JP2741397B2 - Electrolyte for driving electrolytic capacitors - Google Patents

Electrolyte for driving electrolytic capacitors

Info

Publication number
JP2741397B2
JP2741397B2 JP8244989A JP8244989A JP2741397B2 JP 2741397 B2 JP2741397 B2 JP 2741397B2 JP 8244989 A JP8244989 A JP 8244989A JP 8244989 A JP8244989 A JP 8244989A JP 2741397 B2 JP2741397 B2 JP 2741397B2
Authority
JP
Japan
Prior art keywords
parts
reaction
compound
general formula
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8244989A
Other languages
Japanese (ja)
Other versions
JPH02224217A (en
Inventor
徳享 三好
雅司 上畑
道男 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura Oil Mill Ltd
Original Assignee
Okamura Oil Mill Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura Oil Mill Ltd filed Critical Okamura Oil Mill Ltd
Priority to JP8244989A priority Critical patent/JP2741397B2/en
Publication of JPH02224217A publication Critical patent/JPH02224217A/en
Application granted granted Critical
Publication of JP2741397B2 publication Critical patent/JP2741397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解コンデンサ駆動用電解液に関する。更
に詳しくは、本発明は、特に中高圧用電解コンデンサに
使用して内部抵抗の低減や使用温度範囲の拡大を図り得
る電解コンデンサ駆動用電解液に関する。
Description: TECHNICAL FIELD The present invention relates to an electrolytic solution for driving an electrolytic capacitor. More specifically, the present invention relates to an electrolytic solution for driving an electrolytic capacitor which can be used particularly for an electrolytic capacitor for medium and high pressure and which can reduce the internal resistance and expand the operating temperature range.

従来の技術及びその問題点 従来、エチレングリコール等の溶媒に硼酸又はその塩
を加えた電解液が一般に用いられている。しかしなが
ら、この種の電解液は、比抵抗が高く、コンデンサの損
失を増加し、発熱の原因となり、熱劣化を促進するとい
う欠点を有している。このような欠点を改良するため
に、溶質としてアゼライン酸、セバシン酸、デカンジカ
ルボン酸等の直鎖飽和ジカルボン酸又はその塩を含有す
る電解液が用いられることもあるが、該直鎖飽和ジカル
ボン酸はエチレングリコール等の溶媒に対する溶解度が
低いため、低温で該ジカルボン酸が結晶として析出し易
く、それ故コンデンサの低温特性を劣化させるという欠
点を免れ得なかった。更に上記直鎖飽和ジカルボン酸の
欠点を解消するために、ブチルオクタン二酸、1,6−デ
カンジカルボン酸等の側鎖を有する飽和の二塩基酸又は
その塩を溶質として使用することも一部でなされてい
る。しかし、これらのジカルボン酸又はその塩のエチレ
ングリコール等に対する溶解度は、上記直鎖飽和ジカル
ボン酸又はその塩のそれに比し改良されているものの、
低温での特性が尚不充分であり、より一層の改善が望ま
れているのが現状である。
2. Description of the Related Art Conventionally, an electrolytic solution obtained by adding boric acid or a salt thereof to a solvent such as ethylene glycol is generally used. However, this type of electrolyte has the drawback that it has a high specific resistance, increases the loss of the capacitor, causes heat generation, and promotes thermal deterioration. In order to improve such a defect, an electrolyte containing a linear saturated dicarboxylic acid such as azelaic acid, sebacic acid, and decane dicarboxylic acid or a salt thereof as a solute or a salt thereof may be used. However, because of its low solubility in solvents such as ethylene glycol, the dicarboxylic acid was liable to precipitate as crystals at low temperatures, and the disadvantage of deteriorating the low-temperature characteristics of the capacitor could not be avoided. Further, in order to solve the above-mentioned disadvantages of the linear saturated dicarboxylic acid, it is also possible to partially use a saturated dibasic acid having a side chain such as butyloctane diacid or 1,6-decane dicarboxylic acid or a salt thereof as a solute. It is made in. However, although the solubility of these dicarboxylic acids or salts thereof in ethylene glycol or the like is improved as compared with the linear saturated dicarboxylic acids or salts thereof,
At present, the properties at low temperatures are still insufficient, and further improvement is desired.

