JP2752159B2 - Method for producing inorganic fiber woven fabric for laminate - Google Patents

Method for producing inorganic fiber woven fabric for laminate

Info

Publication number
JP2752159B2
JP2752159B2 JP1142221A JP14222189A JP2752159B2 JP 2752159 B2 JP2752159 B2 JP 2752159B2 JP 1142221 A JP1142221 A JP 1142221A JP 14222189 A JP14222189 A JP 14222189A JP 2752159 B2 JP2752159 B2 JP 2752159B2
Authority
JP
Japan
Prior art keywords
woven fabric
air permeability
sec
laminate
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1142221A
Other languages
Japanese (ja)
Other versions
JPH038832A (en
Inventor
則夫 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SHUEEBERU KK
Original Assignee
ASAHI SHUEEBERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SHUEEBERU KK filed Critical ASAHI SHUEEBERU KK
Priority to JP1142221A priority Critical patent/JP2752159B2/en
Publication of JPH038832A publication Critical patent/JPH038832A/en
Application granted granted Critical
Publication of JP2752159B2 publication Critical patent/JP2752159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板などに使用される樹脂積層
板の強化材として用いられる無機繊維織物に関する。よ
り詳しくは、吸湿性が少なく吸湿後の耐熱性が極めて良
好な積層板を得るのに好適な無機繊維織物の製造方法に
関する。
Description: TECHNICAL FIELD The present invention relates to an inorganic fiber fabric used as a reinforcing material for a resin laminate used for a printed wiring board and the like. More specifically, the present invention relates to a method for producing an inorganic fiber woven fabric suitable for obtaining a laminate having low hygroscopicity and extremely good heat resistance after moisture absorption.

〔従来の技術〕[Conventional technology]

無機繊維織物で補強されてなる樹脂積層板は、各種構
造材やプリント配線板としてますます重要性に増してい
る。従来から、高性能が要求される産業用のプリント配
線板にはガラスクロスを使用した積層板、またコストや
加工性を重視される分野についてはクラフトペーパーや
ガラスペーパーを表裏2枚のガラスクロスでサンドイッ
チにしたいわゆるコンポジットタイプの積層板が使用さ
れている。プリント配線板の絶縁性や吸湿後の耐熱性
は、板の吸湿挙動と深く関連しているが、近年は高密度
化や多層化あるいは薄物化が進んだことから、ますます
吸湿性の少ない積層板が要望される様になってきた。
Resin laminates reinforced with inorganic fiber fabrics are becoming increasingly important as various structural materials and printed wiring boards. Conventionally, a laminated board using glass cloth has been used for industrial printed wiring boards that require high performance, and in fields where cost and workability are important, kraft paper and glass paper have been used. A so-called composite type laminated plate made of a sandwich is used. The insulation properties of printed wiring boards and the heat resistance after moisture absorption are closely related to the moisture absorption behavior of the boards, but in recent years, as the densification, multilayering, and thinning have progressed, laminates with even less hygroscopicity Boards have come to be desired.

従来から積層板の吸湿率を低下させる試みは数多くな
されているが、これらはいずれも積層板に使用するマト
リックス樹脂の改良や、あるいは繊維と樹脂の界面の改
質、または成形方法の改良が中心であった。例えば、一
般に積層板の基材に用いられるガラスクロスは通常シラ
ンカップリング剤等で処理して使用されているが、この
シランカップリング剤の種類や繊維表面への適用条件を
最適にすることにより、界面を改質して積層板の吸湿量
を少なくする試みがなされている(Robert J.Boudreau
“Glass Fabric Finishes:Effects on the kinetics of
water absorption and laminate physical and electr
ical propeties"THE 3RD PRINT CIRCUIT WORLD CONVENT
ION,1981,pp.230−238参照)。シランカップリング剤
は、ガラス表面及びマトリックス樹脂と反応し両者の橋
かけを形成することにより界面への水分の浸入を阻止す
ると考えられているためである。しかしながら、従来の
処理剤や処理条件を改良する方法では大幅に改良するの
は困難であった。
Many attempts have been made to reduce the moisture absorption of laminated boards, but all of these have focused on improving the matrix resin used in the laminated board, or modifying the interface between the fiber and the resin, or improving the molding method. Met. For example, glass cloth generally used as a base material of a laminated board is generally used after being treated with a silane coupling agent or the like.By optimizing the type of the silane coupling agent and the application conditions to the fiber surface, Attempts have been made to reduce the moisture absorption of laminates by modifying the interface (Robert J. Boudreau
“Glass Fabric Finishes: Effects on the kinetics of
water absorption and laminate physical and electr
ical propeties "THE 3RD PRINT CIRCUIT WORLD CONVENT
ION, 1981, pp. 230-238). This is because the silane coupling agent is considered to react with the glass surface and the matrix resin to form a bridge between the two, thereby preventing intrusion of moisture into the interface. However, it has been difficult to significantly improve the conventional processing agents and methods for improving the processing conditions.

またプリプレグをできるだけ気泡のないものにするこ
とによって吸湿性の少ない積層板を得る試みがなされて
おり(特開昭64−6653)、無機繊維織物をウォータージ
ェットによって加工する方法(特開昭61−194252)、液
体を含んだ無機繊維織物を減圧にさらす方法(特開昭63
−175165)あるいは超音波振動子と織物を直接接触させ
る方法(特開昭62−257461)などはこの方法を織物側か
ら検討したものである。
Attempts have also been made to obtain a laminate having low hygroscopicity by making the prepreg as free of bubbles as possible (Japanese Patent Application Laid-Open No. 64-6653). 194252), a method of exposing a liquid-containing inorganic fiber woven fabric to reduced pressure
175165) or a method of directly contacting the ultrasonic vibrator with the woven fabric (Japanese Patent Laid-Open No. 62-257461) is a study of this method from the woven fabric side.

さらにはワニス含浸時に減圧する方法(特公昭64−66
53)や積層成形時に真空脱泡することにより積層板の空
洞(ボイド)を減少させ、よって吸湿性や耐熱性を改良
することも試みられている。しかしながらこうした方法
でも積層板の吸湿性を大幅に改良するのは困難であっ
た。
Furthermore, a method of reducing the pressure during varnish impregnation (Japanese Patent Publication No. 64-66)
53) Attempts have also been made to reduce voids in the laminate by vacuum defoaming during lamination, thereby improving moisture absorption and heat resistance. However, it has been difficult to significantly improve the hygroscopicity of the laminate even by such a method.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、前記の従来の樹脂積層板の吸湿率を低下せ
しめ、もって吸湿後の耐熱性や絶縁性、層間剥離を改善
し、優れた電気特性、耐熱性を有する積層板用の無機繊
維織物の製造方法を提供することを目的とする。
The present invention reduces the moisture absorption of the conventional resin laminate, thereby improving heat resistance, insulation, and delamination after moisture absorption, and has excellent electrical properties and heat resistance. It is an object of the present invention to provide a method for producing the same.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記の問題点を解決するために鋭意検
討した結果、無機繊維織物を補強材とする積層板におい
ては、特定の構造を有する織物によって吸湿率の極めて
少ない積層板を得ることができることを見いだし本発明
に到達した。
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, in a laminate using an inorganic fiber woven fabric as a reinforcing material, a woven fabric having a specific structure has a very low moisture absorption rate. The inventors have found that the present invention can be performed, and have reached the present invention.

本発明は、織物の厚さが0.25mm以下で、且つフィラメ
ントの直径が3μm〜11μmである無機繊維糸を使用し
て織成された無機繊維織物において、ヒートクリーニン
グの状態でのその比通気度Xが1.5×10-2(cm3/cm2・s
ec)以下になることを特徴とする積層板用無機繊維織物
の製造方法を提供するものである。
The present invention relates to an inorganic fiber fabric woven using an inorganic fiber yarn having a fabric thickness of 0.25 mm or less and a filament diameter of 3 μm to 11 μm, and its specific air permeability in a heat cleaning state. X is 1.5 × 10 -2 (cm 3 / cm 2 · s
ec) It is intended to provide a method for producing an inorganic fiber woven fabric for a laminate characterized by the following.

〔ここに於いて比通気度Xは次式で表される。[Here, the specific air permeability X is represented by the following equation.

X=A・M A:JIS−L1096「通気度試験A法」により求めたcm2当り
の通気度(単位cm3/cm2・sec) M:織物1cm2当りのガラスバルク換算の体積量(単位:c
m) M=w/ρ ρ:当該無機材料の比重(単位:g/cm3) w:当該織物1cm2当りの重さ(単位:g/cm2)〕 前記積層板用無機繊維織物は、フィラメントの直径が
3〜11μmである無機繊維で構成される厚さ0.25mm以下
の無機繊維織物を生機又はヒートクリーニングの後に流
体の圧力波あるいは高圧柱状流で処理して織物構成糸を
解繊せしめた後、該解繊処理織物を圧溶処理して1.5×1
0-2cm3/cm2・sec以下の比通気度Xを有するヒートクリ
ーニング処理織物を調製することにより得ることができ
る。
X = A · M A: Permeability per cm 2 (unit: cm 3 / cm 2 · sec) determined by JIS-L1096 “Permeability test A method” M: Volume in glass bulk conversion per 1 cm 2 of woven fabric ( Unit: c
m) M = w / ρ ρ: Specific gravity of the inorganic material (unit: g / cm 3 ) w: weight per 1 cm 2 of the woven fabric (unit: g / cm 2 )] An inorganic fiber woven fabric having a thickness of 0.25 mm or less composed of inorganic fibers having a filament diameter of 3 to 11 μm is treated with a fluid pressure wave or a high-pressure columnar flow after greige or heat cleaning to defibrate the yarn constituting the fabric. After that, the defibrated woven fabric is subjected to pressure melting treatment to 1.5 × 1
It can be obtained by preparing a heat-cleaning treated fabric having a specific air permeability X of 0 -2 cm 3 / cm 2 · sec or less.

本発明の無機繊維織物としてはEガラス、Cガラス、
Sガラス、Dガラス、クォーツなどのガラス繊維やアル
ミナ等のセラミック繊維が使用できる。これらの繊維を
構成するフィラメントの直径は3μmから11μmのもの
が好ましい。3μmより小さい直径を有する無機繊維は
一般に積層板用としてあまり使用されない。また11μm
より大きいものは特にプリント回路板用の積層板として
はドリル加工性や表面平滑性が低下し好ましくない。
As the inorganic fiber fabric of the present invention, E glass, C glass,
Glass fibers such as S glass, D glass, and quartz, and ceramic fibers such as alumina can be used. The filaments constituting these fibers preferably have a diameter of 3 μm to 11 μm. Inorganic fibers having a diameter of less than 3 μm are generally rarely used for laminates. Also 11μm
Larger ones are not preferred, especially as a laminate for a printed circuit board, because the drillability and surface smoothness are reduced.

本発明で用いられる無機繊維織物は基本的に経糸と緯
糸からなり、上記のフィラメントを複数本束ねて得られ
る糸を糊付けしたのち、製織して得られるものであり、
例えば、平織り、綾織り、朱子織りなどのものである。
またこれらの織物には繊維を保護するため澱粉等の有機
物が付着しているが織成された後熱処理等で除去し、つ
いでシランカップリング剤などの処理剤で表面処理して
使われる。一方糊剤に樹脂やカップイング剤を使用し、
織成された布をそのまま積層板用基布として使用するこ
とも可能である。
The inorganic fiber woven fabric used in the present invention basically comprises a warp and a weft, and is obtained by pasting a yarn obtained by bundling a plurality of the above filaments and then weaving,
For example, plain weave, twill weave, satin weave and the like.
Organic materials such as starch are attached to these woven fabrics to protect the fibers, but after being woven, they are removed by heat treatment or the like, and then surface-treated with a treating agent such as a silane coupling agent before use. On the other hand, using resin and cupping agent for glue,
The woven cloth can be used as it is as a base cloth for a laminated board.

本発明に於いて無機繊維織物の厚みは0.25mmの範囲で
あることが好ましい。これにより厚い無機繊維織物を使
用した積層板は、たとえその比通気度が1.5×10-2(cm3
/cm2・sec)以下であっても樹脂が織物に含浸しにくく
繊維束内部に残留気泡が残り易くなり、その結果吸湿率
の低い積層板を得ることが困難となるため好ましくな
い。比通気度は単位体積当りの織物に対する通気度であ
り、例えばEガラス繊維の織物で1平方メートル当りの
重量が205gであるスタイル7628(旭シュエーベル製)の
通気度が10(cm3/cm2・sec)の場合、Eガラスの比重
は2.54であるから比通気度は上式よりで8×10-2(cm3
/cm2・sec)である。比通気度は糸の種類、糸の形態、
打ち込み本数、織物組織などで変化し、一般には糸が太
く偏平で且つ打ち込み本数が多い方が小さくなる。
In the present invention, the thickness of the inorganic fiber fabric is preferably in the range of 0.25 mm. As a result, a laminate using a thick inorganic fiber woven fabric has a specific air permeability of 1.5 × 10 -2 (cm 3
/ Cm 2 · sec) or less, the resin is not easily impregnated into the woven fabric, and the residual air bubbles are likely to remain inside the fiber bundle. As a result, it becomes difficult to obtain a laminate having a low moisture absorption rate, which is not preferable. The specific air permeability is the air permeability of a fabric per unit volume. For example, the air permeability of a style 7628 (manufactured by Asahi Schwebel) having a weight of 205 g per square meter in an E glass fiber fabric is 10 (cm 3 / cm 2. In the case of (sec), the specific gravity of E glass is 2.54, so the specific air permeability is 8 × 10 -2 (cm 3
/ Cm 2 · sec). Specific air permeability is the type of yarn, the form of yarn,
The number varies depending on the number of drivings, the fabric structure, and the like. In general, the larger the number of drivings is, the thinner the yarn is, the smaller the number becomes.

積層板の吸湿挙動を良く観察すると水分は積層板の表
面から浸入する割合が多い事がわかる。吸湿後積層板が
ハンダなどで急激に加熱された場合水分が層間で気化膨
脹し、層間剥離を誘発する。しかし驚くべき事に、無機
繊維織物の比通気度が1.5×10-2(cm3/cm2・sec)以下
のものでは、水の積層板内部への浸透が織物によって遮
蔽抑制されと思われ、積層板への吸湿率は急激に減少し
ていく。吸湿率と比通気度との関係は一次的ではなく、
1.5×10-2(cm3/cm2・sec)近辺を境にこれより大きい
ところでは急激に吸湿率は大きくなる。
A good observation of the moisture absorption behavior of the laminate shows that a large percentage of moisture penetrates from the surface of the laminate. When the laminated board is rapidly heated with solder or the like after absorbing moisture, moisture evaporates and expands between the layers, causing delamination. However, surprisingly, when the specific air permeability of the inorganic fiber fabric is 1.5 × 10 -2 (cm 3 / cm 2 · sec) or less, it is thought that the penetration of water into the interior of the laminate is suppressed by the fabric. Then, the rate of moisture absorption into the laminate decreases sharply. The relationship between moisture absorption and specific air permeability is not primary,
Above 1.5 × 10 -2 (cm 3 / cm 2 · sec), the rate of moisture absorption increases sharply at locations larger than this.

本発明の無機繊維織物は、例えばエポキシ樹脂、ポリ
イミド樹脂、不飽和ポリエステル樹脂、フェノール樹脂
などの熱硬化性樹脂や、ポリフェニレンサルファイド樹
脂、ホルリフェニレンエーテル樹脂などの熱可塑性樹脂
をマトリックスとした積層板にも用いられ、特にプリン
ト回路板に使用される銅張り積層板用として好適に使用
される。
The inorganic fiber woven fabric of the present invention is, for example, a thermosetting resin such as an epoxy resin, a polyimide resin, an unsaturated polyester resin, and a phenolic resin, or a laminated board having a matrix of a thermoplastic resin such as a polyphenylene sulfide resin and a forryphenylene ether resin. It is also suitably used especially for copper-clad laminates used for printed circuit boards.

このような無機繊維織物は単に無機繊維を織成したの
みでは達成が困難であり、織成された織物に前述した方
法を適用することにより調製することができる。この方
法としては、例えば流体の圧力波や高圧柱状流を織物に
付与し、構成する糸を十分解繊した後、プレスロール等
で圧縮する方法等があげられる。流体としては、例えば
水や熱水、アルコールやアセトンなどの液体、空気や窒
素、ヘリウムなどの気体が用いられるが、安全上や設備
の観点から水や空気などが好ましい。圧力波は圧縮、膨
張を周期的に繰り返す動的なものが好ましく用いられ、
圧縮、膨張の周期は特に制限しないが50サイクル/秒以
上が好ましい。柱状流による解繊も一般に良く知られて
いる方法で行える。しかし、解繊処理だけでは比通気度
1.5×10-2(cm3/cm2・sec)以下を達成することは難し
く、圧縮ロール等によるプレス加工等との組合せを適用
することにより、前記所定の比通気度の織物を調製する
ことができる。より達成しやすくするためには、低撚数
の糸を使用してなる織物を使用することも可能である。
もちろん如何なる方法であっても比通気度が1.5×10-2
(cm3/cm2・sec)以下である無機繊維織物であれば本
発明の趣旨に合致するものである。
Such an inorganic fiber woven fabric is difficult to achieve simply by weaving the inorganic fibers, and can be prepared by applying the above-described method to the woven fabric. Examples of the method include a method in which a pressure wave of a fluid or a high-pressure columnar flow is applied to a woven fabric, the constituent yarns are sufficiently defibrated, and then compressed by a press roll or the like. As the fluid, for example, water, hot water, a liquid such as alcohol or acetone, or a gas such as air, nitrogen, or helium is used. From the viewpoint of safety and equipment, water and air are preferable. The pressure wave is preferably a dynamic one that periodically repeats compression and expansion,
The cycle of compression and expansion is not particularly limited, but is preferably 50 cycles / second or more. The defibration by the columnar flow can also be performed by a generally well-known method. However, only the defibration process has a specific air permeability.
It is difficult to achieve 1.5 × 10 -2 (cm 3 / cm 2 · sec) or less, and it is necessary to prepare a woven fabric having the above specific air permeability by applying a combination with press working with a compression roll or the like. Can be. To make it easier to achieve, it is also possible to use a woven fabric using a low twist number yarn.
Of course, whatever the method, the specific air permeability is 1.5 × 10 -2
(Cm 3 / cm 2 · sec) or less is an inorganic fiber woven fabric which meets the purpose of the present invention.

〔実施例〕〔Example〕

以下実施例により本発明を詳述する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例−1 旭シュエーベル社製のスタイル7628(Eガラスで直径
9μmのフィラメント400本からなるECG75 1/0の糸を
経糸緯糸に使用し、25mmの打ち込み本数は経44本、緯32
本、m2当りの重量205gで平均厚さ0.185mmのガラスクロ
ス)を、700回転/分で稼働しているバイブロウォッシ
ャー(長波動万能水洗機、大和機械株式会社製)を通し
て一部脱糊すると同時に解繊し、ゴム製ロールで高圧で
絞り乾燥した。次にバッチオープンで400℃で60時間か
けて糊剤を完全にヒートクリーニングした。ついで1%
のエポキシシラン(トーレシリコン製SZ−6040)に該ガ
ラスクロスを浸漬し乾燥して表面処理されたガラスクロ
スを得た。このクロスの通気度Aは1.5(cm3/cm2・se
c)で、Eガラスの比重は2.54なので比通気度は1.2×10
-2(cm3/cm2・sec)であった。更に再度ヒートクリー
ニングによってシランカップリング剤を除去したクロス
も通気度A1.5(cm3/cm2・sec)、比通気度1.2×10
-2(cm3/cm2・sec)で同じであった。
Example-1 Style 7628 made by Asahi Schwebel (ECG75 1/0 yarn composed of 400 filaments having a diameter of 9 μm and made of E glass was used as a warp weft;
This, glass cloth) with an average thickness of 0.185mm in m 2 per weight 205g, 700 revolutions / vibro washer running in minutes (long wave universal washing machine, when desizing part through Daiwa Kikai Co., Ltd.) Simultaneously, the fiber was defibrated and squeezed and dried at high pressure with a rubber roll. Next, the paste was completely heat cleaned at 400 ° C. for 60 hours by batch opening. Then 1%
The glass cloth was immersed in epoxy silane (SZ-6040 made by Toray Silicon), and dried to obtain a surface-treated glass cloth. The air permeability A of this cloth is 1.5 (cm 3 / cm 2 · se
In c), since the specific gravity of E glass is 2.54, the specific air permeability is 1.2 × 10
−2 (cm 3 / cm 2 · sec). Further, the cloth from which the silane coupling agent was removed again by heat cleaning also had an air permeability of A1.5 (cm 3 / cm 2 · sec) and a specific air permeability of 1.2 × 10 2.
-2 (cm 3 / cm 2 · sec).

次に該処理ガラスクロスに樹脂量65%の硬化剤含有Br
化エポキシ樹脂ワニスを含浸後、加熱脱揮してプリプレ
グを作成し、このプリプレグを4枚重ね、その両面に銅
箔を重ねてプレス成形後銅箔をエッチアウトし、0.8mm
厚みの積層板を得た。
Next, a hardener containing Br of 65% resin amount is added to the treated glass cloth.
After impregnated with a fluorinated epoxy resin varnish, heat devolatilize to create a prepreg, stack four prepregs, lay copper foil on both sides, press-mold and etch out the copper foil, 0.8mm
A laminate having a thickness was obtained.

実施例−2 ガラスクロス7628を通常の方法でヒートクリーニング
し、これを実施例−1と同様にして表面処理し、このク
ロスに水圧30kg/cm2のウォータージェットを噴射暴露し
た後、スクイズロールで高圧プレス脱水し乾燥して通気
度Aが1.7(cm3/cm2・sec)、従って比通気度1.4×10
-2(cm3/cm2・sec)のガラスクロスを得た。このクロ
スを再度ヒートクリーニングして通気度を測定したとこ
ろこのクロスの通気度Aは1.7(cm3/cm2・sec)、比通
気度は1.4×10-2(cm3/cm2・sec)で処理クロスと同等
であった。この処理クロスを用いて実施例1と同様にし
て積層板を得た。
Example 2 A glass cloth 7628 was heat-cleaned by an ordinary method, and the glass cloth was subjected to a surface treatment in the same manner as in Example 1. The cloth was exposed to a water jet having a water pressure of 30 kg / cm 2 and then exposed to a squeeze roll. High pressure press dewatering and drying, air permeability A is 1.7 (cm 3 / cm 2 · sec), therefore specific air permeability 1.4 × 10
A glass cloth of −2 (cm 3 / cm 2 · sec) was obtained. The cloth was heat-cleaned again and the air permeability was measured. The air permeability A of the cloth was 1.7 (cm 3 / cm 2 · sec), and the specific air permeability was 1.4 × 10 -2 (cm 3 / cm 2 · sec). Was equivalent to the treated cloth. Using this treated cloth, a laminate was obtained in the same manner as in Example 1.

比較例−1 バイブロウォッヤーの回転数を300回転/分で運転し
た以外は実施例−1と同様にして表面処理されたガラス
クロスを得た。処理クロス及びヒートクリーニングによ
ってシランカップリング剤を除去したクロスの通気度A
は2.2(cm3/cm2・sec)、比通気度は1.8×10-2(cm3
cm2・sec)で同じであった。この処理クロスを用いて実
施例1と同様にして積層板を得た。
Comparative Example 1 A surface-treated glass cloth was obtained in the same manner as in Example 1, except that the rotation speed of the vibro-wafer was operated at 300 rpm. Air permeability A of treated cloth and cloth from which the silane coupling agent has been removed by heat cleaning
Is 2.2 (cm 3 / cm 2 · sec) and the specific permeability is 1.8 × 10 -2 (cm 3 /
cm 2 · sec). Using this treated cloth, a laminate was obtained in the same manner as in Example 1.

比較例−2 ガラスクロス7628を通常の方法でヒートクリーニング
し、実施例−1と同様にして表面処理されたガラスクロ
スを得た。処理クロス及びヒートクリーニングによって
シランカップリング剤を除去したクロスの通気度Aは10
(cm3/cm2・sec)、比通気度は8.1×10-2(cm3/cm2
sec)であった。この処理クロスを用いて実施例1と同
様にして積層板を得た。
Comparative Example 2 A glass cloth 7628 was heat-cleaned by an ordinary method to obtain a surface-treated glass cloth in the same manner as in Example 1. The air permeability A of the treated cloth and the cloth from which the silane coupling agent has been removed by heat cleaning is 10
(Cm 3 / cm 2 · sec), specific air permeability is 8.1 × 10 -2 (cm 3 / cm 2 ·
sec). Using this treated cloth, a laminate was obtained in the same manner as in Example 1.

実施例−3 旭シュエーベル社製のスタイル216(Eガラスで直径
7μmのフィラメント200本からなるECE225 1/0の糸を
経糸緯糸に使用し、25mmの打ち込み本数は経60本、緯58
本、m2当りの重量100gで平均厚さ0.100mmのガラスクロ
ス)を、700回転/分で稼働しているバイブロウォッシ
ャー(長波動万能水洗機、大和機械株式会社製)を通し
て一部脱糊すると同時に解繊し、ゴム製ロールで高圧で
絞り乾燥した。次に実施例−1と同様にして表面処理さ
れたガラスクロスを得た。このクロスの通気度Aは2.8
(cm3/cm2・sec)で、Eガラスの比重は2.54なので比
通気度は1.1×10-2(cm3/cm2・sec)であった。更に再
度ヒートクリーニングによってシランカップリング剤を
除去したクロスも通気度2.8(cm3/cm2・sec)、比通気
度1.1×10-2(cm3/cm2・sec)で同じであった。
Example-3 Style 216 manufactured by Asahi Schwebel Co., Ltd. (ECE225 1/0 yarn consisting of 200 filaments of 7 μm in diameter of E glass was used for the warp weft, the number of 25 mm drive was 60 warp and 58 wefts)
This, glass cloth) with an average thickness of 0.100mm in m 2 per weight 100 g, 700 rev / vibro washer running in minutes (long wave universal washing machine, when desizing part through Daiwa Kikai Co., Ltd.) Simultaneously, the fiber was defibrated and squeezed and dried at high pressure with a rubber roll. Next, a glass cloth surface-treated in the same manner as in Example 1 was obtained. The air permeability A of this cloth is 2.8
(Cm 3 / cm 2 · sec) and the specific gravity of E glass was 2.54, so the specific air permeability was 1.1 × 10 -2 (cm 3 / cm 2 · sec). The cloth from which the silane coupling agent was removed by heat cleaning again had the same air permeability of 2.8 (cm 3 / cm 2 · sec) and a specific air permeability of 1.1 × 10 -2 (cm 3 / cm 2 · sec).

次に実施例−1と同様にしてプリプレグを作成し、こ
のプリプレグを6枚重ね、その両面に銅箔を重ねてプレ
ス成形後銅箔をエッチアウトし、0.6mm厚みの積層板を
得た。
Next, a prepreg was prepared in the same manner as in Example 1, six prepregs were laminated, copper foils were laminated on both surfaces of the prepregs, and the copper foil was etched out after press molding to obtain a laminate having a thickness of 0.6 mm.

比較例−3 ガラスクロス216を通常の方法でヒートクリーニング
し、実施例−3と同様にして表面処理されたガラスクロ
スを得た。処理クロス及びヒートクリーニングによって
シランカップリング剤を除去したクロスの通気度Aは40
(cm3/cm2・sec)、比通気度は15.7×10-2(cm3/cm2
・sec)であった。このクロスを用いて実施例1と同様
にして積層板を得た。
Comparative Example-3 The glass cloth 216 was heat-cleaned by an ordinary method to obtain a surface-treated glass cloth in the same manner as in Example-3. The air permeability A of the treated cloth and the cloth from which the silane coupling agent has been removed by heat cleaning is 40.
(Cm 3 / cm 2 · sec), specific air permeability is 15.7 × 10 -2 (cm 3 / cm 2
Sec). Using this cloth, a laminated board was obtained in the same manner as in Example 1.

比較例−4 旭シュエーベル社製のスタイル2523(Eガラスで直径
10.5μmのフィラメント800本からなるECH25 1/0の糸
を経糸緯糸に使用し、25mmの打ち込み本数は経28本、緯
20本、m2当りの重量380gで平均厚さ0.350mmのガラスク
ロス)を、700回転/分で稼働しているバイブロウォッ
シャー(長波動万能水洗機、大和機械株式会社製)を通
して一部脱糊すると同時に解繊し、ゴム製ロールで高圧
で絞り乾燥した。次に実施例−1と同様にして表面処理
されたガラスクロスを得た。このクロスの通気度Aは0.
85(cm3/cm2・sec)、比通気度は1.3×10-2(cm3/cm2
・sec)であった。更に再度ヒートクリーニングによっ
てシランカップリング剤を除去したクロスも通気度0.85
(cm3/cm2・sec)、比通気度1.3×10-2(cm3/cm2・se
c)で同じであった。次に実施例−1と同様にしてプリ
プレグを作成し、このプリプレグを4枚重ね、その両面
に銅箔を重ねてプレス成形し、1.6mm厚みの積層板を得
た。積層板内のガラス繊維中に残留気泡が観察され、良
好な板は得られなかった。
Comparative Example-4 Style 2523 manufactured by Asahi Schwebel (diameter of E glass
ECH25 1/0 yarn consisting of 800 10.5μm filaments is used for the warp weft.
20 pieces, glass cloth with an average thickness of 0.350 mm with a weight of 380 g per m 2 and a mean thickness of 0.350 mm are partially de-sized through a vibro washer (a long-wave universal washing machine, manufactured by Daiwa Machine Co., Ltd.) operating at 700 rpm. At the same time, the mixture was defibrated and squeezed and dried at high pressure with a rubber roll. Next, a glass cloth surface-treated in the same manner as in Example 1 was obtained. The air permeability A of this cloth is 0.
85 (cm 3 / cm 2 · sec), specific air permeability is 1.3 × 10 -2 (cm 3 / cm 2
Sec). In addition, the cloth whose silane coupling agent has been removed by heat cleaning again has an air permeability of 0.85.
(Cm 3 / cm 2 · sec), specific air permeability 1.3 × 10 -2 (cm 3 / cm 2 · se
Same in c). Next, a prepreg was prepared in the same manner as in Example 1, four prepregs were laminated, copper foil was laminated on both surfaces thereof, and press-molded to obtain a 1.6 mm-thick laminate. Residual air bubbles were observed in the glass fibers in the laminate, and a good plate could not be obtained.

実施例−1,2,3及び比較例−1,2,3,4で得られた積層板
を6cm角に切り出し、130℃のスチーム中で1時間〜4時
間吸湿させ、それぞれの吸湿率を測定した。更にこの吸
湿された積層板を260℃の溶融ハンダ中に漬け、積層板
のふくれ等を観察した。吸湿率及び吸湿後のハンダ耐熱
〔発明の効果〕 本発明にかかる無機繊維織物は、特定の構造を付与し
て比通気度を1.5×10-2(cm3/cm2・sec)以下にした無
機繊維織物であって、これを使用してなる積層板は吸湿
環境下に置かれた場合でも、従来品に比べて著しく吸湿
しにくく、吸湿後の耐熱性や電気特性を改良することが
可能である。
The laminates obtained in Examples 1, 2, 3 and Comparative Examples 1, 2, 3, 4 were cut into 6 cm squares and allowed to absorb moisture for 1 hour to 4 hours in steam at 130 ° C. It was measured. Further, the moisture-absorbed laminate was immersed in molten solder at 260 ° C., and the laminate was observed for blistering and the like. Moisture absorption rate and solder heat resistance after moisture absorption [Effect of the Invention] The inorganic fiber woven fabric according to the present invention is an inorganic fiber woven fabric having a specific structure and a specific air permeability of 1.5 × 10 -2 (cm 3 / cm 2 · sec) or less. Even when placed in a moisture-absorbing environment, a laminate made of is significantly less likely to absorb moisture than conventional products, and can improve heat resistance and electrical properties after moisture absorption.

フロントページの続き (51)Int.Cl.6 識別記号 FI // H05K 1/03 610 H05K 1/03 610T Continued on the front page (51) Int.Cl. 6 Identification code FI // H05K 1/03 610 H05K 1/03 610T

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フィラメントの直径が3〜11μmである無
機繊維で構成される厚さ0.25mm以下の無機繊維織物を生
機又はヒートクリーニングの後に流体の圧力波あるいは
高圧柱状流で処理して織物構成糸を解繊せしめた後、該
解繊処理織物を圧溶処理して1.5×10-2cm3/cm2・sec以
下の比通気度Xを有するヒートクリーニング処理織物を
調製することを特徴とする積層板用無機繊維織物の製造
方法。 但し、比通気度Xは、次式で表わされる。 X=A・M A:JIS−L 1096「通気度試験A法」により求めたcm2当り
の通気度(単位cm3/cm2・sec) M:織物1cm2当りのガラスバルク換算の体積量(cm) M=w/ρ ρ:当該無機材料の比重(単位:g/cm3) w:当該織物1cm2当りの重さ(単位:g/cm2
An inorganic fiber woven fabric having a thickness of 0.25 mm or less composed of inorganic fibers having a filament diameter of 3 to 11 μm is treated with a pressure wave of a fluid or a high-pressure columnar flow after greige or heat cleaning to form a woven fabric. After the yarn is defibrated, the defibrated woven fabric is subjected to pressure melting treatment to prepare a heat-cleaning woven fabric having a specific air permeability X of 1.5 × 10 -2 cm 3 / cm 2 · sec or less. Of producing an inorganic fiber fabric for a laminated board. However, the specific air permeability X is represented by the following equation. X = A · M A: Permeability per cm 2 (unit: cm 3 / cm 2 · sec) determined by JIS-L 1096 “Permeability test A method” M: Volume in glass bulk equivalent per 1 cm 2 of woven fabric (Cm) M = w / ρ ρ: Specific gravity of the inorganic material (unit: g / cm 3 ) w: Weight per 1 cm 2 of the woven fabric (unit: g / cm 2 )
JP1142221A 1989-06-06 1989-06-06 Method for producing inorganic fiber woven fabric for laminate Expired - Lifetime JP2752159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142221A JP2752159B2 (en) 1989-06-06 1989-06-06 Method for producing inorganic fiber woven fabric for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142221A JP2752159B2 (en) 1989-06-06 1989-06-06 Method for producing inorganic fiber woven fabric for laminate

Publications (2)

Publication Number Publication Date
JPH038832A JPH038832A (en) 1991-01-16
JP2752159B2 true JP2752159B2 (en) 1998-05-18

Family

ID=15310232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142221A Expired - Lifetime JP2752159B2 (en) 1989-06-06 1989-06-06 Method for producing inorganic fiber woven fabric for laminate

Country Status (1)

Country Link
JP (1) JP2752159B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570250B2 (en) * 1993-09-22 1997-01-08 松下電工株式会社 Prepreg and laminate
JP4348785B2 (en) 1999-07-29 2009-10-21 三菱瓦斯化学株式会社 High elastic modulus glass cloth base thermosetting resin copper clad laminate
JP2009119879A (en) * 2009-03-05 2009-06-04 Mitsubishi Gas Chem Co Inc High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP5516117B2 (en) * 2010-06-18 2014-06-11 日東紡績株式会社 Manufacturing method of glass fiber fabric, glass fiber fabric and prepreg
JP6444801B2 (en) * 2015-04-24 2018-12-26 京セラ株式会社 Method for producing low thermal expansion substrate

Also Published As

Publication number Publication date
JPH038832A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
EP0985756B1 (en) Woven glass fabrics and laminate for printed wiring boards
JP2752159B2 (en) Method for producing inorganic fiber woven fabric for laminate
JP6862609B2 (en) Aramid woven fabric with excellent adhesion and tensile strength to polyurethane matrix resin, its manufacturing method, prepreg of aramid woven fabric containing it, and aramid woven fabric / thermoplastic polyurethane resin composite material containing this.
JP2001011750A (en) Glass fiber woven fabric
JP2854591B2 (en) Processing method of fiber base material
JPH10272733A (en) Manufacture of metal-clad laminate
JPH07226571A (en) Glass fiber woven cloth for printed wiring board and its manufacture
JPH06248572A (en) Glass cloth for fiber-reinforced composite material
JP3720406B2 (en) Glass fiber fabric and its production method
JPH0722719A (en) Glass woven fabric material base and laminated sheet using same
JPH0742045A (en) Woven fabric of glass and laminate using the same
JPH02251664A (en) Treatment of glass cloth
JP2004043690A (en) Prepreg
JPH0860484A (en) Glass cloth substrate and laminated sheet using the same
JP2002144337A (en) Method and apparatus for treatment of glass cloth for impregnating with resin
JPH11241251A (en) Glass woven fabric base for printed circuit board and laminated plate for printed circuit board
JPH05140873A (en) Production of glass cloth for reinforcing resin
JPH01320147A (en) Fiber reinforced resin compound material
JPH0249219B2 (en)
JPH0578945A (en) Glass fiber fabric for printed wiring board
JPS6321970A (en) Treatment of glass cloth
JP2002339191A (en) Glass cloth and printed circuit board
JPH0967757A (en) Ultrathin-treated glass fiber woven fabric and production of the same woven fabric
JPH10259567A (en) Inorganic fiber woven fabric and its opening
JPH04163364A (en) Production of glass fiber fabric

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12