JP2751520B2 - Voltage sensor - Google Patents

Voltage sensor

Info

Publication number
JP2751520B2
JP2751520B2 JP2018307A JP1830790A JP2751520B2 JP 2751520 B2 JP2751520 B2 JP 2751520B2 JP 2018307 A JP2018307 A JP 2018307A JP 1830790 A JP1830790 A JP 1830790A JP 2751520 B2 JP2751520 B2 JP 2751520B2
Authority
JP
Japan
Prior art keywords
voltage
phase
voltage sensor
ground
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018307A
Other languages
Japanese (ja)
Other versions
JPH03221872A (en
Inventor
英伸 浜田
修 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2018307A priority Critical patent/JP2751520B2/en
Publication of JPH03221872A publication Critical patent/JPH03221872A/en
Application granted granted Critical
Publication of JP2751520B2 publication Critical patent/JP2751520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、配電状態モニタリングセンサ使用におけ
る対地間浮遊容量の不安定性と汚損による抵抗成分の発
生による影響を簡単な方法で最小限にできる電圧センサ
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage sensor capable of minimizing the influence of the generation of a resistance component due to the instability of a floating capacitance to ground and the fouling in the use of a power distribution monitoring sensor in a simple manner. .

従来の技術 従来の電圧センサは、第3図に示すように三相開閉器
の各相充電部5に外側電極と内側電極からなる分圧器6
を設置し、その各分圧器の出力電圧(分圧)をそれぞれ
電圧センサで直接測定することにより、間接的ではある
が非接触で高圧導電体の電圧を検出するものである。な
お、1は三相開閉器、2は三相高圧配線である。
2. Description of the Related Art As shown in FIG. 3, a conventional voltage sensor includes a voltage divider 6 including an outer electrode and an inner electrode in each phase charging section 5 of a three-phase switch.
Is installed, and the voltage of the high-voltage conductor is detected indirectly but non-contactly by directly measuring the output voltage (divided voltage) of each voltage divider with a voltage sensor. 1 is a three-phase switch, and 2 is a three-phase high-voltage wiring.

発明が解決しようとする課題 上記従来の方法では、気象の変化(例えば雨、雪な
ど)により開閉器充電部の対地間浮遊容量が変化した
り、ガイシの汚損により対地間抵抗成分が発生するた
め、三相各相の電圧出力値のバランスがくずれ事故等の
誤判断を起こし得る。この発明は、従来のものがもつ上
記のような課題を解決させ、簡易かつ信頼性の高い方法
で精度よく電圧を検出する電圧センサを提供することを
目的とする。
Problems to be Solved by the Invention In the above-mentioned conventional method, a change in the weather (for example, rain, snow, etc.) causes a change in the floating capacity between the ground of the switch charging unit and a resistance component between the ground due to contamination of the insulator. In addition, the voltage output values of the three phases may be out of balance, resulting in an erroneous determination such as an accident. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the conventional device and to provide a voltage sensor that detects a voltage accurately by a simple and reliable method.

課題を解決するための手段 この発明、従来のものの各相の分圧器の外側電極をガ
イシ等の高インピーダンスな物質で絶縁保護されたコン
デンサで各相間を互いに接続することを特徴とする。
Means for Solving the Problems The present invention is characterized in that the external electrodes of the voltage divider of each phase are connected to each other with a capacitor insulated and protected by a high-impedance material such as a insulator.

作用 上記構成においては、気象の変化(雨、雪など)によ
る対地間浮遊容量の変化およびガイシ汚損による対地間
抵抗成分の発生に起因する三相各相の電圧センサ出力値
のバラツキを補正することができ、零相電圧の誤差も最
小限にできるので事故の誤判断がなくなる。
In the above configuration, it is possible to correct the variation of the output value of the voltage sensor of each of the three phases due to the change in the stray capacitance between the ground due to a change in weather (rain, snow, etc.) and the resistance component between the ground due to contamination of the insulator. And the error of the zero-sequence voltage can be minimized, so that an erroneous judgment of an accident is eliminated.

実施例 この発明の実施例を第1図を参照しながら説明する。
なお、第3図と共通する素子には同一番号を付してい
る。第1図において、三相開閉器1の各相充電部5に分
圧器6を設置した従来型電圧センサに、その各相の分圧
器の外側電極を高インピーダンスなガイシ3等で絶縁保
護されたコンデンサ8で電気的に接続した構成をとる。
そして、充電部5および電圧センサ4と分圧器6は汚損
を避けるためポリエチレン製のカバー7で保護されてい
る。また、ここで使用されているガイシ3は表面汚損
時、高電圧による短絡が発生しないように沿面距離の大
きなものを使用する。
Embodiment An embodiment of the present invention will be described with reference to FIG.
Elements common to FIG. 3 are given the same numbers. In FIG. 1, in a conventional voltage sensor in which a voltage divider 6 is installed in each phase charging section 5 of the three-phase switch 1, an outer electrode of the voltage divider of each phase is insulated and protected by a high impedance insulator 3 or the like. The configuration is such that the capacitors 8 are electrically connected.
The charging section 5, the voltage sensor 4, and the voltage divider 6 are protected by a polyethylene cover 7 to avoid contamination. The insulator 3 used here has a large creepage distance so that a short circuit due to a high voltage does not occur when the surface is soiled.

さて、第2図に本実施例の等価回路を示す。ここで、
(a)図は相間コンデンサのΔ結線表示で中心が接地点
で各端点が各相充電部にあたり、分圧器6と電圧センサ
単体は並列に、大地間浮遊容量とは直列に、そして相間
コンデンサC2がΔ型に接続されている。
FIG. 2 shows an equivalent circuit of this embodiment. here,
(A) The figure shows the Δ connection of the inter-phase capacitor, with the center at the ground point and each end point at each phase charging unit, the voltage divider 6 and the voltage sensor alone in parallel, the ground stray capacitance in series, and the inter-phase capacitor C 2 are connected in a Δ type.

次に、Δ結線の相間コンデンサをΔ−Y変換により等
価的にY結線表示すると(b)図のように相間コンデン
サの静電容量の3倍のコンデサが大地間浮遊容量に並列
に接続されるのと等価となる。また、第1図におけるガ
イシ3が雨等で汚損された場合には、第2図(b)のよ
うに対値間浮遊容量Ca,Cb,C0に並列に可変抵抗Rが接続
されるのと等価となる。ここでRを10+6[Ω](注水
時)から無限大まで変化させることにより正常時から各
種の汚損時にかけての模擬ができる。ところで、a相電
圧をとおくと電圧センサに印加される電圧は次
式で表現される。
Next, when the Δ-connected inter-phase capacitors are equivalently Y-connected by Δ-Y conversion, a capacitor three times the capacitance of the inter-phase capacitors is connected in parallel to the stray capacitance between the grounds as shown in FIG. Is equivalent to When the insulator 3 in FIG. 1 is contaminated by rain or the like, a variable resistor R is connected in parallel to the stray capacitances C a , C b , and C 0 between pairs as shown in FIG. It is equivalent to Here, by changing R from 10 +6 [Ω] (at the time of water injection) to infinity, it is possible to simulate from normal time to various kinds of contamination. By the way, if the a-phase voltage is a, the voltage s applied to the voltage sensor is expressed by the following equation.

ただし、W=2π×f(f:周波数)である。 Here, W = 2π × f (f: frequency).

次式において、Rは通常10+6[Ω]よりも大きいので
3C2を対地間浮遊容量Caが無視できるほど大きくとる
と、はCa,Rによるずある一定位相かつ一定値をもっ
た値に収束する。また、b相およびc相についても同様
である。従って、3相各相間にある値のコンデンサをΔ
結線することにより、気象の変化による対地間浮遊容量
の変化および雨等によるガイシ3の汚損表面抵抗成分
(対地間抵抗成分)の発生が引き起こす電圧センサの出
力電圧の不安定性を最小限にすることかできる。そし
て、三相各相の電圧センサの出力値も安定すると、零相
電圧の検出も正確にできる。
In the following equation, R is usually larger than 10 +6 [Ω].
If 3C 2 is set to be so large that the ground-to-ground stray capacitance Ca is negligible, s converges to a value having a certain constant phase and a certain value due to C a and R. The same applies to the b phase and the c phase. Therefore, the value of the capacitor between the three phases is Δ
The connection minimizes the instability of the output voltage of the voltage sensor caused by the change in the stray capacitance between the ground due to the change of weather and the generation of the surface resistance component (resistance between the ground) of the insulator 3 due to rain or the like. I can do it. When the output values of the voltage sensors of the three phases are stabilized, the zero-phase voltage can be detected accurately.

発明の効果 以上のように、本発明は三相各相間にある値のコンデ
ンサをΔ型に結線することにより、気象の変化(雨、雪
など)による対地間浮遊容量の変化およびガイシ汚損に
よる対地間抵抗成分の発生に起因する三相各相の電圧セ
ンサ出力値のバラツキを補正することができ、零相電圧
の誤差も最小限にできるので事故の誤判断が少なくな
る。
Effect of the Invention As described above, the present invention connects a capacitor having a value between each of the three phases in a Δ-shape to change the floating capacity between the ground due to a change in weather (rain, snow, etc.) and the ground due to soiling of insulators. Variations in the voltage sensor output values of each of the three phases due to the generation of the inter-resistance component can be corrected, and errors in the zero-phase voltage can be minimized, thereby reducing erroneous determination of an accident.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における電圧センサの概要
図、第2図は同実施例における電圧センサの三相高圧開
閉器に取り付け時の等価回路図、第3図は従来例の電圧
センサの概要図である。 1……三相開閉器(アース体)、2……三相高圧配電
線、3……ガイシ、4……電圧センサ単体、5……三相
開閉器充電部、6……分圧器、7……充電部カバー、8
……相間コンデンサ。
FIG. 1 is a schematic view of a voltage sensor according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram when the voltage sensor according to the embodiment is mounted on a three-phase high-voltage switch, and FIG. 3 is a conventional voltage sensor. FIG. DESCRIPTION OF SYMBOLS 1 ... three-phase switch (grounding body), 2 ... three-phase high voltage distribution line, 3 ... insulator, 4 ... single voltage sensor, 5 ... three-phase switch charging part, 6 ... voltage divider, 7 …… Charging part cover, 8
…… Capacitor between phases.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三相導電体各相に設置された電圧センサの
分圧器の外側電極間にコンデンサを各々接続し、前記コ
ンデンサの容量を対地間浮遊容量が無視できるほど大き
く調節することにより、対地間浮遊容量の不安定性を補
償することを特徴とする電圧センサ。
1. A capacitor is connected between the outer electrodes of a voltage divider of a voltage sensor installed in each phase of a three-phase conductor, and the capacitance of the capacitor is adjusted to be so large that the stray capacitance between the ground and the ground is negligible. A voltage sensor for compensating for instability of stray capacitance to ground.
JP2018307A 1990-01-29 1990-01-29 Voltage sensor Expired - Fee Related JP2751520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018307A JP2751520B2 (en) 1990-01-29 1990-01-29 Voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018307A JP2751520B2 (en) 1990-01-29 1990-01-29 Voltage sensor

Publications (2)

Publication Number Publication Date
JPH03221872A JPH03221872A (en) 1991-09-30
JP2751520B2 true JP2751520B2 (en) 1998-05-18

Family

ID=11967958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018307A Expired - Fee Related JP2751520B2 (en) 1990-01-29 1990-01-29 Voltage sensor

Country Status (1)

Country Link
JP (1) JP2751520B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333706A (en) * 1991-10-22 1994-08-02 Akebono Brake Industry Co., Ltd. Brake apparatus for a vehicle
CN110221132A (en) * 2019-06-18 2019-09-10 国网冀北电力有限公司廊坊供电公司 The method and nuclear phase instrument new application of electrification investigation high-tension apparatus phase shortage

Also Published As

Publication number Publication date
JPH03221872A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
CN104854460B (en) Super-pressure DC line voltage sensors
US7123032B2 (en) Voltage sensor and dielectric material
US20020190705A1 (en) Current transformer based high voltage measurement method
JPS60209833A (en) Method and apparatus for determining coordinates of contact point on surface for sensing half analog of resistance type
WO2002097454A1 (en) Three-phase voltage sensor with active crosstalk cancellation
JP2751520B2 (en) Voltage sensor
JP4122606B2 (en) Interphase short-circuit detection device
JP4686356B2 (en) Insulation detector
CN215894768U (en) Charge amplification device based on resistance type sensor
US5495130A (en) Point level switch
JPH05256894A (en) Method for diagnosing insulation deterioration of power cable
JP3602296B2 (en) Lightning arrester leakage current measuring device
CN215180522U (en) Electric field probe for online monitoring of metal oxide lightning arrester of distribution network
CN110865223A (en) Voltage acquisition compensation circuit
JPS6211161Y2 (en)
JPH0690228B2 (en) Surge voltage measuring device
JPH0546506B2 (en)
JPH0218570B2 (en)
JPS5833694Y2 (en) Voltage transformer for sealed busbars
JPH05180884A (en) Insulation resistance measuring method for load apparatus
JPH0743392B2 (en) Voltage detector
JPH084625Y2 (en) Support insulator zero-phase voltage detector
CN114200187A (en) Fusion sensor
SU1145349A1 (en) Active scale transformer
JPS6073372A (en) Resistance separation structure in measurement of partial discharge of power cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees