JP2750876B2 - Organic electrolyte secondary battery for deep sea - Google Patents

Organic electrolyte secondary battery for deep sea

Info

Publication number
JP2750876B2
JP2750876B2 JP63291788A JP29178888A JP2750876B2 JP 2750876 B2 JP2750876 B2 JP 2750876B2 JP 63291788 A JP63291788 A JP 63291788A JP 29178888 A JP29178888 A JP 29178888A JP 2750876 B2 JP2750876 B2 JP 2750876B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
deep sea
organic electrolyte
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63291788A
Other languages
Japanese (ja)
Other versions
JPH02139850A (en
Inventor
哲 斉藤
哲三 小島
章伯 森
文典 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Mitsubishi Heavy Industries Ltd
Original Assignee
NIPPON DENCHI KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17773436&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2750876(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON DENCHI KK, Mitsubishi Heavy Industries Ltd filed Critical NIPPON DENCHI KK
Priority to JP63291788A priority Critical patent/JP2750876B2/en
Publication of JPH02139850A publication Critical patent/JPH02139850A/en
Application granted granted Critical
Publication of JP2750876B2 publication Critical patent/JP2750876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、数千メートルの深海での高圧下で使用する
充電可能な有機電解液二次電池に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable organic electrolyte secondary battery used under high pressure in a deep sea of several thousand meters.

従来の技術とその課題 深海用電池としては、これまで鉛蓄電池や酸化銀−亜
鉛電池等が使用されてきた。これらの電池では、電解液
には希硫酸やカ性カリ溶液などの水溶液が使用されてい
る。これらの電池においては、充電時に水の電気分解に
よってガスが発生し、このガスが放電時においても極板
中に残り、深海という高圧下で使用する場合、電解液や
ガスが圧縮されて収縮する。そのため、電池が密閉型の
場合には、電池全体に高圧がかかり、電池が変形してつ
いには破壊されるという危険性があるので、密閉型構造
はとれない。
2. Description of the Related Art Lead-acid batteries, silver oxide-zinc batteries, and the like have been used as deep-sea batteries. In these batteries, an aqueous solution such as dilute sulfuric acid or potassium hydroxide solution is used as an electrolytic solution. In these batteries, gas is generated by electrolysis of water at the time of charging, and this gas remains in the electrode plate even at the time of discharging, and when used under high pressure of deep sea, the electrolytic solution and gas are compressed and shrunk. . Therefore, when the battery is a sealed type, a high pressure is applied to the entire battery, and there is a risk that the battery is deformed and eventually destroyed, so that a sealed type structure cannot be obtained.

そのために、これらの深海用電池においては、密閉型
とはせず開放型とし、深海での高圧が電池の構成部品全
てに均一にかかるような特別の工夫がなされている。た
だし、水溶液電解液と海水が直接接触すると互いに混ざ
りあい、電解液濃度が薄くなって電池の特性が劣化す
る。そこで水と油が互いに混合しないという性質を利用
して、電解液と海水の間に絶縁油の層を設けることが考
えられた。実際には、開放型電池全体を絶縁油の中に浸
漬した、いわゆる油漬電池という均圧構造としている。
For this reason, these deep-sea batteries are not sealed but open-type, and special measures have been taken to ensure that high-pressure in the deep sea is uniformly applied to all components of the battery. However, when the aqueous electrolyte solution and the seawater come into direct contact, they are mixed with each other, and the concentration of the electrolyte solution becomes low, thereby deteriorating the characteristics of the battery. Therefore, it was conceived to provide an insulating oil layer between the electrolytic solution and seawater by utilizing the property that water and oil do not mix with each other. Actually, it has a so-called oil-immersed battery in which the entire open type battery is immersed in insulating oil, and has a pressure equalizing structure.

しかし、水溶液電解液を使用した深海用電池には、エ
ネルギー密度が小さい、充放電サイクル寿命が短いなど
の欠点があった。そこでこのような水溶液電解液を使用
した深海用電池の欠点を取り除き、エネルギー密度が高
く、充放電サイクル寿命の長い二次電池を得ることが求
められていた。
However, a deep-sea battery using an aqueous electrolyte has disadvantages such as low energy density and short charge / discharge cycle life. Therefore, there has been a demand for a secondary battery having a high energy density and a long charge / discharge cycle life by eliminating the drawbacks of a deep-sea battery using such an aqueous electrolyte.

課題を解決するための手段 本発明は、深海用有機電解液二次電池において、正極
と、リチウムを活物質として含む負極と、有機電解液
と、均圧装置とを備えてなり、電池全体において密閉構
造としたことを特徴とする。
Means for Solving the Problems The present invention provides a deep-sea organic electrolyte secondary battery, comprising a positive electrode, a negative electrode containing lithium as an active material, an organic electrolyte, and a pressure equalizing device. It features a closed structure.

作用 本発明は有機電解液リチウム系二次電池を使用する。
正極は活物質として二硫化チタン、二酸化マンガン、五
酸化バナジウム等を含み、負極は活物質としてリチウム
又はリチウム合金を含む。電解液としてはリチウムと反
応しない有機溶媒にリチウムイオンを含むリチウムイオ
ン導電性の有機電解液を使用する。負極活物質にリチウ
ムあるいはリチウム合金を使用するため、適当な正極活
物質と組み合わせた場合、水溶液電解液を使用した場合
に比べ高い放電電圧が得られる。また、リチウムの原子
量は6.94と小さいために、単位重量あたりのエネルギー
密度の大きい電池が得られる。さらに、正極活物質に充
放電による結晶構造変化の小さい物質を使用すれば、充
放電サイクル寿命の長い電池が得られる。
Action The present invention uses an organic electrolyte lithium secondary battery.
The positive electrode contains titanium disulfide, manganese dioxide, vanadium pentoxide, or the like as an active material, and the negative electrode contains lithium or a lithium alloy as an active material. As the electrolyte, a lithium ion conductive organic electrolyte containing lithium ions in an organic solvent that does not react with lithium is used. Since lithium or a lithium alloy is used as the negative electrode active material, a higher discharge voltage can be obtained when combined with an appropriate positive electrode active material than when an aqueous electrolyte is used. Further, since the atomic weight of lithium is as small as 6.94, a battery having a high energy density per unit weight can be obtained. Further, when a material having a small change in crystal structure due to charge and discharge is used as the positive electrode active material, a battery having a long charge and discharge cycle life can be obtained.

この電池を深海での高圧下で使用する場合、開放型と
して油漬とすることが考えられるが、有機電解液が油と
接触した場合、有機電解液を構成する有機溶媒と油は互
いに混ざりあうので、このような均圧構造は採用できな
い。しかし本発明による有機電解液リチウム電池は充放
電反応においてはガス発生がないために、完全密閉型構
造とすることができる。したがって、電池を海水中に漬
けても、海水と電解液は混ざらない。
When this battery is used under high pressure in the deep sea, it is conceivable to use oil as an open type.However, when the organic electrolyte comes into contact with oil, the organic solvent and oil constituting the organic electrolyte are mixed with each other. However, such a pressure equalizing structure cannot be adopted. However, since the organic electrolyte lithium battery according to the present invention does not generate gas in the charge / discharge reaction, it can have a completely sealed type structure. Therefore, even if the battery is immersed in seawater, the seawater and the electrolyte do not mix.

また深海の高圧下では電解液が収縮するが、均圧装置
を備えることにより、深海の高圧下においても電池が崩
壊したり、極板が電解液と触れなくなって電池反応に使
用されなくなるのを防ぐことができる。また電池を深海
から地上へ戻した場合には電解液が膨脹するが、このと
きも均圧装置の働きにより電池に悪影響を与えることが
ない。このようにして、電池を地上と深海を何往復して
も、電池は常に均圧状態に保たれているので、電池自体
の物理的な変形はなく、充放電特性は常に一定に保たれ
る。
In addition, the electrolyte contracts under high pressure in the deep sea, but the provision of a pressure equalizer prevents the battery from collapsing even under high pressure in the deep sea and prevents the electrode plate from coming into contact with the electrolyte and not being used for the battery reaction. Can be prevented. When the battery is returned from the deep sea to the ground, the electrolytic solution expands, but at this time, the function of the pressure equalizing device does not adversely affect the battery. In this way, no matter how many times the battery travels back and forth between the ground and the deep sea, the battery is always kept at a uniform pressure, so there is no physical deformation of the battery itself, and the charge / discharge characteristics are always kept constant .

実施例 次に本発明を好適な実施例を用いて説明する。Examples Next, the present invention will be described using preferred examples.

[電池A] 第1図は本発明の一実施例である電池Aの構造を示し
た断面図であり、同図において1は正極で、活物質とし
ては二硫化チタンを含み、大きさは95mm×70mmとし、セ
ルあたり40枚使用している。2は負極で、活物質として
はリチウムを含み、大きさは正極と同じでセルあたり80
枚使用している。3は電解液で、2−メチルテトラヒド
ロフランに六フッ化リン酸リチウムを溶かした溶液を使
用した。4はセパレータで、ポリプロピレン製である。
5は電池ケースであり、6は正極端子、7は負極端子で
ある。8は電池外部に備えられた変形可能な金属製の袋
であり、袋内部と電池内部は共に電解液で満たされ、両
者間は電解液が移動できるように連絡されている。電池
部分の大きさは75mm×30mm×110mmで、袋の部分の大き
さは直径30mm、高さ25mmであり、全重量は600gとした。
[Battery A] FIG. 1 is a cross-sectional view showing the structure of a battery A according to one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode, which contains titanium disulfide as an active material, and has a size of 95 mm. × 70 mm, 40 cells per cell. Reference numeral 2 denotes a negative electrode, which contains lithium as an active material, has the same size as the positive electrode, and has a capacity of 80
We use. Reference numeral 3 denotes an electrolytic solution, which is a solution obtained by dissolving lithium hexafluorophosphate in 2-methyltetrahydrofuran. Reference numeral 4 denotes a separator made of polypropylene.
Reference numeral 5 denotes a battery case, 6 denotes a positive terminal, and 7 denotes a negative terminal. Reference numeral 8 denotes a deformable metal bag provided outside the battery. Both the inside of the bag and the inside of the battery are filled with an electrolyte, and the two are communicated so that the electrolyte can move. The size of the battery part was 75 mm x 30 mm x 110 mm, the size of the bag part was 30 mm in diameter and 25 mm in height, and the total weight was 600 g.

この電池は高圧下では加圧によって袋の内部の電解液
が電池内部に移動するため、高圧下でも電圧の均圧状態
を保つことができる。
Under high pressure, the electrolytic solution inside the bag moves into the battery by pressurization under high pressure, so that the voltage can be maintained at a uniform pressure even under high pressure.

[電池B] 第2図は本発明の一実施例である電池Bの構造を示し
た断面図であり、均圧装置以外の構成は電池Aと同様で
ある。9は電池外部に設けられた金属製の円筒状容器
で、該円筒状容器内部と電池内部とが電解液が移動でき
るように連結されており、さらに該円筒状容器の側壁10
は伸縮自由なひだ状構造となっており、その内部は地上
では電解液3で満たされている。電池部分の大きさは75
mm×30mm×110mmで、円筒状容器の部分の大きさは直径3
0mm、高さ25mmであり、全重量は600gとした。
[Battery B] FIG. 2 is a cross-sectional view showing the structure of a battery B according to one embodiment of the present invention. The configuration other than the pressure equalizer is the same as that of the battery A. Reference numeral 9 denotes a metal cylindrical container provided outside the battery. The inside of the cylindrical container and the inside of the battery are connected so that the electrolyte can move.
Has a foldable pleated structure, the inside of which is filled with an electrolyte 3 on the ground. The size of the battery part is 75
mm × 30 mm × 110 mm, the size of the cylindrical container part is 3 diameter
The height was 0 mm, the height was 25 mm, and the total weight was 600 g.

第3図は円筒状容器の断面拡大図であり、第3図
(A)は地上での状態を示すものであり、容器の内部は
電解液3で満たされている。第3図(B)は約700気圧
下での状態を示すものであり、円筒状容器は電解液の収
縮にともなって軸方向に縮み、容器内の電解液は電池内
に移動し、電池の均圧を保つことができる。
FIG. 3 is an enlarged cross-sectional view of the cylindrical container, and FIG. 3 (A) shows a state on the ground. The inside of the container is filled with the electrolyte 3. FIG. 3 (B) shows the state at about 700 atm. The cylindrical container shrinks in the axial direction with the contraction of the electrolyte, the electrolyte in the container moves into the battery, and Equalizing pressure can be maintained.

[電池C] 第4図は本発明の一実施例である電池Cの構造を示し
た断面図であり、均圧装置以外の構成は電池Aと同様で
ある。11は電池外部に設けられた金属製の円筒状容器で
あり、該円筒状容器内部と電池内部とは電解液が移動で
きるように連結されており、さらに該円筒状容器には円
筒の軸方向に移動可能な蓋12が備え付けられている。円
筒状容器の内部は地上では電解液3で満たされている。
電池部分の大きさは75mm×30mm×110mmで、円筒状容器
の部分の大きさは直径30mm、高さ25mmであり、全重量は
610gとした。
[Battery C] FIG. 4 is a cross-sectional view showing the structure of a battery C according to an embodiment of the present invention. The configuration other than the pressure equalizing device is the same as that of the battery A. Reference numeral 11 denotes a metal cylindrical container provided outside the battery, and the inside of the cylindrical container and the inside of the battery are connected so that the electrolytic solution can move. A movable lid 12 is provided. The inside of the cylindrical container is filled with the electrolyte 3 on the ground.
The size of the battery part is 75 mm × 30 mm × 110 mm, the size of the cylindrical container part is 30 mm in diameter, 25 mm in height, the total weight is
610 g.

第5図は円筒状容器の断面拡大図であり、第5図
(A)は地上での状態を示すものであり、蓋12は円筒状
容器の端にあり、容器の内部は電解液3で満たされてい
る。第6図(B)は約700気圧下での状態を示すもので
あり、蓋12は電解液の収縮にともなって外から押されて
移動し、容器内の電解液は電池内に移動し、電池の均圧
状態を保つことができる。
FIG. 5 is an enlarged cross-sectional view of the cylindrical container, and FIG. 5 (A) shows a state on the ground. The lid 12 is located at the end of the cylindrical container. be satisfied. FIG. 6 (B) shows a state at about 700 atm. The lid 12 is pushed from the outside and moves with the contraction of the electrolyte, and the electrolyte in the container moves into the battery. It is possible to maintain the pressure equalized state of the battery.

[電池D] 第6図は本発明の一実施例である電池Dの構造を示し
た断面図であり、均圧装置以外の構成は電池Aと同様で
ある。13は電池容器であり、その一部14は可変構造とな
っている。具体的には電池容器の厚みは大部分が2mmで
あるのに対し、可変構造とした部分の厚みは0.2mmとし
た。電池部分の大きさは80mm×30mm×110mmで、全重量
は約590gとした。
[Battery D] FIG. 6 is a cross-sectional view showing the structure of a battery D according to one embodiment of the present invention. The configuration other than the pressure equalizer is the same as that of the battery A. Reference numeral 13 denotes a battery container, and a part 14 has a variable structure. Specifically, the thickness of the battery container was mostly 2 mm, while the thickness of the variable structure portion was 0.2 mm. The size of the battery part was 80 mm x 30 mm x 110 mm, and the total weight was about 590 g.

第7図はこの電池の約700気圧下での状態を示す断面
図であり、電池容器側面の可変部分14は電解液の収縮に
ともなって電池の内側へ移動し、電池全体としては均圧
状態に保たれる。
FIG. 7 is a cross-sectional view showing the state of the battery at about 700 atm. The variable portion 14 on the side of the battery container moves to the inside of the battery with the contraction of the electrolyte, and the battery as a whole is in a pressure equalized state. Is kept.

[電池E] 第8図は本発明の一実施例である電池Eの構造を示し
た断面図であり、均圧装置以外の構成は電池Aと同様で
ある。14は電池容器の外側隔壁であり厚みは0.2mmと
し、15は電池容器の内側隔壁であり、厚みは2mmとし
た。電池の極板部分と、外部隔壁と内部隔壁との間の空
所は電解液3で満たされている。電池部分の大きさは82
mm×35mm×110mmで、全重量は約610gとした。
[Battery E] FIG. 8 is a cross-sectional view showing the structure of a battery E according to one embodiment of the present invention. 14 is an outer partition wall of the battery container and has a thickness of 0.2 mm, and 15 is an inner partition wall of the battery container and has a thickness of 2 mm. The space between the electrode plate portion of the battery and the outer and inner partitions is filled with the electrolyte 3. The size of the battery part is 82
It was mm × 35mm × 110mm and the total weight was about 610g.

第9図はこの電池の約700気圧下での状態を示す断面
図であり、薄い外側隔壁14は加圧による電解液の収縮に
ともなって電池の内側へ移動し、電解液は極板部分へ移
動する。このとき内側隔壁15の変形は全くない。このよ
うにして電池全体としては均圧状態に保たれる。
FIG. 9 is a cross-sectional view showing the state of the battery at about 700 atm. The thin outer partition wall 14 moves to the inside of the battery with the contraction of the electrolytic solution by pressurization, and the electrolytic solution moves to the electrode plate portion. Moving. At this time, the inner partition 15 is not deformed at all. In this way, the battery as a whole is kept in a pressure-equalized state.

第10図に本発明による電池Aの2A/cellでの定電流放
電特性を示す。同図においてIは地上での10サイクル目
の放電特性を示し、IIは深海7000mでの約700気圧のもと
での11サイクル目の放電特性を示し、IIIは同じく深海7
000mでの100サイクル目の放電特性を示す。第10図から
明らかなように、電池の放電特性は圧力やサイクル数等
の条件が違ってもほとんど変化がない。このように本発
明による電池の特性は極めて安定しているものである。
なお、300サイクル目の放電特性もよく似た特性を示
し、極めて寿命の長い電池が得られる。また、本発明の
他の実施例である電池B〜Eについても同様の結果が得
られた。これらの電池のエネルギー密度は約100Wh/kgで
あり、この値は水溶液電解液を用いた電池の約30〜40Wh
/kgよりはるかに大きな値である。
FIG. 10 shows the constant current discharge characteristics at 2 A / cell of the battery A according to the present invention. In the figure, I shows the discharge characteristics at the tenth cycle on the ground, II shows the discharge characteristics at the eleventh cycle at about 700 atm in the deep sea at 7000 m, and III also shows the discharge characteristics at the deep sea 7
10 shows the discharge characteristics at the 100th cycle at 000 m. As is clear from FIG. 10, the discharge characteristics of the battery hardly change even when the conditions such as the pressure and the number of cycles are different. Thus, the characteristics of the battery according to the present invention are extremely stable.
In addition, the discharge characteristics at the 300th cycle show very similar characteristics, and a battery with an extremely long life can be obtained. Similar results were obtained for batteries B to E as other examples of the present invention. The energy density of these batteries is about 100 Wh / kg, which is about 30-40 Wh for batteries using aqueous electrolytes.
It is much larger than / kg.

発明の効果 本発明による電池においては、大きいエネルギー密度
が得られ、充放電サイクルによる特性の変化が非常に少
なくサイクル寿命が長くなる。さらに、完全密閉型で、
均圧装置を備えているために高圧状態においても電池全
体を均圧状態に保つことができ、深海の高圧下において
も地上の場合と同様の性能を得ることができる。
Effect of the Invention In the battery according to the present invention, a large energy density is obtained, and the change in characteristics due to charge / discharge cycles is very small, and the cycle life is extended. In addition, in a completely sealed type,
Since the pressure equalizing device is provided, the entire battery can be maintained in an even pressure state even in a high pressure state, and the same performance as that on the ground can be obtained even in a deep sea under high pressure.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第4図,第6図および第8図は各種均
圧装置を備えた本発明による電池の構造を示す断面図。
第3図は第2図に示した電池の円筒状容器の拡大断面
図。第5図は第4図に示した電池の円筒状容器の拡大断
面図。第7図は第6図に示した電池の高圧下での状態を
示す断面図。第9図は第8図に示した電池の高圧下での
状態を示す断面図。第10図は本発明による電池の各種条
件下における放電特性を示した図。
1, 2, 4, 6, and 8 are cross-sectional views showing the structure of a battery according to the present invention having various pressure equalizing devices.
FIG. 3 is an enlarged sectional view of a cylindrical container of the battery shown in FIG. FIG. 5 is an enlarged sectional view of the cylindrical container of the battery shown in FIG. FIG. 7 is a sectional view showing a state of the battery shown in FIG. 6 under a high pressure. FIG. 9 is a sectional view showing a state of the battery shown in FIG. 8 under a high pressure. FIG. 10 is a diagram showing discharge characteristics of a battery according to the present invention under various conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠井 文典 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 審査官 吉水 純子 (56)参考文献 特開 昭53−62139(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Fuminori Kasai 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Examiner, Mitsubishi Heavy Industries, Ltd., Kobe Shipyard Yokomizu Junko Yoshimizu (56) References 62139 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、リチウムを活物質として含む負極
と、有機電解液と、均圧装置とを備えた深海用密閉形有
機電解液二次電池。
A sealed deep-sealed organic electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium as an active material, an organic electrolyte, and a pressure equalizer.
JP63291788A 1988-11-17 1988-11-17 Organic electrolyte secondary battery for deep sea Expired - Lifetime JP2750876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291788A JP2750876B2 (en) 1988-11-17 1988-11-17 Organic electrolyte secondary battery for deep sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291788A JP2750876B2 (en) 1988-11-17 1988-11-17 Organic electrolyte secondary battery for deep sea

Publications (2)

Publication Number Publication Date
JPH02139850A JPH02139850A (en) 1990-05-29
JP2750876B2 true JP2750876B2 (en) 1998-05-13

Family

ID=17773436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291788A Expired - Lifetime JP2750876B2 (en) 1988-11-17 1988-11-17 Organic electrolyte secondary battery for deep sea

Country Status (1)

Country Link
JP (1) JP2750876B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362139A (en) * 1976-11-16 1978-06-03 Japan Storage Battery Co Ltd Battery

Also Published As

Publication number Publication date
JPH02139850A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
CN101517817B (en) Hybrid-typed electrode assembly of capacitor-battery structure
US5429895A (en) Nickel alloy electrodes for electrochemical devices
US5154989A (en) Energy storage device
JP2000077073A (en) Aqueous lithium ion battery
US20210280899A1 (en) A high-voltage ion-mediated flow/flow-assist manganese dioxide-zinc battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
US5512390A (en) Light-weight electrical-storage battery
EP2521148A1 (en) Electricity-storage device
CN110770928A (en) Low aspect ratio battery
JPH04500286A (en) Positive current collector for lithium secondary system
JPH07296849A (en) Nonaqueous electrolyte secondary battery
WO2015079689A1 (en) High capacity alkali/oxidant battery
JP2000340256A (en) Aqueous lithium ion battery
JP2750876B2 (en) Organic electrolyte secondary battery for deep sea
US20220149416A1 (en) Flow-through electrochemical cell
JPH0855637A (en) Nonaqueous electrolytic secondary battery
KR20170113908A (en) Lithium ion capacitor
JPH05258753A (en) Nonaqueous electrolyte lithium battery
Raghavan et al. The great nobel prize history of lithium-ion batteries: The new era of electrochemical energy storage solutions
JPH11283665A (en) Electrochemical element
Srinivasan et al. Embeddable batteries: Taking shape
Raman et al. Lithium-ion batteries for autonomous underwater vehicles
JP2003257472A (en) Inside-out type battery
JP3743774B2 (en) Non-aqueous electrolyte battery
JPS5812271A (en) Chargeable storage battery