue to be solved.
したがって、本発明の目的は、原位置地盤を凍結させ
て掘削された孔の孔壁(高品質の不撹乱凍結地盤)を利
用して原位置地盤の水平方向応力を求める原位置試験装
置を提供することにある。Therefore, an object of the present invention is to provide an in-situ test apparatus for determining the horizontal stress of an in-situ ground using a hole wall of a hole excavated by freezing the in-situ ground (high-quality undisturbed frozen ground). Is to do.
課題を解決するための手段 上記従来技術の課題を解決するための手段として、こ
の発明に係る原位置地盤凍結による地盤の水平方向応力
を求める原位置試験装置は、図面の第1図に実施例を示
した通り、 円筒形のゴムスリーブ40はこれより少し小さい外径の
円筒形ハウジング41の外周に同心円上配置に被せ、該ゴ
ムスリーブ40と前記円筒形のハウジング41との間に完全
に密閉された環状の加圧空間42を形成した。該加圧空間
42の下部にセル液の供給管47を前記ハウジング41の内側
から接続し、加圧空間42には脱気された水又は不凍液の
如きセル液を満たしている。また、前記加圧空間42内に
はヒーター52を設置している。Means for Solving the Problems As means for solving the problems of the prior art, an in-situ test apparatus for determining horizontal stress of the ground due to in-situ ground freezing according to the present invention is shown in FIG. As shown in the figure, the cylindrical rubber sleeve 40 is placed concentrically around the outer periphery of the cylindrical housing 41 having a slightly smaller outer diameter, and is completely sealed between the rubber sleeve 40 and the cylindrical housing 41. The formed annular pressurized space 42 was formed. The pressurized space
A cell liquid supply pipe 47 is connected to the lower portion of the housing 41 from the inside of the housing 41, and the pressurized space 42 is filled with cell liquid such as degassed water or antifreeze. Further, a heater 52 is provided in the pressurized space.
前記セル液の供給管47の途中には、前記円筒形ハウジ
ング41の中空部内に位置せしめた二方向電磁弁54により
分岐された水頭管55を垂直上向きに設置し、この水頭管
55の上端及び前記供給管47の途中に設置された差圧変換
器56に共通の空気圧管57を接続した。さらに前記ハウジ
ング41の下端部に水圧検出器58を設置したことを特徴と
する。In the middle of the cell liquid supply pipe 47, a water head pipe 55 branched by a two-way solenoid valve 54 positioned in the hollow portion of the cylindrical housing 41 is installed vertically upward, and this water head pipe is
A common pneumatic tube 57 was connected to the upper end of 55 and the differential pressure converter 56 installed in the middle of the supply tube 47. Further, a water pressure detector 58 is provided at the lower end of the housing 41.
作用 一次元状態で凍結された原位置地盤をコアチューブ等
で掘削した孔内にロッド59の先端部に取付けた原位置試
験装置を挿入し、原位置の凍結地盤が融解するのを待つ
と、地盤の融解と共に応力解放に起因する孔壁の変形
(体積変化)が孔の半径方向(水平方向)に発生する。
そこで原位置試験装置内のセル液の圧力を加減して地盤
(孔壁)の前記変形を常に零に調整すると、原位置の凍
結地盤が完全に融解した時点のセル液圧力を原位置地盤
の水平方向応力として求められる。Action Insert the in-situ test device attached to the tip of the rod 59 into the hole obtained by excavating the in-situ ground frozen in a one-dimensional state with a core tube, etc., and wait for the in-situ frozen ground to thaw. The deformation (volume change) of the hole wall due to the stress release occurs along with the melting of the ground in the radial direction (horizontal direction) of the hole.
Therefore, if the deformation of the ground (hole wall) is constantly adjusted to zero by adjusting the pressure of the cell liquid in the in-situ test apparatus, the cell liquid pressure at the time when the frozen ground in the in-situ is completely thawed, Determined as horizontal stress.
この原位置試験装置は、差圧変換器56で孔壁の変形
(水平方向=孔の半径方向への体積膨張)を検出し、サ
ーボモータ調圧弁61で調節された空気圧を水頭管57を通
じてセル液に加え、孔壁の変形を零に戻すようにフィー
ドバック制御される。この時、ヒーター52は、凍結地盤
と接するセル液の温度を略一定に保ち、測定誤差の発生
を防ぐ。This in-situ test apparatus detects the deformation of the hole wall (horizontal direction = volume expansion in the radial direction of the hole) by the differential pressure transducer 56, and applies the air pressure adjusted by the servo motor pressure regulating valve 61 to the cell through the head tube 57. In addition to the liquid, feedback control is performed to return the deformation of the hole wall to zero. At this time, the heater 52 keeps the temperature of the cell liquid in contact with the frozen ground substantially constant, thereby preventing a measurement error from occurring.
こうして原位置地盤が完全に融解するまで側方向ひず
みを拘束した状態(所謂K0状態)を保つと、それに必要
とされた加圧空間42内のセル液圧力が空気圧計48の空気
圧の大きさとして計測され、この計測値を水圧検出器58
で求められた原位置の孔内水圧と比較考量することによ
り、原位置地盤(実地盤)の水平方向有効応力が求めら
れる。When the lateral strain is restrained (so-called K 0 state) until the in-situ ground is completely melted, the cell liquid pressure in the pressurized space 42 required for the in-situ ground becomes the magnitude of the air pressure of the air pressure gauge 48. Is measured as the water pressure detector 58
The effective stress in the horizontal direction of the in-situ ground (actual ground) can be obtained by comparing with the in-situ water pressure in the in-situ hole obtained in the above.
実施例 次に、図示した本発明の実施例を説明する。Embodiment Next, the illustrated embodiment of the present invention will be described.
原位置地盤凍結による地盤の水平方向応力を求める原
位置試験装置は、原位置地盤1を凍結処理した後に、例
えば室内試験のためにコアチューブ4で掘削し凍結試料
を採取した場合に、このとき形成された孔へ挿入して試
験するのが合理的である。The in-situ test apparatus for obtaining the horizontal stress of the ground due to the in-situ ground freezing, when the in-situ ground 1 is subjected to the freezing treatment, for example, when excavating with the core tube 4 for a laboratory test and collecting a frozen sample, It is reasonable to insert and test in the formed hole.
第1図に示した原位置試験装置は、原位置の凍結地盤
に形成される孔の口径と略同径の円筒形(φ195、長さ4
00mm位)のゴムスリーブ40が、これより少し小さい外径
(φ140)の円筒形ハウジング41の外周に同心円状の配
置に被せられ、ゴムスリーブ40と円筒形ハウジング41と
の間に完全に密閉された環状の加圧空間42が形成されて
いる。ゴムスリーブ40の両端部はゴム製のバックアップ
リング43で固定され、円筒形ハウジング41へねじ込まれ
た固定リング44でテーパーリング45を押し込むことによ
りくさび効果で強固に固定されている。The in-situ test apparatus shown in FIG. 1 has a cylindrical shape (φ195, length 4) having substantially the same diameter as the diameter of the hole formed in the in-situ frozen ground.
A rubber sleeve 40 (approximately 00 mm) is placed concentrically around the outer circumference of a cylindrical housing 41 having an outer diameter slightly smaller than this (φ140), and is completely sealed between the rubber sleeve 40 and the cylindrical housing 41. An annular pressurized space 42 is formed. Both ends of the rubber sleeve 40 are fixed by a backup ring 43 made of rubber, and are firmly fixed by a wedge effect by pushing a taper ring 45 by a fixing ring 44 screwed into the cylindrical housing 41.
前記加圧空間42の下部に水、不凍液の如きセル液の供
給管47が前記円筒形ハウジング41の内側からノズル46で
接続され、加圧空間42内には脱気されたセル液が満たさ
れている。供給管47は給水ポンプ48と接続されている。
加圧空間42の上端にテーパー状の脱気部49が形成され、
該脱気部49に連通された脱気ノズル50に空気抜き弁51が
取り付けられている。また、加圧空間42内には試験中に
おけるセル液の温度をほぼ一定に保ち、セル液の体積膨
張に起因する測定誤差を防ぐフレックスヒーター52が設
置されている。セル液の温度は熱電対39で計測し管理さ
れる。A supply pipe 47 for a cell liquid such as water or antifreeze is connected to the lower part of the pressurized space 42 by a nozzle 46 from the inside of the cylindrical housing 41, and the depressurized cell liquid is filled in the pressurized space 42. ing. The supply pipe 47 is connected to a water supply pump.
A tapered deaeration section 49 is formed at the upper end of the pressurized space 42,
An air vent valve 51 is attached to a deaeration nozzle 50 connected to the deaeration section 49. A flex heater 52 is provided in the pressurized space 42 to keep the temperature of the cell liquid substantially constant during the test and to prevent a measurement error due to a volume expansion of the cell liquid. The temperature of the cell liquid is measured and managed by the thermocouple 39.
前記セル液の供給管47の途中位置には、前記円筒形ハ
ウジング41の中空部内に位置せしめた二方向電磁弁54が
接続され、この二方向電磁弁54により分岐された水頭管
55が垂直上向きに設置されている。この水頭管55の上端
と、前記供給管47の途中に設置された差圧変換器56と
に、共通の空気圧管57が接続されている。前記円筒形ハ
ウジング41の下端部には孔内水圧を計測する水圧検出器
58が設置されている。A two-way solenoid valve 54 located in the hollow portion of the cylindrical housing 41 is connected to a middle position of the cell liquid supply pipe 47, and a water head pipe branched by the two-way solenoid valve 54.
55 are installed vertically upward. A common pneumatic tube 57 is connected to the upper end of the water head tube 55 and the differential pressure transducer 56 installed in the supply tube 47. A water pressure detector at the lower end of the cylindrical housing 41 for measuring the water pressure in the hole.
58 have been installed.
上記構成の原位置試験装置は、ボーリングロッド59の
先端に取り付けられ、前記供給管47、空気圧管57などと
共に地上から凍結地盤の孔内に挿入して所定位置に設置
され原位置試験が遂行される。地上においては空気圧源
60につながるサーボモーター調圧弁61に前記空気圧管57
が接続されており、圧力計62で空気圧が読み取れるもの
とされている。但し、圧力計62の代わりに又はこれと並
設された自動測定、記録器で空気圧を計測することも行
なわれる。また、差圧変換器56の計測値はひずみ増幅器
63へ入力される。そして、ひずみ増幅器63の出力がサー
ボ制御器64へ入力されて前記サーボモーター調圧弁61を
構成するサーボモーター65を駆動し圧力調節器6をリア
ルタイムに自動コントロールするものとされている。水
圧検出器58の計測値も地上の制御装置へ入力され、水平
方向応力の算定に考慮される。The in-situ test apparatus having the above configuration is attached to the tip of the boring rod 59, inserted into the hole of the frozen ground from the ground together with the supply pipe 47, the pneumatic pipe 57, etc., and installed at a predetermined position to perform the in-situ test. You. Air pressure source on the ground
Pneumatic tube 57 to servo motor pressure regulating valve 61 leading to 60
Are connected, and the air pressure can be read by the pressure gauge 62. However, the air pressure may be measured by an automatic measurement and recording device instead of or in parallel with the pressure gauge 62. The measured value of the differential pressure transducer 56 is
Entered into 63. The output of the strain amplifier 63 is input to a servo controller 64, which drives a servo motor 65 constituting the servo motor pressure regulating valve 61 to automatically control the pressure regulator 6 in real time. The measured value of the water pressure detector 58 is also input to the control device on the ground, and is considered in the calculation of the horizontal stress.
この原位置試験装置は、その使用に先立って地上で加
圧空間42内にセル液を満たし、かつ空気抜き弁51を開い
て空気を完全に排除した後再び空気抜き弁51を全閉と
し、しかる後に凍結地盤の孔へ挿入して試験深さの位置
に設置される。セル液がゴムスリーブ40に圧力(セル
圧)を加え、差圧変換器56で孔壁の変形(横方向への膨
張)が検出され、サーボモータ調圧弁61で調節された空
気圧を水頭管55を通じてセル液に加えることにより孔壁
の変形を零に戻すフィードバック制御が実施される。Prior to its use, this in-situ test apparatus fills the pressurized space 42 on the ground with the cell liquid, opens the air release valve 51 to completely remove the air, and then completely closes the air release valve 51 again. It is inserted into a hole in the frozen ground and placed at the test depth. The cell liquid applies pressure (cell pressure) to the rubber sleeve 40, the deformation of the hole wall (expansion in the lateral direction) is detected by the differential pressure transducer 56, and the air pressure adjusted by the servo motor pressure regulating valve 61 is applied to the head pipe 55. Feedback control is performed to return the deformation of the pore wall to zero by adding the pore liquid to the cell liquid.
かくして原位置の凍結地盤が完全に融解するまで孔壁
の半径方向(水平方向)変位を拘束した状態(所謂K0状
態)を保ち、それに必要とされた加圧空間42内のセル圧
が圧力計62で空気圧の大きさとして計測される。他方、
水圧検出器58で求められた原位置の孔内水圧と前記セル
圧との比較考量により、原位置地盤(実地盤)の真正な
水平方向有効応力が求められるのである。Thus, until the frozen ground in the original position is completely thawed, the state in which the radial (horizontal) displacement of the hole wall is restrained (so-called K 0 state) is maintained, and the cell pressure in the pressurized space 42 required for the pressure is increased. The total pressure is measured as the magnitude of the air pressure. On the other hand,
The genuine horizontal effective stress of the in-situ ground (actual ground) can be obtained by comparing the cell pressure with the in-hole water pressure obtained at the original position obtained by the water pressure detector 58.
異なる使用態様 なお、この原位置試験装置を使用すると、孔壁の融解
を利用した原位置地盤の水平方向応力を求める試験が終
了したのちに、そのまま原位置地盤のヤング係数を求め
る試験に移行して実施することができる。即ち、前記水
平方向応力を求める試験の終了後、今度は当該原位置試
験装置の加圧空間42内のセル液の圧力をさらに高めてゆ
く。すると、ゴムスリーブ40が融解した孔壁を半径方向
外向きに押し広げる状態になる。このときの圧力変化と
孔の半径方向変位とを計測することにより、原位置地盤
のヤング係数を求めることができる訳である。Different modes of use If this in-situ test apparatus is used, after the test for obtaining the horizontal stress of the in-situ ground using the melting of the hole wall has been completed, the test proceeds to the test for obtaining the Young's modulus of the in-situ ground. Can be implemented. That is, after the test for obtaining the horizontal stress is completed, the pressure of the cell liquid in the pressurized space 42 of the in-situ test apparatus is further increased. Then, the hole wall in which the rubber sleeve 40 is melted is pushed outward in the radial direction. By measuring the pressure change at this time and the radial displacement of the hole, the Young's modulus of the in-situ ground can be obtained.
本発明が奏する効果 以上に実施例と併せて詳述したとおりであって、この
発明に係る原位置地盤凍結による地盤の水平方向応力を
求める原位置試験装置によれば、一次元状態で凍結され
凍結直前の原位置地盤の応力、ひずみの状態をそっくり
保存している孔壁に基づき、原位置の凍結地盤が融解す
る現象の応用で水平方向有効応力をリアルタイムに自動
的に高精度に求めることができる。あるいは原位置地盤
のヤング係数を求めることもできる。According to the in-situ test apparatus for determining the horizontal stress of the ground due to the in-situ ground freezing according to the present invention, the frozen in a one-dimensional state Based on the hole wall that completely preserves the state of stress and strain of the in-situ ground just before freezing, the application of the phenomenon where the in-situ frozen ground thaws automatically determines the effective stress in the horizontal direction with high accuracy in real time. Can be. Alternatively, the Young's modulus of the in-situ ground can be obtained.
したがって、地盤調査の信頼性向上と効率化に大きく
寄与するのである。Therefore, it greatly contributes to improving the reliability and efficiency of the ground survey.
第1図は凍結された原位置地盤の孔に挿入して使用され
る本発明の原位置試験装置の構造詳細を示した断面図で
ある。 40……ゴムスリーブ、41……円筒形ハウジング 42……加圧空間、47……供給管 52……ヒーター、54……二方向電磁弁 55……水頭管、56……差圧変換器 57……空気圧管、58……水圧検出器FIG. 1 is a sectional view showing details of the structure of an in-situ test apparatus according to the present invention which is used by being inserted into a hole in a frozen in-situ ground. 40 Rubber sleeve, 41 Cylindrical housing 42 Pressurized space, 47 Supply pipe 52 Heater 54 Two-way solenoid valve 55 Head tube 56 Differential pressure transducer 57 …… pneumatic tube, 58 …… water pressure detector
フロントページの続き (72)発明者 大原 淳良 東京都目黒区東が丘2丁目11番16号 株 式会社東京ソイルリサーチ内 (72)発明者 牧原 依夫 東京都目黒区東が丘2丁目11番16号 株 式会社東京ソイルリサーチ内 (56)参考文献 特開 昭54−3579(JP,A)Continuing from the front page (72) Inventor Atsura Ohara 2-11-16 Higashigaoka, Meguro-ku, Tokyo Inside Tokyo Soil Research Co., Ltd. (72) Inventor Yorio Makihara 2-11-16 Higashigaoka, Meguro-ku, Tokyo Tokyo Soil Research Co., Ltd. (56) References JP-A-54-3579 (JP, A)
Claims (1)
円筒形ハウジングの外周に同心円状の配置に被せられ、
該ゴムスリーブと前記円筒形のハウジングとの間に完全
に密閉された環状の加圧空間が形成されており、該加圧
空間の下部にセル液の供給管が前記ハウジングの内側か
ら接続され、加圧空間内には脱気された水又は不凍液の
如きセル液が満たされており、前記加圧空間内にはヒー
ターが設置され、前記セル液の供給管の途中には前記円
筒形ハウジングの中空部内に位置せしめた二方向電磁弁
により分岐された水頭管が垂直上向きに設置され、前記
水頭管の上端及び前記供給管の途中に設置された差圧変
換器に共通の空気圧管が接続され、前記円筒形ハウジン
グの下端部には水圧検出器が設置されていることを特徴
とする、原位置地盤凍結による地盤の水平方向応力を求
める原位置試験装置。1. A cylindrical rubber sleeve is concentrically arranged on the outer periphery of a cylindrical housing having a slightly smaller outer diameter,
An annular pressurized space that is completely sealed is formed between the rubber sleeve and the cylindrical housing, and a supply pipe for cell liquid is connected to the lower part of the pressurized space from inside the housing, The pressurized space is filled with cell liquid such as degassed water or antifreeze, a heater is installed in the pressurized space, and the cylindrical housing is provided in the middle of the cell liquid supply pipe. A water head pipe branched by a two-way solenoid valve positioned in the hollow part is installed vertically upward, and a common air pressure pipe is connected to the upper end of the water head pipe and a differential pressure transducer installed in the middle of the supply pipe. An in-situ test apparatus for determining a horizontal stress of the ground due to in-situ ground freezing, wherein a water pressure detector is provided at a lower end of the cylindrical housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16235589A JP2759129B2 (en) | 1989-06-23 | 1989-06-23 | In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16235589A JP2759129B2 (en) | 1989-06-23 | 1989-06-23 | In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0328490A JPH0328490A (en) | 1991-02-06 |
JP2759129B2 true JP2759129B2 (en) | 1998-05-28 |
Family
ID=15752990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16235589A Expired - Fee Related JP2759129B2 (en) | 1989-06-23 | 1989-06-23 | In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2759129B2 (en) |
-
1989
- 1989-06-23 JP JP16235589A patent/JP2759129B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0328490A (en) | 1991-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Ruiter | Electric penetrometer for site investigations | |
EP0403699B1 (en) | Method and apparatus for measurement of in-situ horizontal stress of non-coherent soil | |
JP2003526089A (en) | In-situ triaxial test method and apparatus | |
Withers et al. | Performance and analysis of cone pressuremeter tests in sands | |
US4598591A (en) | Apparatus for determining the variations in volume of an expandable deformable cell embedded in soil and subjected to internal pressure gradients | |
JP2759129B2 (en) | In-situ test equipment to determine horizontal stress of ground due to in-situ ground freezing | |
JP2772832B2 (en) | In-situ test method and test apparatus for determining Young's modulus of non-viscous ground due to in-situ ground freezing | |
US3457778A (en) | Soil testing apparatus | |
JP2764613B2 (en) | Laboratory test equipment for in-situ ground stress using in-situ ground frozen samples | |
JPH11152983A (en) | Original position hole bottom three-axial compression test method | |
CN108458164A (en) | A kind of artificial push pipe control method and control system | |
Coop et al. | The axial capacity of driven piles in clay | |
Hanna | The measurement of pore water pressures adjacent to a driven pile | |
Watts et al. | In situ measurement of vertical and horizontal stress from a vertical borehole | |
JPH0657934B2 (en) | Water permeability test equipment | |
EP0705941B1 (en) | Two piezometers pressuremeter | |
Zuidberg et al. | EURIPIDES, load tests on large driven piles in dense silica sands | |
JP2004107943A (en) | Borehole inside vertical loading test method and its device | |
JPH0426401B2 (en) | ||
RU2712897C1 (en) | Drilling and probing parameters measuring device | |
JPH09288021A (en) | Method for measuring slack displacement of natural ground | |
JPH05311634A (en) | Original position test apparatus determining horizontal stress of ground due to original ground freezing | |
Lee et al. | Characterization of reservoir sediment under water with differential pressure-sensored flat dilatometer and piezo-penetrometer | |
JPH039249B2 (en) | ||
JP2671028B2 (en) | In-situ test method to determine horizontal pressure of the ground by in-situ freezing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |