JP2755419B2 - Hot surface collision ignition type internal combustion engine - Google Patents

Hot surface collision ignition type internal combustion engine

Info

Publication number
JP2755419B2
JP2755419B2 JP1090534A JP9053489A JP2755419B2 JP 2755419 B2 JP2755419 B2 JP 2755419B2 JP 1090534 A JP1090534 A JP 1090534A JP 9053489 A JP9053489 A JP 9053489A JP 2755419 B2 JP2755419 B2 JP 2755419B2
Authority
JP
Japan
Prior art keywords
fuel
heating
temperature
heating surface
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1090534A
Other languages
Japanese (ja)
Other versions
JPH0315664A (en
Inventor
繁 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURINENJIN KENKYUSHO KK
Original Assignee
NIPPON KURINENJIN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURINENJIN KENKYUSHO KK filed Critical NIPPON KURINENJIN KENKYUSHO KK
Priority to JP1090534A priority Critical patent/JP2755419B2/en
Publication of JPH0315664A publication Critical patent/JPH0315664A/en
Application granted granted Critical
Publication of JP2755419B2 publication Critical patent/JP2755419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0675Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being substantially spherical, hemispherical, ellipsoid or parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0654Thermal treatments, e.g. with heating elements or local cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0666Details related to the fuel injector or the fuel spray having a single fuel spray jet per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱面衝突着火式内燃機関に関する。The present invention relates to a hot surface collision ignition type internal combustion engine.

〔従来の技術〕[Conventional technology]

直噴式ディーゼル機関或いは副室付ディーゼル機関で
は燃料噴射弁から燃焼室或いは副室内に噴射された燃料
をできるだけ微粒化して空気と十分に混合させる必要が
あり、そのためにこれらのディーゼル機関では燃料噴射
弁のノズル口から燃料が噴射される際にできるだけ燃料
を微粒化するようにしている。また、機関始動時のよう
に燃焼室或いは副室の温度が低いときには燃料の霧化が
不十分であり、従って燃焼室或いは副室内にグロープラ
グを取付けて燃焼室或いは副室内の空気を加熱すること
等により燃料の着火を促進するようにしている。
In a direct injection type diesel engine or a diesel engine with a sub-chamber, it is necessary to atomize the fuel injected from the fuel injection valve into the combustion chamber or the sub-chamber as much as possible and sufficiently mix it with air. When the fuel is injected from the nozzle port, the fuel is atomized as much as possible. Also, when the temperature of the combustion chamber or the sub-chamber is low, such as when starting the engine, atomization of the fuel is insufficient. Therefore, a glow plug is mounted in the combustion chamber or the sub-chamber to heat the air in the combustion chamber or the sub-chamber. In this way, fuel ignition is promoted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながらこのように燃料噴射弁のノズル口から噴
射される燃料の微粒化を促進し、更に燃焼室或いは副室
内にグロープラグを配置しても燃料が空気と十分に混合
して燃料が着火せしめられるまでには一定の時間を要
し、斯くして着火遅れを生ずることになる。このような
着火遅れを生ずると着火が行われたときには周囲に既に
多量の燃料粒子が存在するために周囲の燃料が急激に燃
焼せしめられ、斯くして燃焼室或いは副室内の燃焼圧が
急激に上昇する。燃焼圧が急激に上昇すると大きな騒音
が発生するという問題を生じるばかりでなく、最高燃焼
温が高くなるために多量のNOxが発生するという問題が
ある。また、このようなディーゼル機関では燃焼室内或
いは副室内に燃料を均一に分散させることが困難であ
り、従って燃料粒子の周りの酸素が不十分な領域が必ず
発生する。その結果、このような領域において多量のパ
ティキュレートが発生する。燃料噴射弁のノズル口から
燃料を微粒化しつつ噴射するようにしている限り、着火
遅れを短縮することは困難であり、しかも燃料を均一に
燃焼室或いは副室内に分散させるのは困難である。従っ
て燃料噴射弁のノズル口から燃料を微粒化しつつ噴射す
るようにしている限り、大きな騒音が発生すると共に多
量のNOxが発生し、しかも多量のパティキュレートが発
生することになる。
However, the atomization of the fuel injected from the nozzle opening of the fuel injection valve is promoted in this way, and even if the glow plug is arranged in the combustion chamber or the sub-chamber, the fuel is sufficiently mixed with the air and the fuel is ignited. It takes a certain amount of time until this occurs, thus causing an ignition delay. When such an ignition delay occurs, when the ignition is performed, the surrounding fuel is rapidly burned because a large amount of fuel particles are already present in the surroundings, so that the combustion pressure in the combustion chamber or the sub-chamber sharply increases. To rise. When the combustion pressure rises sharply, not only does the problem that loud noise occurs, but also the problem that a large amount of NOx is generated because the maximum combustion temperature increases. Further, in such a diesel engine, it is difficult to uniformly disperse the fuel in the combustion chamber or the sub-chamber, so that an area around the fuel particles where oxygen is insufficient is always generated. As a result, a large amount of particulates are generated in such a region. As long as fuel is atomized and injected from the nozzle port of the fuel injection valve, it is difficult to shorten the ignition delay, and it is difficult to uniformly disperse the fuel in the combustion chamber or the sub-chamber. Therefore, as long as the fuel is injected while being atomized from the nozzle port of the fuel injection valve, a large noise is generated, a large amount of NOx is generated, and a large amount of particulates is generated.

また、圧縮着火機関は熱効率が高いという利点があ
り、従ってガソリン、メタノール等の低セタン価、高オ
クタン価の燃料を圧縮着火せしめることができれば経済
的に極めて有利である。しかしながらこのような低セタ
ン価、高オクタン価の燃料は着火遅れ期間が極めて長
く、従って従来よりこのような燃料を圧縮着火させるこ
とは困難とされている。
Also, compression ignition engines have the advantage of high thermal efficiency. Therefore, it would be extremely economically advantageous if compression ignition of low cetane number and high octane number fuels such as gasoline and methanol could be performed. However, such low cetane number and high octane number fuels have an extremely long ignition delay period, and it has been conventionally difficult to ignite such fuels by compression ignition.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点を解決するために本発明によればピストン
頂面上にキャビティを形成し、ピストンが上死点に達し
たときにキャビティ内の中央部に位置するように電気加
熱式の加熱部材を配置し、燃料噴射弁のノズル口から加
熱部材のほぼ平坦をなす加熱表面の中央部に向けて液柱
状の燃料を噴射せしめると共に液柱状の燃料を加熱表面
に衝突せしめるようにしている。
In order to solve the above problems, according to the present invention, a cavity is formed on the top surface of the piston, and when the piston reaches the top dead center, the heating member of the electric heating type is located at the center of the cavity. The fuel injection valve is arranged so that the liquid columnar fuel is injected from the nozzle opening of the fuel injection valve toward the center of the substantially flat heating surface of the heating member, and the liquid columnar fuel collides with the heating surface.

〔作用〕[Action]

燃料を加熱表面に衝突させることによって加熱表面か
ら受熱した燃料粒子は活性化が促進されて周囲に飛散せ
しめられ、ただちに着火せしめられる。従って軽油はも
とよりガソリン、メタノール、灯油等内燃機関に使用し
うると考えられるいづれの燃料を用いても着火遅れが極
めて短縮され、自己着火による良好な燃焼が得られる。
By colliding the fuel with the heating surface, the fuel particles received from the heating surface are promoted to be activated, are scattered around, and are immediately ignited. Therefore, the ignition delay is extremely shortened by using any fuel that can be used for an internal combustion engine such as gasoline, methanol, kerosene as well as light oil, and good combustion by self-ignition can be obtained.

〔実施例〕〔Example〕

第1図および第2図に本発明による第1実施例を示
す。
1 and 2 show a first embodiment according to the present invention.

第1図および第2図を参照すると、1はシリンダブロ
ック、2はシリンダブロック1内で往復動するピスト
ン、3はシリンダブロック1上に固締されたシリンダヘ
ッド、4はピストン2とシリンダヘッド3間に形成され
た燃焼室、5は吸気弁、6は排気弁を夫々示す。ピスト
ン2の平坦な頂面2aの中央部にはキャビティ7が形成さ
れ、シリンダヘッド3の平坦な内壁面3aの中央部には燃
料噴射弁8が配置される。第1図に示す実施例では燃料
噴射弁8は単一のノズル口9と、このノズル口9を開閉
制御するニードル10とを具備し、ニードル10がノズル口
9を開口したときにノズル口9からキャビティ7の中央
部に向けて燃料が噴射される。
1 and 2, reference numeral 1 denotes a cylinder block, 2 denotes a piston that reciprocates in the cylinder block 1, 3 denotes a cylinder head fixed on the cylinder block 1, and 4 denotes a piston 2 and a cylinder head 3. A combustion chamber 5 formed therebetween is designated by an intake valve, and 6 is designated by an exhaust valve. A cavity 7 is formed at the center of the flat top surface 2a of the piston 2, and a fuel injection valve 8 is arranged at the center of the flat inner wall surface 3a of the cylinder head 3. In the embodiment shown in FIG. 1, the fuel injection valve 8 has a single nozzle port 9 and a needle 10 for controlling the opening and closing of the nozzle port 9. When the needle 10 opens the nozzle port 9, the nozzle port 9 is closed. The fuel is injected toward the center of the cavity 7 from the.

キャビティ7の中央部には一対の支持部材11,12を介
してシリンダヘッド3により支持されたディスク状の加
熱部材13が配置される。この加熱部材13は例えばセラミ
ックのような耐熱性材料から形成される。加熱部材13内
には電気的に加熱される加熱素子14が配置され、この加
熱素子14によってノズル口9に対面する加熱部材13の加
熱表面15が加熱せしめられる。また、加熱部材13内には
加熱表面15の温度を検出する、例えば熱電対からなる温
度センサ16が配置される。加熱表面15の温度は温度セン
サ16の出力信号により圧縮温度よりも高い650℃以上の
温度、例えば800℃程度に維持される。なお、加熱素子1
4を用いる代りに加熱部材13の全体を正特性サーミスタ
素子のようなセラミックヒータを用いることもできる。
第1図に示す実施例では加熱表面15はシリンダヘッド内
壁面3aとほぼ平行をなす平坦面が形成されている。しか
しながらこの加熱表面15は曲率半径の比較的大きな凸曲
面或いは凹曲面から形成することもできる。
At the center of the cavity 7, a disk-shaped heating member 13 supported by the cylinder head 3 via a pair of supporting members 11, 12 is arranged. The heating member 13 is formed from a heat-resistant material such as a ceramic. A heating element 14 that is electrically heated is disposed in the heating member 13, and the heating element 14 heats a heating surface 15 of the heating member 13 facing the nozzle port 9. In addition, a temperature sensor 16 that detects the temperature of the heating surface 15 and that includes, for example, a thermocouple is disposed in the heating member 13. The temperature of the heating surface 15 is maintained at a temperature of 650 ° C. or higher, for example, about 800 ° C., which is higher than the compression temperature, based on an output signal of the temperature sensor 16. The heating element 1
Instead of using 4, a ceramic heater such as a positive temperature coefficient thermistor element can be used for the entire heating member 13.
In the embodiment shown in FIG. 1, the heating surface 15 has a flat surface substantially parallel to the cylinder head inner wall surface 3a. However, the heating surface 15 can also be formed from a convex or concave surface having a relatively large radius of curvature.

燃料噴射弁8のノズル口9からは燃料がFで示される
ように連続液体流の形で加熱表面15の中央部に向けて噴
射される。第1図に示す実施例ではこの燃料噴射は圧縮
上死点前5度から15度程度に開始される。ノズル口9か
ら噴射された燃料は加熱表面15の中央部に衝突し、この
とき一部の燃料は衝突エネルギによってただちに霧化
し、残りの燃料は液膜流の形で加熱表面15の周縁部に向
けて四方に流れる。次いでこの液膜流は加熱表面15の周
縁部において分裂して燃料微粒子となり、この燃料微粒
子は第1図において矢印で示すように周囲に飛散する。
上述したように噴射燃料の一部は衝突後ただちに霧化す
るがこの霧化した燃料は衝突時に加熱表面15から熱を奪
って高温となっており、従ってただちに自己着火せしめ
られる。また、加熱表面15上を液膜流の形で流れる燃料
は加熱表面15上を流れる間に加熱表面15から熱を奪って
高温となっている。従って加熱表面15の周縁部から周囲
に飛散する燃料微粒子も高温となっており、従ってこの
燃料微粒子もただちに自己着火せしめられる。従って着
火遅れ期間が極めて短かくなるので燃料噴射弁8から噴
射される燃料が順次燃焼せしめられる。その結果、燃焼
圧がゆるやかに上昇するために騒音の発生が抑制され、
更に最高燃焼温が低くなるためにNOxの発生が抑制され
る。更に、燃料が加熱表面15から四方に均一に飛散する
のでキャビティ7内には燃料微粒子が均一に分散され、
斯くして燃料微粒子の周囲の酸素が欠乏する領域がほと
んど存在しなくなるのでパティキュレートの発生が抑制
されることになる。
Fuel is injected from the nozzle port 9 of the fuel injection valve 8 toward the center of the heating surface 15 in the form of a continuous liquid flow as indicated by F. In the embodiment shown in FIG. 1, this fuel injection is started from about 5 degrees before compression top dead center to about 15 degrees. The fuel injected from the nozzle port 9 collides with the central portion of the heating surface 15, and at this time, some fuel is immediately atomized by the collision energy, and the remaining fuel is in the form of a liquid film on the peripheral portion of the heating surface 15. It flows in all directions. This liquid film flow then splits at the periphery of the heating surface 15 into fuel particulates which scatter around as indicated by the arrows in FIG.
As described above, a part of the injected fuel is atomized immediately after the collision, but the atomized fuel takes heat from the heating surface 15 at the time of the collision and becomes high in temperature, so that the fuel is immediately self-ignited. Further, the fuel flowing in the form of a liquid film on the heating surface 15 takes heat from the heating surface 15 while flowing on the heating surface 15 and has a high temperature. Accordingly, the fuel particles scattered from the peripheral portion of the heating surface 15 to the periphery are also at a high temperature, so that the fuel particles are immediately self-ignited. Therefore, the ignition delay period becomes extremely short, and the fuel injected from the fuel injection valve 8 is burned sequentially. As a result, the generation of noise is suppressed because the combustion pressure rises slowly,
Further, since the maximum combustion temperature is lowered, generation of NOx is suppressed. Further, since the fuel is uniformly scattered in all directions from the heating surface 15, the fuel particles are uniformly dispersed in the cavity 7,
Thus, there is almost no region around the fuel fine particles where oxygen is deficient, so that the generation of particulates is suppressed.

本発明において重要なことは燃料噴射弁8のノズル口
9から燃料を連続液体流の形で噴射させてこの噴射燃料
を微粒化されていない液状の形で加熱表面15に衝突させ
ること、即ち燃料噴射弁8のノズル口9から液柱状の燃
料を噴射させてこの液柱状の燃料を加熱表面15に衝突さ
せること、および加熱表面15が加熱表面15に衝突した燃
料に十分な熱を与えるのに十分な或る程度以上の面積を
有していることにある。
What is important in the present invention is that fuel is injected from the nozzle port 9 of the fuel injection valve 8 in the form of a continuous liquid stream, and the injected fuel impinges on the heating surface 15 in a non-atomized liquid form; Injecting the liquid columnar fuel from the nozzle port 9 of the injection valve 8 to cause the liquid columnar fuel to collide with the heating surface 15 and to provide the heating surface 15 with sufficient heat to the fuel impinging on the heating surface 15 It has a sufficient area of a certain degree or more.

即ち、本発明は微粒化された燃料を燃料噴射弁8のノ
ズル口から噴出させる従来のディーゼル機関とは異なっ
て、燃料噴射弁8のノズル口9から燃料の噴射する際に
は基本的に燃料を微粒化させず、この噴射燃料を加熱表
面15に衝突せしめることによって噴射燃料を微粒化せし
めることを特徴としている。無論、ノズル口9から噴射
される全ての燃料の微粒化を阻止することは不可能であ
り、従って実際にはノズル口9から噴射された燃料の一
部が微粒化していない液状の形で加熱表面15に衝突する
ことになる。このとき燃料は連続液体流の形で加熱表面
15に衝突する場合もあり、また噴射後分裂して液体の塊
の形で加熱表面15に衝突する場合もある。いずれにして
も本発明では噴射燃料を加熱表面15に衝突させることに
よって微粒化せしめるようにしているので噴射燃料をで
きるだけ高速度で加熱表面15上に衝突せしめる必要があ
り、そのためにノズル口9から燃料を連続液体流の形
で、即ち液柱状の燃料を噴射せしめるようにしている。
即ち、連続液体流の形で噴射された燃料は大きな貫徹力
を有するので加熱表面15に衝突するまでにほとんど減速
されず、斯くして燃料噴射弁8から噴射される燃料の燃
料噴射圧を100kg/cm2から150kg/cm2程度の低圧としても
噴射燃料を高速度で加熱表面15に衝突せしめることがで
きる。
That is, unlike the conventional diesel engine in which the atomized fuel is ejected from the nozzle port of the fuel injection valve 8, the present invention basically provides the fuel injection when the fuel is injected from the nozzle port 9 of the fuel injection valve 8. Is not atomized, but the injected fuel is made to be atomized by colliding the injected fuel with the heating surface 15. Of course, it is impossible to prevent atomization of all the fuel injected from the nozzle port 9 and, therefore, in practice, a part of the fuel injected from the nozzle port 9 is heated in a non-atomized liquid form. It will hit the surface 15. The fuel is then heated on a heated surface in the form of a continuous liquid stream.
In some cases, it may impinge on the heating surface 15 in the form of a mass of liquid that splits after being ejected. In any case, in the present invention, the injected fuel is made to be atomized by colliding with the heating surface 15, so that it is necessary to cause the injected fuel to collide with the heating surface 15 at as high a speed as possible. The fuel is injected in the form of a continuous liquid stream, that is, in the form of a liquid column.
That is, since the fuel injected in the form of the continuous liquid flow has a large penetration force, it is hardly decelerated until it collides with the heating surface 15, and thus the fuel injection pressure of the fuel injected from the fuel injection valve 8 is reduced to 100 kg. / from cm 2 as 150 kg / cm 2 about low pressure can be allowed to impinge on the heated surface 15 of the injected fuel at a high speed.

従来のように微粒化された燃料を燃料噴射弁のノズル
口から噴射させるようにした場合には燃料噴霧の貫徹力
が小さく、燃料微粒子はノズル口から噴射されるや否や
急速に減速せしめられる。従ってこのような燃料噴霧内
にグロープラグを配置してもグロープラグに衝突した少
量の燃料粒子はグロープラグの近傍に漂よっているだけ
であり、高温の燃料粒子が燃焼室4内の広い領域に分散
されるわけではないので着火遅れを短縮する効果は少な
い。
In the case where the atomized fuel is injected from the nozzle port of the fuel injection valve as in the related art, the penetrating force of the fuel spray is small, and the fuel particles are rapidly decelerated as soon as they are injected from the nozzle port. Therefore, even if a glow plug is placed in such a fuel spray, a small amount of fuel particles that have collided with the glow plug are only floating near the glow plug, and high-temperature fuel particles are spread over a wide area in the combustion chamber 4. Since it is not dispersed, the effect of reducing the ignition delay is small.

また、噴射燃料の一部は衝突後ただちに霧化すると云
っても液状の形で加熱表面15上に衝突した燃料は加熱表
面15上において輪状に広がり、この輪状に広がった燃料
が微粒化する。従ってこの輪状に広がった燃料に十分な
熱を与えるために加熱表面15は少くとも輪状に広がった
燃料を加熱しうる面積を有することが好ましい。また、
加熱表面15上をその周縁部に向けて液膜状で流れる燃料
を十分に加熱するためには加熱表面15は更に大きな面積
を有することが好ましい。
Even if a part of the injected fuel is atomized immediately after the collision, the fuel colliding on the heating surface 15 in a liquid form spreads in a ring on the heating surface 15, and the fuel spread in a ring is atomized. Accordingly, in order to provide sufficient heat to the annular fuel, the heating surface 15 preferably has an area capable of heating at least the annular fuel. Also,
In order to sufficiently heat the fuel flowing in the form of a liquid film on the heating surface 15 toward the periphery thereof, the heating surface 15 preferably has a larger area.

また、加熱表面15は高温度に維持されるために加熱表
面15上にカーボン等が堆積することがなく、また加熱部
材13の寸法が小さいために加熱素子14に通電を開始すれ
ば加熱表面15の温度がただちに上昇し、斯くして機関始
動時から着火遅れ期間の極めて短かい良好な燃焼を確保
することができる。
Further, since the heating surface 15 is maintained at a high temperature, no carbon or the like is deposited on the heating surface 15, and since the size of the heating member 13 is small, when the heating element 14 is energized, the heating surface 15 Immediately rises, and good combustion with an extremely short ignition delay period from the start of the engine can be ensured.

第3図から第12図に種々の実施例を示す。これら第3
図から第12図に示す各実施例において第1図および第2
図に示す実施例と同様な構成要素は同一の符号で示す。
3 to 12 show various embodiments. These third
1 and 2 in each embodiment shown in FIGS.
Components similar to those in the embodiment shown in the figures are denoted by the same reference numerals.

第3図は第2実施例を示している。この実施例では加
熱部材13がその下方部に多数の環状フィンを形成した受
熱部13aを一体形成している。この受熱部13aは燃焼ガス
の熱をできるだけ吸収してこの熱を加熱表面15に伝達
し、それによって加熱素子14の電力消費量を軽減するた
めに設けられている。
FIG. 3 shows a second embodiment. In this embodiment, the heating member 13 is integrally formed with a heat receiving portion 13a having a large number of annular fins formed below. The heat receiving part 13a is provided to absorb as much heat of the combustion gas as possible and to transfer this heat to the heating surface 15, thereby reducing the power consumption of the heating element 14.

第4図に第3実施例を示す。この実施例では支持部材
14内に加熱素子14が配置され、支持部材14の先端部に熱
伝導性のよい例えば金属材料からなる加熱板17が固着さ
れる。加熱素子14から発生した熱は熱伝導によって加熱
板17に伝達され、それによって加熱板17の加熱表面15が
加熱される。
FIG. 4 shows a third embodiment. In this embodiment, the support member
A heating element 14 is disposed in the inside of the support member 14, and a heating plate 17 made of, for example, a metal material having good heat conductivity is fixed to the tip of the support member 14. The heat generated from the heating element 14 is transferred to the heating plate 17 by heat conduction, thereby heating the heating surface 15 of the heating plate 17.

第5図に第4実施例を示す。この実施例では加熱部材
13が3個の支持部材18を介して燃料噴射弁8により支持
される。即ち、この実施例では加熱部材13が燃料噴射弁
8と一体形成されている。
FIG. 5 shows a fourth embodiment. In this embodiment, the heating member
13 is supported by the fuel injection valve 8 via three support members 18. That is, in this embodiment, the heating member 13 is formed integrally with the fuel injection valve 8.

第6図に第5実施例を示す。この実施例では加熱部材
13がピストン2に形成されたキャビティ7の底壁面中央
部により支持される。
FIG. 6 shows a fifth embodiment. In this embodiment, the heating member
13 is supported by the center of the bottom wall surface of the cavity 7 formed in the piston 2.

第7図に第6実施例を示す。この実施例ではピストン
2に形成されたキャビティ7がほぼ球形状をなし、この
球形状キャビティ7の周壁面上に加熱部材13が配置され
る。燃料噴射弁8のノズル口9からはFで示すように加
熱部材13の加熱表面15に向けて燃料が噴射される。
FIG. 7 shows a sixth embodiment. In this embodiment, the cavity 7 formed in the piston 2 has a substantially spherical shape, and the heating member 13 is disposed on the peripheral wall surface of the spherical cavity 7. Fuel is injected from the nozzle port 9 of the fuel injection valve 8 toward the heating surface 15 of the heating member 13 as indicated by F.

第8図に第7実施例を示す。この実施例ではキャビテ
ィ7の周辺部に一対の加熱部材13が配置され、これらの
各加熱部材13は夫々対応する支持部材19を介してシリン
ダヘッド3により支持される。また、燃料噴射弁8は一
対のノズル口9を具備し、各ノズル口9から対応する加
熱部材13の加熱表面15に向けて燃料が噴射される。
FIG. 8 shows a seventh embodiment. In this embodiment, a pair of heating members 13 are arranged around the cavity 7, and each of these heating members 13 is supported by the cylinder head 3 via a corresponding supporting member 19. The fuel injection valve 8 has a pair of nozzle ports 9, and fuel is injected from each nozzle port 9 toward the corresponding heating surface 15 of the heating member 13.

第9図に第8実施例を示す。この実施例ではピストン
2の頂面2aの全体が平坦に形成され、シリンダヘッド内
壁面3aの中央部にキャビティ20が形成される。キャビテ
ィ20の周壁面には一対の加熱部材13が配置される。燃料
噴射弁8は一対のノズル口9を具備し、各ノズル口9か
ら対応する加熱部材13の加熱表面15に向けて燃料が噴射
される。
FIG. 9 shows an eighth embodiment. In this embodiment, the entire top surface 2a of the piston 2 is formed flat, and a cavity 20 is formed at the center of the cylinder head inner wall surface 3a. A pair of heating members 13 are arranged on the peripheral wall surface of the cavity 20. The fuel injection valve 8 has a pair of nozzle ports 9, and fuel is injected from each nozzle port 9 toward the corresponding heating surface 15 of the heating member 13.

第10図は第9実施例を示す。この実施例においてもピ
ストン2の頂面2aの全体が平坦に形成され、シリンダヘ
ッド内壁面3aの中央部にキャビティ20が形成される。ま
た、この実施例では加熱部材13が環状をなし、この環状
をなす加熱部材13が燃料噴射弁8の先端部に取付けられ
る。燃料噴射弁8は複数個のノズル口9を具備し、各ノ
ズル口9から円錐状をなす加熱表面15に向けて燃料が噴
射される。
FIG. 10 shows a ninth embodiment. Also in this embodiment, the entire top surface 2a of the piston 2 is formed flat, and a cavity 20 is formed at the center of the cylinder head inner wall surface 3a. In this embodiment, the heating member 13 has an annular shape, and the annular heating member 13 is attached to the tip of the fuel injection valve 8. The fuel injection valve 8 has a plurality of nozzle ports 9, and fuel is injected from each nozzle port 9 toward a conical heating surface 15.

第11図に第10実施例を示す。この実施例では燃焼室4
が主室4aと、噴口21を介して主室4aに接続された副室4b
とにより構成され、副室4b内に燃料噴射弁8のノズル口
9が配置される。副室4bの内周面上には加熱部材13が配
置され、燃料噴射弁8のノズル口9からは加熱部材13の
加熱表面15に向けて燃料が噴射される。
FIG. 11 shows a tenth embodiment. In this embodiment, the combustion chamber 4
Are the main chamber 4a and the sub-chamber 4b connected to the main chamber 4a through the nozzle 21.
The nozzle port 9 of the fuel injection valve 8 is disposed in the sub chamber 4b. A heating member 13 is disposed on the inner peripheral surface of the sub-chamber 4b, and fuel is injected from a nozzle port 9 of the fuel injection valve 8 toward a heating surface 15 of the heating member 13.

第12図に第11実施例を示す。この実施例でも燃焼室4
が主室4aと、噴口21を介して主室4aに接続された副室4b
とにより構成され、副室4b内に燃料噴射弁8のノズル口
9が配置される。副室4bの中心部には支持部材22を介し
て副室4bの内壁面により支持された加熱部材13が配置さ
れ、燃料噴射弁8のノズル口9から加熱部材13の加熱表
面15に向けて燃料が噴射される。
FIG. 12 shows an eleventh embodiment. Also in this embodiment, the combustion chamber 4
Are the main chamber 4a and the sub-chamber 4b connected to the main chamber 4a through the nozzle 21.
The nozzle port 9 of the fuel injection valve 8 is disposed in the sub chamber 4b. A heating member 13 supported by the inner wall surface of the sub-chamber 4b via a support member 22 is disposed at the center of the sub-chamber 4b, and is directed from the nozzle port 9 of the fuel injection valve 8 to the heating surface 15 of the heating member 13. Fuel is injected.

第1図から第12図に示すいずれの内燃機関においても
燃料として軽油はもとより、ガソリン、メタノール、灯
油その他内燃機関に使用しうるあらゆる種類の燃料を用
いることができる。また、第1図から第12図に示すいず
れの内燃機関においても吸気通路内にスロットル弁が設
けられておらず、しかも燃焼室4内或いは主室4a内にス
ワールを発生させる必要がないので吸気抵抗が小さくな
り、この意味からも熱効率を向上せしめることができ
る。
In any of the internal combustion engines shown in FIGS. 1 to 12, not only light oil but also gasoline, methanol, kerosene, and all other types of fuels usable in internal combustion engines can be used as fuel. Also, in any of the internal combustion engines shown in FIGS. 1 to 12, no throttle valve is provided in the intake passage, and since there is no need to generate swirl in the combustion chamber 4 or the main chamber 4a, the intake The resistance is reduced, and the thermal efficiency can be improved in this sense as well.

いずれの実施例においても着火遅れを短縮するには加
熱表面15の温度を目標温度に維持しておく必要があり、
この目標温度には最適値が存在する。この最適値はほぼ
650℃以上であって好ましくは800℃程度があるが機関の
運転状態に応じて多少変動する。次に第13図に基いて最
適な目標温度について説明する。
In any of the embodiments, it is necessary to maintain the temperature of the heating surface 15 at the target temperature in order to reduce the ignition delay.
This target temperature has an optimum value. This optimal value is almost
It is 650 ° C. or higher, preferably about 800 ° C., but slightly fluctuates depending on the operating state of the engine. Next, the optimum target temperature will be described with reference to FIG.

機関負荷Lが低くなると噴射燃料量が少なくなり、し
かも燃焼室4或いは副室4b内の温度が低下するので自己
着火しずらくなる。従って第13図(A)に示されるよう
に機関負荷Lが低くなるに従って加熱表面15の目標温度
T0を高くすることが好ましい。
When the engine load L decreases, the amount of injected fuel decreases, and the temperature in the combustion chamber 4 or the sub-chamber 4b decreases. Therefore, as shown in FIG. 13 (A), as the engine load L decreases, the target temperature of the heating surface 15 increases.
It is preferable to increase T 0 .

また、機関回転数Nが低くなるほど爆発行程の間隔が
長くなり、燃焼室4或いは副室4b内の温度が低下するの
で自己着火しずらくなる。従って第13図(B)に示され
るように機関回転数Nが低くなるに従って加熱表面15の
目標温度T0を高くすることが好ましい。
In addition, the lower the engine speed N, the longer the interval between the explosion strokes, and the lower the temperature in the combustion chamber 4 or the sub chamber 4b, making it difficult for self-ignition to occur. Therefore it is preferable to Figure 13 the engine rotational speed N as shown in (B) is to increase the target temperature T 0 of the heating surface 15 in accordance lowered.

また、機関冷却水温が低くなるほど吸入空気温が低下
し、しかも燃焼室4或いは副室4b内の温度が低下するの
で自己着火しずらくなる。従って第13図(C)に示され
るように機関冷却水温TWが低くなるにつれて加熱表面15
の目標温度T0を高くすることが好ましい。
Further, the lower the engine cooling water temperature, the lower the intake air temperature, and the lower the temperature in the combustion chamber 4 or the sub-chamber 4b, so that it is difficult to self-ignite. Therefore, as shown in FIG. 13 (C), as the engine cooling water temperature TW decreases, the heating surface 15
It is preferable to increase the target temperature T 0 of the.

従って加熱表面15の目標温度T0は第13図(D)に示さ
れるように機関負荷L、機関回転数N、機関冷却水温TW
の関数となる。
Accordingly, as shown in FIG. 13 (D), the target temperature T 0 of the heating surface 15 is the engine load L, the engine speed N, and the engine cooling water temperature TW.
Is a function of

次に第14図から第17図を参照して目標温度T0の制御方
法について説明する。
Referring now to Figure 17 from Figure 14 illustrating a method for controlling the target temperature T 0.

第14図に目標温度T0の制御に用いる電子制御ユニット
を示す。第14図に示されるようにこの電子制御ユニット
30はディジタルコンピュータからなり、双方向性バス31
によって相互に接続されたROM(リードオンリメモリ)3
2、RAM(ランダムアクセスメモリ)33、CPU(マイクロ
プロセッサ)34、入力ポート35および出力ポート36を具
備する。負荷センサ37はアクセルペダル(図示せず)の
踏込み量に比例した出力電圧、即ち機関負荷Lに比例し
た出力電圧を発生し、この出力電圧がAD変換器38を介し
て入力ポート35に入力される。回転数センサ39は例えば
機関クランクシャフトが30度回転する毎に出力パルスを
発生し、この出力パルスが入力ポート35に入力される。
CPU34においてこの出力パルスから機関回転数Nが計算
される。温度センサ16は加熱表面15の温度Tに比例した
出力電圧を発生し、この出力電圧がAD変換器40を介して
入力ポート35に入力される。水温センサ41は機関冷却水
温TWに比例した出力電圧を発生し、この出力電圧がAD変
換器42を介して入力ポート35に入力される。一方、出力
ポート36は駆動回路43を介して加熱部材13の加熱素子14
に接続される。
In Figure 14 shows an electronic control unit used for controlling the target temperature T 0. This electronic control unit as shown in FIG.
30 is a digital computer and has a bidirectional bus 31.
(Read Only Memory) 3 interconnected by
2. It includes a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. The load sensor 37 generates an output voltage proportional to the amount of depression of an accelerator pedal (not shown), that is, an output voltage proportional to the engine load L. This output voltage is input to the input port 35 via the AD converter 38. You. The rotation speed sensor 39 generates an output pulse every time the engine crankshaft rotates 30 degrees, for example, and this output pulse is input to the input port 35.
The CPU 34 calculates the engine speed N from the output pulse. The temperature sensor 16 generates an output voltage proportional to the temperature T of the heating surface 15, and this output voltage is input to the input port 35 via the AD converter 40. The water temperature sensor 41 generates an output voltage proportional to the engine cooling water temperature TW, and this output voltage is input to the input port 35 via the AD converter 42. On the other hand, the output port 36 is connected to the heating element 14 of the heating member 13 via the drive circuit 43.
Connected to.

第13図(D)に示す目標温度T0と機関負荷L、機関回
転数N、機関冷却水温TWの関係は三次元マップの形で予
めROM32内に記憶されており、従って負荷センサ37、回
転数センサ39、水温センサ41の出力信号に基いて目標温
度T0が求められる。加熱部材13の加熱表面15の温度Tは
温度センサ16によって検出され、加熱表面15の温度Tが
目標温度T0となるように加熱素子14が制御される。
The relationship between the target temperature T 0 , the engine load L, the engine speed N, and the engine cooling water temperature TW shown in FIG. 13 (D) is stored in advance in the ROM 32 in the form of a three-dimensional map. number sensor 39, the target temperature T 0 determined based on the output signal of the water temperature sensor 41. The temperature T of the heating surface 15 of the heating member 13 is detected by the temperature sensor 16, heating element 14 is controlled such that the temperature T of the heating surface 15 becomes the target temperature T 0.

第15図は加熱素子14の加熱制御ルーチンの第1実施例
を示しており、このルーチンは一定時間毎の割込みによ
って実行される。
FIG. 15 shows a first embodiment of a heating control routine of the heating element 14, which is executed by interruption every predetermined time.

第15図を参照するとまず初めにステップ50において加
熱表面15の温度Tが目標温度T0よりも高いか否かが判別
される。T>T0であればステップ51に進んで加熱素子14
への通電が停止せしめられる。一方、TT0にあるとス
テップ52に進んで加熱素子14へ通電され、その結果加熱
素子14が発熱せしめられる。このようにして加熱表面15
の温度Tが目標温度T0に制御される。なお、機関高負荷
運転が行われて燃焼ガスの温度が高くなり、燃焼ガスか
らの受熱作用によって加熱素子14に通電しなくても加熱
表面15の温度Tが目標温度T0よりも高くなり続ける場合
がある。この場合にはステップ50からステップ51に進ん
で加熱素子14への通電が停止され続ける。
The temperature T of the heating surface 15, first, at step 50 and reference to FIG. 15 is higher or not than the target temperature T 0 is determined. Proceed to step 51 if T> T 0 the heating element 14
Is stopped. On the other hand, are energized heating element 14 proceeds to step 52 to be in TT 0, resulting heating element 14 is made to heat. In this way the heating surface 15
The temperature T of is controlled to the target temperature T 0. Note that the engine high-load operation is performed to increase the temperature of the combustion gas, and the temperature T of the heating surface 15 continues to be higher than the target temperature T 0 even when the heating element 14 is not energized by the heat receiving action from the combustion gas. There are cases. In this case, the process proceeds from step 50 to step 51, in which the power supply to the heating element 14 is stopped.

第16図は加熱素子14の加熱制御ルーチンの第2実施例
を示しており、このルーチンは一定時間毎の割込みによ
って実行される。
FIG. 16 shows a second embodiment of the heating control routine of the heating element 14, which is executed by interruption every predetermined time.

第16図を参照するとまず初めにステップ60において加
熱表面15の温度Tが目標温度T0よりも高いか否かが判別
される。T>T0のときにはステップ61に進んで加熱素子
14に供給される電流Iが一定値αだけ減少せしめられ
る。なお、加熱素子14は加熱素子14に供給される電流I
が減少すれば発熱量が低下し、電流Iが増大すれば発熱
量が増大する。次いでステップ62では電流Iが負である
か否かが判別され、I<0であればステップ63に進んで
I=0とされ、ステップ64に進む。
The temperature T of the heating surface 15, first, at step 60 and reference to FIG. 16 whether higher than the target temperature T 0 is determined. When T> T 0, the process proceeds to step 61 and the heating element
The current I supplied to 14 is reduced by a constant value α. Note that the heating element 14 has a current I supplied to the heating element 14.
Decreases, the amount of heat generation decreases, and as the current I increases, the amount of heat generation increases. Next, at step 62, it is determined whether or not the current I is negative. If I <0, the routine proceeds to step 63, where I = 0, and the routine proceeds to step 64.

一方、ステップ60においてTT0であると判断された
ときはステップ65に進んで加熱素子14に供給される電流
Iが一定値αだけ増大せしめられる。次いでステップ66
では電流Iが許容最大電流Imaxよりも大きいか否かが判
別され、I>Imaxであればステップ67に進んでI=Imax
とされ、ステップ64に進む。
On the other hand, the current I supplied to the heating element 14 proceeds to step 65 is made to increase by a predetermined value α when it is determined that the TT 0 in step 60. Then step 66
In whether the current I is greater than the allowable maximum current I max is determined, the routine proceeds to step 67, if I> I max I = I max
And proceed to Step 64.

ステップ64では電流Iを表わすデータが出力ポート36
に出力され、このデータに基づいて加熱素子14に供給さ
れる電流値が制御される。この実施例では加熱表面15の
温度Tが目標温度T0となるように加熱素子14に供給され
る電流Iが制御される。この実施例においても燃焼ガス
からの受熱作用によって加熱素子14に通電しなくても加
熱表面15の温度が目標温度T0よりも高くなり続ける場合
には加熱素子14への通電が停止せしめられる。
In step 64, data representing the current I is output from the output port 36.
And the current value supplied to the heating element 14 is controlled based on this data. In this embodiment the current I supplied to the heating element 14 so that the temperature T of the heating surface 15 becomes the target temperature T 0 is controlled. The energization of the heating element 14 is caused to stop even when the temperature of the even heating surface 15 without energizing the heating element 14 by heat effects from the combustion gases continue to be higher than the target temperature T 0 in this embodiment.

第17図は加熱素子14の加熱制御ルーチンの第3実施例
を示しており、このルーチンは一定時間毎の割込みによ
って実行される。
FIG. 17 shows a third embodiment of the heating control routine of the heating element 14, which is executed by interruption every predetermined time.

第17図を参照するとまず初めにステップ70において加
熱表面15の温度Tが目標温度T0から一定値ΔTだけ減算
した温度(T0−ΔT)よりも低いか否かが判別される。
T<(T0−ΔT)のときにはステップ71に進んで加熱素
子14に供給される電流Iが許容最大電流Imaxとされ、ス
テップ72に進む。一方、T(T0−ΔT)のときにはス
テップ73に進んで加熱表面15の温度Tが目標温度T0に一
定値ΔTを加算した温度(T0+ΔT)よりも高いか否か
が判別される。T>(T0+ΔT)のときにはステップ74
に進んで加熱素子14に供給される電流値Iが零とされ、
次いでステップ72に進む。
Referring to FIG. 17, first, in step 70, it is determined whether or not the temperature T of the heating surface 15 is lower than a temperature (T 0 −ΔT) obtained by subtracting a constant value ΔT from the target temperature T 0 .
When T <(T 0 −ΔT), the routine proceeds to step 71, where the current I supplied to the heating element 14 is set to the allowable maximum current I max, and the routine proceeds to step 72. On the other hand, if T (T 0 −ΔT), the routine proceeds to step 73, where it is determined whether or not the temperature T of the heating surface 15 is higher than the temperature (T 0 + ΔT) obtained by adding the constant value ΔT to the target temperature T 0. . If T> (T 0 + ΔT), step 74
The current value I supplied to the heating element 14 is made zero,
Next, the routine proceeds to step 72.

一方、ステップ73においてT(T0+ΔT)と判断さ
れたときはステップ75に進んで、加熱表面15の温度Tが
目標温度T0よりも高いか否かが判別される。T>T0のと
きにはステップ76に進んで加熱素子14に供給される電流
Iが一定値αだけ減少せしめられる。なお、前述したよ
うに加熱素子14は加熱素子14に供給される電流Iが減少
すれば発熱量が低下し、電流Iが増大すれば発熱量が増
大する。次いでステップ77では電流Iが負であるか否か
が判別され、I<0であればステップ78に進んでI=0
とされ、ステップ72に進む。
On the other hand, if it is determined in step 73 that T (T 0 + ΔT), the process proceeds to step 75 where it is determined whether the temperature T of the heating surface 15 is higher than the target temperature T 0 . When the T> T 0 the current I supplied to the heating element 14 proceeds to step 76 is made to decrease by a predetermined value alpha. As described above, the heating element 14 generates less heat when the current I supplied to the heating element 14 decreases, and increases when the current I increases. Next, at step 77, it is determined whether or not the current I is negative. If I <0, the routine proceeds to step 78, where I = 0.
And proceeds to step 72.

一方、ステップ75においてTT0であると判断された
ときはステップ79に進んで加熱素子14に供給される電流
Iが一定値αだけ増大せしめられる。次いでステップ80
では電流Iが許容最大電流Imaxよりも大きいか否かが判
別され、I>Imaxであればステップ81に進んでI=Imax
とされ、ステップ72に進む。
On the other hand, the current I supplied to the heating element 14 proceeds to step 79 is made to increase by a predetermined value α when it is determined that the TT 0 in step 75. Then step 80
In whether the current I is greater than the allowable maximum current I max is determined, the routine proceeds to step 81, if I> I max I = I max
And proceeds to step 72.

ステップ72では電流Iを表わすデータが出力ポート36
に出力され、このデータに基いて加熱素子14に供給され
る電流値が制御される。この実施例では加熱表面15の温
度Tが目標温度T0に対してΔT以上低い場合には電流I
が許容最大電流Imaxとされるので加熱部材13は急速に加
熱せしめられる。従って機関始動直後から良好な燃焼を
確保することができる。また、加熱表面15の温度Tが目
標温度T0に対してΔT以上高い場合には電流Iが零とさ
れ、従って加熱素子14への通電が停止される。従って燃
焼ガスからの受熱作用によって加熱素子14に通電しなく
ても加熱表面15の温度が(T0+ΔT)よりも高くなり続
ける場合には加熱素子14への通電が停止せしめられる。
一方、(T0+ΔT)T(T0−ΔT)の場合には加熱
表面15の温度Tが目標温度T0となるように加熱素子14に
供給される電流Iが制御される。
In step 72, data representing the current I is output to the output port 36.
The current value supplied to the heating element 14 is controlled based on this data. In this embodiment, when the temperature T of the heating surface 15 is lower than the target temperature T 0 by ΔT or more, the current I
There heating member 13 because it is the allowable maximum current I max is caused to rapidly heated. Therefore, good combustion can be ensured immediately after the start of the engine. The current I is zero when the temperature T of the heating surface 15 is higher ΔT higher than the target temperature T 0, hence the energization of the heating element 14 is stopped. Therefore, if the temperature of the heating surface 15 continues to be higher than (T 0 + ΔT) even if the heating element 14 is not energized by the heat receiving action from the combustion gas, the energization to the heating element 14 is stopped.
On the other hand, in the case of (T 0 + ΔT) T (T 0 −ΔT), the current I supplied to the heating element 14 is controlled so that the temperature T of the heating surface 15 becomes the target temperature T 0 .

〔発明の効果〕〔The invention's effect〕

着火遅れ期間が極めて短くなるので燃料噴射弁から噴
射される燃料が順次燃焼せしめられる。その結果、燃焼
圧がゆるやかに上昇するための騒音の発生が抑制され、
更に最高燃焼温が低くなるためにNOxの発生が抑制され
る。更に、ピストンが上死点に達したときにキャビティ
内の中央部に位置するように加熱部材が配置されている
ので燃料が加熱表面から四方に均一に飛散し、キャビテ
ィ内には燃料微粒子が均一に分散される。その結果、燃
料微粒子の周囲の酸素が欠乏する領域がほとんど存在し
なくなるのでパティキュレートの発生が抑制される。
Since the ignition delay period becomes extremely short, the fuel injected from the fuel injection valve is sequentially burned. As a result, the occurrence of noise due to a gradual rise in combustion pressure is suppressed,
Further, since the maximum combustion temperature is lowered, generation of NOx is suppressed. Furthermore, since the heating member is arranged so that it is located in the center of the cavity when the piston reaches the top dead center, the fuel scatters uniformly from the heating surface in all directions, and the fuel particles are evenly distributed in the cavity. Are distributed. As a result, there is almost no oxygen-deficient region around the fuel particles, so that the generation of particulates is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は熱面衝突着火式内燃機関の第1実施例の側面断
面図、第2図は第1図のシリンダヘッド内壁面を示す
図、第3図は熱面衝突着火式内燃機関の第2実施例の側
面断面図、第4図は熱面衝突着火式内燃機関の第3実施
例の側面断面図、第5図は熱面衝突着火式内燃機関の第
4実施例の側面断面図、第6図は熱面衝突着火式内燃機
関の第5実施例の側面断面図、第7図は熱面衝突着火式
内燃機関の第6実施例の側面断面図、第8図は熱面衝突
着火式内燃機関の第7実施例の側面断面図、第9図は熱
面衝突着火式内燃機関の第8実施例の側面断面図、第10
図は熱面衝突着火式内燃機関の第9実施例の側面断面
図、第11図は熱面衝突着火式内燃機関の第10実施例の側
面断面図、第12図は熱面衝突着火式内燃機関の第11実施
例の側面断面図、第13図は目標温度を示す図、第14図は
電子制御ユニットの回路図、第15図は加熱制御を行うた
めの第1実施例のフローチャート、第16図は加熱制御を
行うための第2実施例のフローチャート、第17図は加熱
制御を行うための第3実施例のフローチャートである。 8…燃料噴射弁、13…加熱部材、14…加熱素子、15…加
熱表面。
FIG. 1 is a side sectional view of a first embodiment of a hot surface collision ignition type internal combustion engine, FIG. 2 is a diagram showing an inner wall surface of a cylinder head of FIG. 1, and FIG. FIG. 4 is a side sectional view of a third embodiment of the hot surface collision ignition type internal combustion engine, FIG. 5 is a side cross sectional view of the fourth embodiment of the hot surface collision ignition type internal combustion engine, FIG. 6 is a side sectional view of a fifth embodiment of the hot surface collision ignition type internal combustion engine, FIG. 7 is a side sectional view of the sixth embodiment of the hot surface collision ignition type internal combustion engine, and FIG. FIG. 9 is a side sectional view of a seventh embodiment of the internal combustion engine of the hot surface collision ignition type, and FIG.
FIG. 11 is a side cross-sectional view of a ninth embodiment of the hot surface collision ignition type internal combustion engine, FIG. 11 is a side cross sectional view of the tenth embodiment of the hot surface collision ignition type internal combustion engine, and FIG. FIG. 13 is a diagram showing a target temperature, FIG. 14 is a circuit diagram of an electronic control unit, FIG. 15 is a flowchart of a first embodiment for performing heating control, FIG. FIG. 16 is a flowchart of the second embodiment for performing the heating control, and FIG. 17 is a flowchart of the third embodiment for performing the heating control. 8: fuel injection valve, 13: heating member, 14: heating element, 15: heating surface.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ピストン頂面上にキャビティを形成し、ピ
ストンが上死点に達したときに該キャビティ内の中央部
に位置するように電気加熱式の加熱部材を配置し、燃料
噴射弁のノズル口から該加熱部材のほぼ平坦をなす加熱
表面の中央部に向けて液柱状の燃料を噴射せしめると共
に該液柱状の燃料を該加熱表面に衝突せしめるようにし
た熱面衝突着火式内燃機関。
1. A fuel injection valve having a cavity formed on a top surface of a piston, wherein an electric heating type heating member is arranged so as to be located at a central portion in the cavity when the piston reaches a top dead center. A hot surface collision ignition type internal combustion engine in which a liquid columnar fuel is injected from a nozzle port toward a central portion of a substantially flat heating surface of the heating member, and the liquid columnar fuel collides with the heating surface.
JP1090534A 1989-03-04 1989-04-12 Hot surface collision ignition type internal combustion engine Expired - Lifetime JP2755419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090534A JP2755419B2 (en) 1989-03-04 1989-04-12 Hot surface collision ignition type internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5252689 1989-03-04
JP1-52526 1989-03-04
JP1090534A JP2755419B2 (en) 1989-03-04 1989-04-12 Hot surface collision ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0315664A JPH0315664A (en) 1991-01-24
JP2755419B2 true JP2755419B2 (en) 1998-05-20

Family

ID=26393133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090534A Expired - Lifetime JP2755419B2 (en) 1989-03-04 1989-04-12 Hot surface collision ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2755419B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412085Y2 (en) * 1974-11-15 1979-05-29
JPS6155124U (en) * 1984-09-17 1986-04-14
JPS61116124U (en) * 1984-12-29 1986-07-22
JPH0645625Y2 (en) * 1985-06-19 1994-11-24 日産ディーゼル工業株式会社 Direct injection diesel engine starter

Also Published As

Publication number Publication date
JPH0315664A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US5329901A (en) Hot surface impact ignition type internal combustion engine and method of hot surface impact ignition
JP3073118B2 (en) In-cylinder internal combustion engine
CA1297041C (en) Fuel injection type internal combustion engine
EP0886050B1 (en) Compression-ignition type engine
JP4318852B2 (en) Internal combustion engine fuel management system
US6006720A (en) Internal combustion engine
EP0205000A2 (en) Combustion chamber for an internal-combustion engine
US4545344A (en) Diesel engine having turbulent combustion chamber
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JP2755419B2 (en) Hot surface collision ignition type internal combustion engine
JPH0730693B2 (en) Fuel injection method for internal combustion engine
JP3080079B2 (en) Control device for in-cylinder injection internal combustion engine
JP3799675B2 (en) In-cylinder direct injection spark ignition engine
JPH09317470A (en) Diesel engine for low volatile fuel
JP2874246B2 (en) Sub-chamber diesel engine
JP4281824B2 (en) Compression ignition internal combustion engine
JPH03202618A (en) Alcoholic engine
JAFARMADAR et al. NUMERICAL STUDIES OF SPRAY BREAKUP IN A GASOLINE DRIECT INJECTION (GDI) ENGINE
JPH0628266U (en) Spark assist type alcohol engine
JPH04124425A (en) Fuel ignition device
JPH04279722A (en) Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method
JPH0412116A (en) Fuel collision diffusion type engine