JP2752463B2 - Intake control device for internal combustion engine - Google Patents

Intake control device for internal combustion engine

Info

Publication number
JP2752463B2
JP2752463B2 JP1265647A JP26564789A JP2752463B2 JP 2752463 B2 JP2752463 B2 JP 2752463B2 JP 1265647 A JP1265647 A JP 1265647A JP 26564789 A JP26564789 A JP 26564789A JP 2752463 B2 JP2752463 B2 JP 2752463B2
Authority
JP
Japan
Prior art keywords
intake
intake control
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1265647A
Other languages
Japanese (ja)
Other versions
JPH03130529A (en
Inventor
由利夫 野村
時男 小浜
秀樹 大林
浩之 青田
伊奈  敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP1265647A priority Critical patent/JP2752463B2/en
Priority to DE69031822T priority patent/DE69031822T2/en
Priority to US07/593,217 priority patent/US5080065A/en
Priority to EP90119025A priority patent/EP0422502B1/en
Publication of JPH03130529A publication Critical patent/JPH03130529A/en
Application granted granted Critical
Publication of JP2752463B2 publication Critical patent/JP2752463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸気弁と別体に各気筒に連通す
る吸気通路毎に配設された複数の吸気制御弁に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of intake control valves disposed separately from intake valves of an internal combustion engine for each intake passage communicating with each cylinder.

〔従来の技術〕[Conventional technology]

従来より、吸気通路毎にこうした吸気制御弁を設ける
ことで、内燃機関の逆流を防止するといったことが考え
られている。つまり、内燃機関の吸気行程開始時には、
バルブオーバーラップによって気筒内や排気通路内の概
念ガスが吸気通路へ逆流して吸気の充填効率が低下した
り、吸気制御弁を用いて吸気の逆流を阻止することによ
り、吸気の充填効率を向上して内燃機関のトルクアッ
プ、燃費向上を図るのである。
Conventionally, it has been considered to provide such an intake control valve for each intake passage to prevent a backflow of the internal combustion engine. That is, at the start of the intake stroke of the internal combustion engine,
Conceptual gas in the cylinder and exhaust passage flows back into the intake passage due to valve overlap, which reduces intake charge efficiency, and improves intake charge efficiency by preventing intake backflow using an intake control valve. Thus, the torque of the internal combustion engine is increased and the fuel efficiency is improved.

こうした吸気制御弁の開閉を切り換えるものとして、
各気筒に連通する吸気通路毎に吸気制御弁を設け、これ
らの複数の吸気制御弁を各々独立のアクチュエータで開
閉制御するものがある。
To switch the opening and closing of such an intake control valve,
An intake control valve is provided for each intake passage communicating with each cylinder, and the plurality of intake control valves are controlled to be opened and closed by independent actuators.

このものでは、各々の吸気制御弁は、運転状態(回転
数、負荷等)に応じて開閉時期を制御しているが、各気
筒毎で比較するとその開閉時期は全ての気筒において同
一であるので、吸気系のレイアウトの関係で吸入空気量
でばらつくと、エンジントルク、振動、吸気音等が変動
するという問題がある。
In this device, each intake control valve controls the opening / closing timing according to the operating state (rotational speed, load, etc.). However, when compared for each cylinder, the opening / closing timing is the same for all cylinders. If the amount of intake air varies due to the layout of the intake system, there is a problem that engine torque, vibration, intake noise, and the like fluctuate.

また、エンジンが加速状態もしくは減速状態の時に、
スロットルバルブの開閉に応じ空気量が変化して、混合
比が変わってエンジンの振動やひいてはエンジンストー
ルが発生してしまうという問題点がある。
Also, when the engine is accelerating or decelerating,
There is a problem that the air amount changes according to the opening and closing of the throttle valve, the mixture ratio changes, and engine vibration and eventually engine stall occur.

そこで本発明では、内燃機関の加速もしくは減速状態
に基づいて呵々の吸気制御弁を最適な閉タイミングで制
御し、混合比のふらつきを防止することを目的とする。
Accordingly, an object of the present invention is to control the intake control valve at an optimal closing timing based on the acceleration or deceleration state of the internal combustion engine to prevent the mixture ratio from fluctuating.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、本発明の吸気制御装置
は、 内燃機関の各気筒に連通する複数の吸気通路毎に配設
され、吸気通路を開閉する複数の吸気制御弁と、 これらの複数の吸気制御弁を各々独立で開閉駆動する
開閉駆動手段と、 前記吸気制御弁を介して各気筒に至る吸気の圧力を弁
体の開度により調整する圧力調整弁とを備え、 内燃機関の加速状態もしくは減速状態を検出する検出
手段と、 この検出手段により、加速状態もしくは減速状態を検
出した後、前記複数の吸気制御弁を各々独立で閉制御す
ることで、混合比をほぼ一定に保つことを特徴とする。
In order to solve the above problems, an intake control device of the present invention is provided for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine, and a plurality of intake control valves for opening and closing the intake passages. Opening / closing drive means for independently opening / closing the intake control valve; and a pressure regulating valve for regulating the pressure of intake air reaching each cylinder via the intake control valve by an opening degree of a valve body, wherein an acceleration state of the internal combustion engine is provided. Or, detecting means for detecting a deceleration state, and after detecting the acceleration state or the deceleration state by this detection means, by independently closing the plurality of intake control valves, it is possible to keep the mixing ratio substantially constant. Features.

〔発明の効果〕〔The invention's effect〕

以上述べた如く本発明においては、加速状態もしくは
減速状態に応じて、吸気制御弁の閉時期を制御すること
で燃料の混合比をほぼ一定として、エンジンの振動もし
くはエンジンストールを防止することができるという優
れた効果がある。
As described above, in the present invention, by controlling the closing timing of the intake control valve in accordance with the acceleration state or the deceleration state, the fuel mixture ratio can be made substantially constant, and engine vibration or engine stall can be prevented. There is an excellent effect.

〔実施例〕〔Example〕

以下、図面に基づき本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施例の吸気制御装置が搭載されるエンジンのシス
テム構成を第1図に示す。
FIG. 1 shows a system configuration of an engine on which the intake control device of the present embodiment is mounted.

第1図において、本システムは、4気筒エンジン1、
このエンジン1の吸気系1aに配設された吸気制御部3お
よびこれらを制御する電子制御装置(以下、単にECUと
呼ぶ)4から構成されている。
In FIG. 1, the system includes a four-cylinder engine 1,
The engine 1 includes an intake control unit 3 disposed in an intake system 1a of the engine 1 and an electronic control unit (hereinafter simply referred to as ECU) 4 for controlling the intake control unit 3.

エンジン1は、4個の気筒5,6,7,8を備え、各気筒5,
6,7,8には、高速適合カムによって開閉されるインテー
クバルブ9,10,11,12が配設され、また、エキゾーストバ
ルブ13,14,15,16も設けられている。このエンジン1の
吸気系1aには、圧力調整弁としてのスロットルバルブ40
が配設され、このスロットルバルブ40はスロットルアク
チュエータ41によりその開度が駆動制御される。
The engine 1 has four cylinders 5, 6, 7, 8 and each cylinder 5,
The intake valves 9, 10, 11, 12 which are opened / closed by the high-speed compatible cams are arranged in 6, 7, 8 and exhaust valves 13, 14, 15, 16 are also provided. The intake system 1a of the engine 1 has a throttle valve 40 as a pressure regulating valve.
The opening of the throttle valve 40 is drive-controlled by a throttle actuator 41.

また、吸気系1aから分岐して各気筒5,6,7,8に連通す
る吸気ポート17,18,19,20が配設されている。吸気ポー
ト17,18,19,20には、各々吸気制御弁21,22,23,24が配設
され、これらの吸気制御弁21,22,23,24は、各々開閉駆
動手段としてのアクチュエータ25,26,27,28により各気
筒独立に開閉駆動される。
Further, intake ports 17, 18, 19, and 20, which are branched from the intake system 1a and communicate with the cylinders 5, 6, 7, and 8, are provided. Intake ports 17, 18, 19, and 20 are respectively provided with intake control valves 21, 22, 23, and 24. These intake control valves 21, 22, 23, and 24 are respectively provided with actuators 25 as opening / closing drive means. , 26, 27, 28 are driven to open and close independently of each cylinder.

エンジン1には、検出器として、各気筒5,6,7,8の図
示しないピストンが上死点(TDC)に位置するときにパ
ルス信号を出力するクランク各センサ29、所定のクラン
ク角度毎にパルス信号を出力する回転速度センサ30、気
筒毎のトルクあるいは燃焼を検出する手段31(例えば筒
内圧センサ、トルクセンサ、ノックセンサ)、気筒毎の
空気量を検出する手段32(例えば吸気管内圧力セン
サ)、負荷状態を検出する負荷検出手段(例えばスロッ
トルセンサ、アクセルセンサ)、騒音あるいは振動を検
出する騒音・振動検出手段34、エミッションの状態を検
出するエミッション検出手段35を備える。
The engine 1 includes, as a detector, a crank sensor 29 that outputs a pulse signal when a piston (not shown) of each of the cylinders 5, 6, 7, 8 is located at the top dead center (TDC). A rotational speed sensor 30 for outputting a pulse signal, a means 31 for detecting torque or combustion for each cylinder (for example, an in-cylinder pressure sensor, a torque sensor, a knock sensor), and a means 32 for detecting an air amount for each cylinder (for example, an intake pipe pressure sensor) ), Load detecting means (for example, a throttle sensor and an accelerator sensor) for detecting a load state, noise / vibration detecting means for detecting noise or vibration, and emission detecting means for detecting an emission state.

また、エンジン1には、インジェクタによる噴射量お
よび噴射時期を制御噴射する制御手段36、点火時期を制
御する点火時期制御手段37、吸気の過給を行う過給手段
38、運転状態に応じて学習制御を行う学習制御手段39、
吸気の加熱を行う吸気加熱手段42、冷却水の温度を調整
する冷却水温調整手段43が設けられている。
The engine 1 has a control means 36 for controlling the injection amount and the injection timing by the injector, an ignition timing control means 37 for controlling the ignition timing, and a supercharging means for supercharging the intake air.
38, learning control means 39 for performing learning control according to the driving state,
An intake air heating means 42 for heating the intake air and a cooling water temperature adjusting means 43 for adjusting the temperature of the cooling water are provided.

ECU4は、CPU4A,ROM4B,RAM4Cを中心に論理演算回路と
して構成され、コモンバス4Dを介して入出力部4Eに接続
され、外部との入出力を行う。各センサからの検出信号
および各制御手段からの信号は入出力部4EからCPU4Aに
入力される。一方、CPU4Aは、入出力部4Eを介して、ア
クチュエータ25,26,27,28、スロットルアクチュエータ4
1、過給手段38、吸気加熱手段42に制御信号を出力す
る。
The ECU 4 is configured as a logical operation circuit around the CPU 4A, ROM 4B, and RAM 4C, is connected to the input / output unit 4E via the common bus 4D, and performs input / output with the outside. The detection signal from each sensor and the signal from each control unit are input from the input / output unit 4E to the CPU 4A. On the other hand, the CPU 4A controls the actuators 25, 26, 27, 28 and the throttle actuator 4 via the input / output unit 4E.
1. Output control signals to the supercharging means 38 and the intake heating means 42.

次に、本実施例の制御方法について説明する。 Next, a control method according to the present embodiment will be described.

気筒毎の吸入空気については、気筒毎の空気量を検出
する手段32からの入力信号とアクチュエータ25,26,27,2
8への吸気制御弁21,22,23,24の開弁・閉弁時期指令信号
に基づいて求められ、この演算結果に基づいて噴射制御
手段36はインジェクタの噴射量を気筒毎に定める。
Regarding the intake air for each cylinder, the input signal from the means 32 for detecting the air amount for each cylinder and the actuators 25, 26, 27, 2
The injection control means 36 is determined based on the valve opening / closing timing command signals of the intake control valves 21, 22, 23, 24 to 8 and based on the calculation result, the injection control means 36 determines the injection amount of the injector for each cylinder.

次に、吸気制御弁21,22,23,24の開弁時期の基本的な
制御については、回転速度センサ30の入力信号に基づい
て、表−1に示すように回転数の上昇につれて上死点に
対する進角量が大きくなるように駆動手段25,26,27,28
によって制御される。表−1において、開弁時期は上死
点に対する進角量を示している。
Next, the basic control of the valve opening timings of the intake control valves 21, 22, 23, and 24 is based on the input signal of the rotational speed sensor 30, and as shown in Table 1, the top dead center increases as the rotational speed increases. Driving means 25, 26, 27, 28 so that the amount of advance to the point is large
Is controlled by In Table 1, the valve opening timing indicates the advance amount with respect to the top dead center.

また、吸気制御弁21,22,23,24の閉弁時期の基本的な
制御については、以下のように設定される。すなわち、
吸入空気量は空気密度に吸気時間を乗じることで決定さ
れ、従来では部分負荷時の空気量調整は吸気時間が一定
でスロットルバルブにより空気密度を変化させることで
対応していたが、本実施例ではポンプ損失低減を図るた
め、空気密度だけでなく吸気時間の調整も併せて行って
いるので、吸気制御21,22,23,24の閉弁時間は表−2に
示すように負荷に応じて制御される。
The basic control of the closing timing of the intake control valves 21, 22, 23, 24 is set as follows. That is,
The intake air amount is determined by multiplying the air density by the intake time.Conventionally, the adjustment of the air amount at a partial load was performed by changing the air density with a throttle valve while the intake time was constant. In order to reduce the pump loss, not only the air density but also the intake time was adjusted, so the valve closing times of the intake controls 21, 22, 23, and 24 depended on the load as shown in Table-2. Controlled.

この表−2において、閉弁時間は下死点に対する進角
量を示している。
In Table 2, the valve closing time indicates an advance amount with respect to the bottom dead center.

本発明では、アクセル踏み込み量に対するスロットル
バルブ40の開度の関係は、第2図に示す如く、従来、比
例関係であったのに対し、アクセル振り込み量の小さい
時と大きい時α傾斜を変えることで、減速時の高い性能
を確保できる。
In the present invention, the relationship between the accelerator depression amount and the opening degree of the throttle valve 40 is conventionally proportional as shown in FIG. 2, but the α inclination is changed when the accelerator depression amount is small and large. Thus, high performance during deceleration can be secured.

つまり、第3図に示す如く、減速時アクセルを戻す
と、スロットルバルブ40が急激にほぼ全閉状態に移行せ
ず、60%程度開いた状態で停止する。そのため、従来で
は急激に吸入空気量が減り、混合比(以下A/Fという)
がrich状態になってしまうのに対し、上述したスロット
ルバルブ40の開度とすることで、吸入空気量が急激に経
ることなく、以上に述べるA/F制御と相まってA/Fの状態
はほぼ一定に近づけることができる。
That is, as shown in FIG. 3, when the accelerator at the time of deceleration is returned, the throttle valve 40 does not suddenly shift to the almost fully closed state, but stops at about 60% open. Therefore, in the past, the intake air amount sharply decreased, and the mixing ratio (hereinafter referred to as A / F)
However, by setting the opening degree of the throttle valve 40 as described above, the intake air amount does not suddenly pass, and the A / F state is almost combined with the A / F control described above. It can be close to constant.

本実施例では、閉弁時期は上記基本閉弁制御に対し、
運転状態に応じた各種の補正項との演算により決定され
る。この補正項は各気筒毎に設けられているので、各気
筒の吸入空気量は運転状況に応じた最適値に決められ
る。以下に、補正式を示す。
In the present embodiment, the valve closing timing is different from the basic valve closing control described above.
It is determined by calculation with various correction terms according to the operating state. Since this correction term is provided for each cylinder, the amount of intake air of each cylinder is determined to be an optimum value according to the operating condition. The correction formula is shown below.

ここで、(1)式は閉弁時期の演算の一例を示すもの
である。
Here, equation (1) shows an example of the calculation of the valve closing timing.

TC=TCBSE+TTC+FTC+TRTC +BTC+NTC+NETC+TDC ……(1) (1)式において、 TCは閉弁時期の進角量 TCBSEは表−2に示した閉弁基本進角量 TTCは過渡時のA/F補正進角量 FTCは燃焼温度の補正進角量 TRTCは加速スリップ(トラクション)制御進角量 BTCは減速時の吸気ブレーキ制御進角量 NTCはノック時の補正進角量 NETCは等空気量制御時の補正進角量 TDCはアクチュエータ経時変化補正進角量 を各々示している。 TC = TCBSE + TTC + FTC + TRTC + BTC + NTC + NETC + TDC ………………………………………………………………………………………………………………………………………………………………………………………………… (1) FTC is the correction advance of combustion temperature. TRTC is the advance of acceleration slip (traction) control. BTC is the advance of intake brake control during deceleration. NTC is the correction advance of knock. NETC is the correction advance of equal air amount control. Angular amount TDC indicates the amount of advance of the actuator over time.

次に、第5図に示すフローチャートに基づいて、A/F
(Air/Fuel)の制御を説明する。
Next, based on the flowchart shown in FIG.
(Air / Fuel) control will be described.

ステップ100では、エンジン内の圧力ΔPnが所定値ΔP
L以上か否かを判定し、圧力ΔPnが所定値以上であれば
ステップ110で加速状態と判断し、加速制御に移行す
る。
In step 100, the pressure [Delta] P n is a predetermined value [Delta] P in the engine
It determines whether L or more, the pressure [Delta] P n is determined to an acceleration state at step 110 equal to or greater than a predetermined value, the process proceeds to the acceleration control.

ステップ120では、制御弁開時期(TOBSE),閉時期
(TCBSE)およびスロットルバルブ40の開度(TS)等を
読み取る。
In step 120, the control valve opening timing (TOBSE), closing timing (TCBSE), opening degree (TS) of the throttle valve 40, and the like are read.

ステップ130では、加減速補正進角量基本値TTCBSEを
例えば、以下の表−3に示す値に基づいて決定する。
In step 130, the acceleration / deceleration correction advance amount basic value TTCBSE is determined based on, for example, the values shown in Table 3 below.

ステップ140では、第6図に示す如く、圧力ΔPnに対
し、補正係数K1を読み取る。
In step 140, as shown in Figure 6, with respect to the pressure [Delta] P n, reads the correction coefficient K1.

そして、ステップ150にて加速補正進角量TTCの演算
を、上述した基本値TTCBSEおよび補正係数K1に基づい
て、TTC=K1*TTCBSEにより求める。
Then, in step 150, the calculation of the acceleration correction advance amount TTC is obtained by TTC = K1 * TTCBSE based on the above-described basic value TTC BSE and the correction coefficient K1.

ステップ160では、次に吸気する気筒を調べ、ステッ
プ170にて、(1)式にてステップ150で求めたTTCを代
入して閉時期を決定し、この閉時期に基づいて上記気筒
における吸気制御弁を制御する。
In step 160, the cylinder to be taken next is checked, and in step 170, the TTC obtained in step 150 is substituted by equation (1) to determine the closing timing. Based on this closing timing, the intake control in the cylinder is performed. Control the valve.

つまり、加速状態時には第7図(b)に示す如く、制
御弁の閉時期を矢印に示す如く早める。
That is, in the acceleration state, the closing timing of the control valve is advanced as shown by the arrow as shown in FIG. 7 (b).

そして、従来第4図(c)の一点鎖線で示す如く、空
気量が急激に多くなることで、A/Fがlean側に移ってし
まうのに対し、第4図(d)に示す如く、空気量をなだ
らかに増加させることで、A/Fの変化をなくすことがで
きる。
Then, as shown by the dashed line in FIG. 4 (c), the A / F shifts to the lean side due to the rapid increase in the amount of air, whereas as shown in FIG. 4 (d), A change in A / F can be eliminated by gradually increasing the amount of air.

さらに、ステップ180で圧力ΔPnを求め、ステップ190
で圧力ΔPnと所定の圧力ΔPLを比較し、圧力ΔPnが所定
の圧力ΔPLよりも大きければ、ステップ140に戻る。一
方、圧力ΔPnが所定の圧力ΔPLよいも小さければ、その
時点で完了する。
Further, in step 180, the pressure ΔP n is obtained, and in step 190
In comparing the pressure [Delta] P n and a predetermined pressure [Delta] P L, the pressure [Delta] P n is greater than a predetermined pressure [Delta] P L, the flow returns to step 140. On the other hand, if smaller pressure [Delta] P n good predetermined pressure [Delta] P L, completed at that time.

それに対し、ステップ100で圧力ΔPnが所定の圧力ΔP
Lよりも小さい場合には、ステップ210で減速状態と判断
し減速制御に移る。
On the other hand, in step 100, the pressure ΔP n
If it is smaller than L, it is determined in step 210 that the vehicle is in a deceleration state, and the process proceeds to deceleration control.

ステップ120およびステップ230は、上述したステップ
120およびステップ130と同様に、それぞれの値を読み取
る。
Step 120 and step 230 are the same as those described above.
As in steps 120 and 130, the respective values are read.

ステップ240では、第6図に示す如く、圧力ΔPnに対
する補正係数K2を読み取る。
In step 240, as shown in Figure 6, read the correction coefficient K2 for the pressure [Delta] P n.

そして、ステップ250にて、減速補正進角量TTCを上述
した各ステップで求めた基本値TTCBSEおよび補正係数K2
に基づいて、TTC=K2*TTCBSEにより求める。
Then, in step 250, the deceleration correction advance angle TTC is calculated by using the basic value TTC BSE obtained in each of the above steps and the correction coefficient K2.
Is calculated by TTC = K2 * TTCBSE based on

ステップ260では次に吸気する気筒を調べ、ステップ2
70にて(1)式にステップ250で求めたTTCを代入して閉
時期を決定する。
In step 260, the cylinder to be taken next is checked, and step 2
At 70, the closing time is determined by substituting the TTC obtained at step 250 into the equation (1).

そして、この閉時期に基づいて、上記気筒における吸
気制御弁を制御する。
Then, the intake control valve in the cylinder is controlled based on the closing timing.

つまり、減速状態時には第7図(a)に示す如く、吸
気制御弁の閉時期を矢印に示す如く早める。
That is, in the deceleration state, the closing timing of the intake control valve is advanced as shown by the arrow as shown in FIG.

従って、従来、第3図(c)の一点鎖線で示す如く、
空気量が急激に少なくなることで、A/Fがrich側に移っ
てしまうのに対し、第3図(d)に示す如く、空気量を
なだらかに少なくすることで、第3図(c)に示す如
く、A/Fの変化を押さえることができる。
Therefore, conventionally, as shown by the dashed line in FIG.
While the A / F shifts to the rich side due to the rapid decrease in the amount of air, as shown in FIG. 3 (d), the A / F is gradually reduced as shown in FIG. 3 (c). As shown in (1), the change in A / F can be suppressed.

従って、この様に吸気のサイクル毎・気筒毎に吸気制
御弁の閉時期を制御できるので、非常に高精度で、正確
なA/F制御が可能になるわけである。
Therefore, since the closing timing of the intake control valve can be controlled for each intake cycle and each cylinder in this manner, very accurate and accurate A / F control becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置の全体構成を示すシステム図、第2
図は本実施例のアクセル踏み込み量とスロットルバルブ
開度との関係を示す特性図、第3図および第4図は減速
時および加速時におけるアクセル踏込量、綴り弁開度、
A/Fおよび空気量を示すグラフ、第5図は上記装置のA/F
制御におけるフローチャート、第6図は圧力ΔPnに対す
る補正係数の関係を示す特性図、第7図(a),(b)
は吸気制御弁の閉プロフィールを示す図である。 21,22,23,24……吸気制御弁,25,26,27,28……アクチュ
エータ(開閉駆動手段),40……スロットルバルブ(圧
力調整弁)。
FIG. 1 is a system diagram showing the overall configuration of the apparatus of the present invention, and FIG.
FIGS. 3 and 4 are characteristic diagrams showing the relationship between the accelerator pedal depression amount and the throttle valve opening degree in this embodiment. FIGS. 3 and 4 show the accelerator pedal depression amount, the spelling valve opening degree during deceleration and acceleration.
A graph showing the A / F and the amount of air, and FIG. 5 shows the A / F of the above device.
Flowchart in the control, FIG. 6 is a characteristic diagram showing the relationship between the correction coefficient for the pressure [Delta] P n, FIG. 7 (a), (b)
FIG. 4 is a diagram showing a closed profile of an intake control valve. 21, 22, 23, 24 ... intake control valve, 25, 26, 27, 28 ... actuator (opening / closing drive means), 40 ... throttle valve (pressure regulating valve).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大林 秀樹 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 青田 浩之 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (72)発明者 伊奈 敏和 愛知県西尾市下羽角町岩谷14番地 株式 会社日本自動車部品総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideki Obayashi 1-1-1, Showa-cho, Kariya-shi, Aichi, Japan Inside Denso Corporation (72) Inventor Hiroyuki Aota 1-1-1, Showa-cho, Kariya-shi, Aichi Japan Nihon Denso Co., Ltd. (72) Inventor Toshikazu Ina 14, Iwatani, Shimowasumi-machi, Nishio-shi, Aichi Japan Auto Parts Research Institute, Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の各気筒に連通する複数の吸気通
路毎に配設され、吸気通路を開閉する複数の吸気制御弁
と、 これらの複数の吸気制御弁を各々独立で開閉駆動する開
閉駆動手段と、 前記吸気制御弁を介して各気筒に至る吸気の圧力を弁体
の開度により調整する圧力調整弁とを備え、 内燃機関の加速状態もしくは減速状態を検出する検出手
段と、 この検出手段により、加速状態もしくは減速状態を検出
した後、前記複数の吸気制御弁を各々独立で閉制御する
ことで、混合比をほぼ一定に保つことを特徴とする内燃
機関の吸気制御装置。
1. A plurality of intake control valves provided for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine to open and close the intake passages, and an opening and closing device for independently opening and closing the plurality of intake control valves. A driving means, and a pressure adjusting valve for adjusting the pressure of intake air reaching each cylinder via the intake control valve by an opening degree of a valve body, and detecting means for detecting an acceleration state or a deceleration state of the internal combustion engine. An intake control device for an internal combustion engine, characterized in that after detecting an acceleration state or a deceleration state by a detection means, each of the plurality of intake control valves is independently closed and controlled to keep the mixture ratio substantially constant.
JP1265647A 1989-10-05 1989-10-12 Intake control device for internal combustion engine Expired - Lifetime JP2752463B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1265647A JP2752463B2 (en) 1989-10-12 1989-10-12 Intake control device for internal combustion engine
DE69031822T DE69031822T2 (en) 1989-10-05 1990-10-04 Suction air control system for internal combustion engines
US07/593,217 US5080065A (en) 1989-10-05 1990-10-04 Air intake control system for an internal combustion engine
EP90119025A EP0422502B1 (en) 1989-10-05 1990-10-04 Air intake control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265647A JP2752463B2 (en) 1989-10-12 1989-10-12 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03130529A JPH03130529A (en) 1991-06-04
JP2752463B2 true JP2752463B2 (en) 1998-05-18

Family

ID=17420044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265647A Expired - Lifetime JP2752463B2 (en) 1989-10-05 1989-10-12 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2752463B2 (en)

Also Published As

Publication number Publication date
JPH03130529A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
EP2199582B1 (en) Engine intake quantity control apparatus
US6029626A (en) ULEV concept for high-performance engines
US6561145B1 (en) Torque control method and system in an engine with a fully variable intake valve
US7121233B2 (en) Control apparatus for an internal combustion engine
US9874172B2 (en) Control device and control method for internal combustion engines
EP0829629A1 (en) Apparatus for controlling fuel injection in stratified charge combustion engine
US10718275B2 (en) Miller cycle engine
US4799467A (en) Throttle valve control system for an internal combustion engine
JP2004245104A (en) Supercharging type engine
JPH11141375A (en) Boost control device for internal combustion engine with supercharger
US7204215B2 (en) Valve characteristic controller and control method for internal combustion engine
JP6835129B2 (en) Internal combustion engine control device
JP3812138B2 (en) Control device for turbocharged engine
JP2752463B2 (en) Intake control device for internal combustion engine
JP4019866B2 (en) Control device for internal combustion engine
JP2734645B2 (en) Intake control device for internal combustion engine
CN110730861B (en) Method and device for controlling internal combustion engine
JP3975868B2 (en) Control device for internal combustion engine
EP2165057B1 (en) Controller and control method for internal combustion engine
US10876483B2 (en) Control device for internal combustion engine
JP3812111B2 (en) Control device for internal combustion engine
JP5085597B2 (en) Engine control device
JP2515812B2 (en) Control device for engine with supercharger
JPH0953476A (en) Variable valve timing internal combustion engine