問題点を解決するための手段 本発明は、斯かる現状に鑑み、上記欠点のない電解コ
ンデンサ駆動用電解液を開発すべく鋭意研究を重ねた結
果、下記一般式(1)もしくは(2)で表わされる化合
物又はその塩を溶質として使用した場合に、低温におい
ても結晶として析出し難く、所望の電解コンデンサ駆動
用電解液になり得ることを見い出し、ここに本発明を完
成するに至った。
Means for Solving the Problems In view of the current situation, the present invention has made intensive studies to develop an electrolytic solution for driving an electrolytic capacitor free of the above-mentioned drawbacks, and as a result, the following general formula (1) or (2) was obtained. It has been found that when the compound represented by the formula or a salt thereof is used as a solute, it hardly precipitates as a crystal even at a low temperature and can be a desired electrolytic solution for driving an electrolytic capacitor. Thus, the present invention has been completed.

即ち、本発明は、 (A)一般式 〔式中R3は低級アルキル基を示す。Rは水素原子又は基 (R3は前記に同じ)を示す。〕 で表わされる化合物又はその塩、及び (B)一般式 〔式中R4は低級アルキル基を示す。R1は低級アルキル基
を示す。〕 で表わされる化合物又はその塩 からなる群から選ばれた少なくとも1種を溶質とし、こ
れをエチレングリコールを主溶剤とする溶剤に溶解して
なることを特徴とする電解コンデンサ駆動用電解液に係
る。
That is, the present invention provides: [Wherein R 3 represents a lower alkyl group. R is a hydrogen atom or a group (R 3 is the same as above). Or a salt thereof, and (B) a compound represented by the general formula: [In the formula, R 4 represents a lower alkyl group. R 1 represents a lower alkyl group. A compound represented by the formula: or a salt thereof, wherein at least one selected from the group consisting of solutes is dissolved in a solvent containing ethylene glycol as a main solvent. .

本明細書において、R1、R2、R3及びR4で示される低級
アルキル基としては、例えばメチル、エチル、n−プロ
ピル、イソプロピル、n−ブチル、イソブチル、tert−
ブチル基等の直鎖又は分枝鎖状の炭素数1〜4のアルキ
ル基を挙げることができる。
In the present specification, examples of the lower alkyl group represented by R 1 , R 2 , R 3 and R 4 include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-
A linear or branched alkyl group having 1 to 4 carbon atoms such as a butyl group can be exemplified.

本発明で用いられる一般式(1)で表わされる化合物
は、例えば酸触媒の存在下一般式 R1OH (3) 〔式中R1は低級アルキル基を示す。〕 で表わされる低級アルコール中でシクロヘキサノンと過
酸化水素とを反応させ、次いで得られる反応液に一般式 〔式中R2は低級アルキル基を示す。R3は前記に同じ。〕 で表わされるアクリル酸エステル誘導体を金属塩の存在
下に反応させ、更に得られる一般式 〔式中R1、R2及びR3は前記に同じ。R′は水素原子又は
(R2及びR3は前記に同じ)を示す。〕 で表わされる二塩基酸エステルを加水分解することによ
り製造される。
The compound represented by the general formula (1) used in the present invention may be, for example, a compound represented by the general formula R 1 OH (3) wherein R 1 represents a lower alkyl group in the presence of an acid catalyst. Wherein cyclohexanone is reacted with hydrogen peroxide in a lower alcohol represented by the formula: [Wherein R 2 represents a lower alkyl group. R 3 is the same as above. Is reacted in the presence of a metal salt to obtain an acrylate derivative represented by the general formula [Wherein R 1 , R 2 and R 3 are the same as above. R 'is a hydrogen atom or group (R 2 and R 3 are the same as described above). ] It hydrolyzes the dibasic acid ester represented by these.

更に詳しくは、まず一般式(3)の低級アルコール
中、シクロヘキサノンと過酸化水素とを酸触媒の存在下
に反応させて低級アルコキシシクロヘキシルパーオキサ
イドとする。ここで低級アルコールとしては、例えば無
水のメタノール、エタノール、イソプロパノール、n−
ブタノール、tert−ブタノール等を挙げることができ
る。また酸触媒としては、例えば硫酸、塩酸、リン酸、
トリフルオロ酢酸等を挙げることができ、これらの中で
も硫酸及びリン酸が特に好適である。シクロヘキサノン
と過酸化水素との反応において、両者の使用割合として
は、特に限定されるものではないが、通常前者100重量
部(以下単に「部」と記す)当り、80〜130部程度、好
ましくは100〜110部程度とするのがよい。上記低級アル
コールは、シクロヘキサノン100部当り、通常200〜700
部程度、好ましくは250〜350部程度用いるのがよい。ま
た酸触媒は、シクロヘキサノン100部当り、通常5〜10
部程度、好ましくは6〜8部程度用いるのがよい。該反
応は、通常冷却下、好ましくは−20〜10℃付近にて好適
に進行し、短時間で該反応は終了する。
More specifically, first, cyclohexanone and hydrogen peroxide are reacted in a lower alcohol of the general formula (3) in the presence of an acid catalyst to obtain a lower alkoxycyclohexyl peroxide. Here, as the lower alcohol, for example, anhydrous methanol, ethanol, isopropanol, n-
Butanol, tert-butanol and the like can be mentioned. As the acid catalyst, for example, sulfuric acid, hydrochloric acid, phosphoric acid,
Trifluoroacetic acid and the like can be mentioned, and among these, sulfuric acid and phosphoric acid are particularly preferred. In the reaction between cyclohexanone and hydrogen peroxide, the use ratio of both is not particularly limited, but is usually about 80 to 130 parts, preferably about 80 to 130 parts per 100 parts by weight of the former (hereinafter simply referred to as "parts"). It is preferable to use about 100 to 110 parts. The lower alcohol is usually 200 to 700 parts per 100 parts of cyclohexanone.
Parts, preferably about 250 to 350 parts. The acid catalyst is usually 5 to 10 parts per 100 parts of cyclohexanone.
Parts, preferably about 6 to 8 parts. The reaction suitably proceeds usually under cooling, preferably around −20 to 10 ° C., and is completed in a short time.

上記反応で低級アルコキシシクロヘキシルパーオキサ
イドが生成するが、本発明ではこれを単離することな
く、反応液のまま次の反応に供するのがよい。
In the present invention, lower alkoxycyclohexyl peroxide is produced by the above-mentioned reaction. In the present invention, it is preferable that the reaction solution is used for the next reaction without isolation.

引続く反応で用いられる一般式(4)のアクリル酸エ
ステル誘導体としては、上記一般式(4)に該当するも
のである限り、従来公知のものを広く使用でき、例えば
メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸n−プロピル、メタクリル酸イソプロピル、メタクリ
ル酸n−ブチル、2−エチルアクリル酸メチル、2−
(n−プロピル)アクリル酸メチル、2−イソプロピル
アクリル酸メチル、2−(n−ブチル)アクリル酸メチ
ル、2−(tert−ブチル)アクリル酸メチル等を挙げる
ことができる。
As the acrylate derivative of the general formula (4) used in the subsequent reaction, conventionally known ones can be widely used as long as they correspond to the above general formula (4), for example, methyl methacrylate, ethyl methacrylate , N-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, methyl 2-ethyl acrylate, 2-
Examples thereof include methyl (n-propyl) acrylate, methyl 2-isopropylacrylate, methyl 2- (n-butyl) acrylate, and methyl 2- (tert-butyl) acrylate.

上記反応液と一般式(4)のアクリル酸エステル誘導
体とを反応させるに際しては、金属塩が触媒として用い
られる。ここで金属塩としては、例えば鉄、銅、コバル
ト、チタン、錫等の金属の硫酸塩、塩化物、アンモニウ
ム塩等の塩やこれらの水和物等が挙げられる。この中で
も第一鉄塩が好適である。第一鉄塩としては、例えば硫
酸第一鉄、塩化第一鉄、硫酸第一鉄アンモニウム塩等や
これらの水和物等が挙げられる。これらの中で特に硫酸
第一鉄が好ましく、硫酸第一鉄は反応後にこれを硫酸と
鉄で還元して硫酸第一鉄を回収し、再使用を有利に行な
うことができる。上記金属塩は、1種単独で、又は2種
以上混合して用いられる。上記反応液と一般式(4)の
アクリル酸エステル誘導体とは、シクロヘキサノン100
部当り、一般式(4)のアクリル酸エステル誘導体を通
常100〜270部程度、好ましくは120〜250部程度となるよ
うに、使用されるのがよい。該反応を実施するに当って
は、上記反応液に上記アクリル酸エステル誘導体を加え
て、撹拌下、金属塩をそのまま用いるか又は予め低級ア
ルコールにできるだけ溶解して得た懸濁液乃至均一溶液
を徐々に滴下する。ここで低級アルコールは、上記シク
ロヘキサノンと過酸化水素との反応で用いられる低級ア
ルコールと同種のものとするのがよい。上記金属塩の低
級アルコール懸濁液乃至均一溶液は、窒素ガス中金属塩
に対して2〜4倍量の低級アルコール中に金属塩を懸濁
乃至溶解させて調製するのがよい。金属液の懸濁乃至溶
解に当り、窒素ガスを存在させると、上記反応を効率よ
く行なうことができる。上記反応は、冷却下、通常−20
〜10℃付近、好ましくは−10〜5℃付近にて好適に進行
し、一般に0.3〜2時間程度で該反応は完結する。
When reacting the reaction solution with the acrylate derivative of the general formula (4), a metal salt is used as a catalyst. Here, examples of the metal salt include salts, such as sulfates, chlorides, and ammonium salts of metals such as iron, copper, cobalt, titanium, and tin, and hydrates thereof. Of these, ferrous salts are preferred. Examples of the ferrous salt include ferrous sulfate, ferrous chloride, ammonium ferrous sulfate and the like, and hydrates thereof. Among these, ferrous sulfate is particularly preferable, and ferrous sulfate can be advantageously reused by reducing it with sulfuric acid and iron after the reaction to recover ferrous sulfate. The above metal salts are used alone or in combination of two or more. The above reaction solution and the acrylate derivative of the general formula (4) are
The acrylate derivative of the formula (4) is preferably used in an amount of usually about 100 to 270 parts, preferably about 120 to 250 parts per part. In carrying out the reaction, the above-mentioned acrylate derivative is added to the above-mentioned reaction solution, and under stirring, a metal salt is used as it is or a suspension or homogeneous solution obtained by previously dissolving in a lower alcohol as much as possible is used. Drop slowly. Here, the lower alcohol is preferably of the same type as the lower alcohol used in the reaction between cyclohexanone and hydrogen peroxide. The suspension or homogeneous solution of the metal salt in the lower alcohol is preferably prepared by suspending or dissolving the metal salt in a lower alcohol in an amount of 2 to 4 times the amount of the metal salt in nitrogen gas. In suspending or dissolving the metal liquid, the presence of nitrogen gas allows the above reaction to be performed efficiently. The above reaction is usually carried out under cooling at -20.
The reaction suitably proceeds at about -10 ° C, preferably at -10 ° C to about 5 ° C, and the reaction is generally completed in about 0.3 to 2 hours.

一般式(5)の化合物の加水分解は、常法に従い行な
われ得る。
The hydrolysis of the compound of the general formula (5) can be carried out according to a conventional method.

本発明で用いられる一般式(2)の化合物は、例えば
上記一般式(4)の化合物に代えて一般式(6) 〔式中R4は前記に同じ。〕 で表わされるスチレン誘導体を用い、上記と同様の処理
を行なうことにより製造される。
The compound of the general formula (2) used in the present invention is, for example, a compound of the general formula (6) instead of the compound of the above general formula (4). Wherein R 4 is the same as above. The styrene derivative represented by the above formula is used and the same treatment as above is carried out.

ここで一般式(6)のスチレン誘導体としては、上記
一般式(6)に該当するものである限り、従来公知のも
のを広く使用でき、例えばα−メチルスチレン、α−エ
チルスチレン、α−(n−プロピル)スチレン、α−イ
ソプロピルスチレン、α−(n−ブチル)スチレン、α
−イソブチルスチレン、α−(tert−ブチル)スチレン
等を挙げることができる。
Here, as the styrene derivative of the general formula (6), conventionally known styrene derivatives can be widely used as long as they correspond to the general formula (6). For example, α-methylstyrene, α-ethylstyrene, α- ( n-propyl) styrene, α-isopropylstyrene, α- (n-butyl) styrene, α
-Isobutylstyrene, α- (tert-butyl) styrene and the like.

斯くして得られる本発明の一般式(1)又は(2)の
化合物は、慣用の分離精製手段、例えば蒸留等により反
応混合物から容易に単離、精製される。
The thus obtained compound of the general formula (1) or (2) of the present invention can be easily isolated and purified from the reaction mixture by a conventional separation and purification means, for example, distillation or the like.

また上記一般式(1)又は(2)の化合物の塩として
は、例えばアンモニウム塩を挙げることができる。
Examples of the salt of the compound represented by the general formula (1) or (2) include an ammonium salt.

本発明では、上記一般式(1)もしくは(2)の化合
物又はこれらの塩が、電解コンデンサ駆動用電解液の溶
質として使用される。
In the present invention, the compound of the general formula (1) or (2) or a salt thereof is used as a solute of an electrolytic solution for driving an electrolytic capacitor.

上記一般式(1)もしくは(2)の化合物又はこれら
の塩とエチレングリコールとの使用割合としては、特に
限定がなく広い範囲内で適宜選択することができるが、
通常前者:後者を5〜30:95〜70(W/W)なる割合で使用
するのがよい。本発明では、溶媒としてエチレングリコ
ールに、例えばメチルセロソルブ等の他の溶媒を適宜添
加してもよく、また溶質として上記一般式(1)もしく
は(2)の化合物又はこれらの塩に硼酸、アジピン酸等
の有機酸を適宜添加することもできる。
The proportion of the compound of the general formula (1) or (2) or a salt thereof and ethylene glycol is not particularly limited and can be appropriately selected within a wide range.
Usually, the former is preferably used in a ratio of 5 to 30:95 to 70 (W / W). In the present invention, another solvent such as methyl cellosolve may be appropriately added to ethylene glycol as a solvent, and the compound of the above general formula (1) or (2) or a salt thereof may be added to boric acid or adipic acid as a solute. And the like can be added as appropriate.

発明の効果 本発明で用いられる一般式(1)もしくは(2)の化
合物又はこれらの塩は、エチレングリコールに対して高
い溶解性を有する。その結果、本発明によれば、低温か
ら高温までの広い温度範囲で安定に動作し、且つ火花開
始電圧の高い中高圧電解コンデンサ用電解液を提供で
き、従って、本発明の電解液を使用することにより、中
高圧用電解コンデンサの信頼性を著しく向上させること
ができる。
Effects of the Invention The compound of the general formula (1) or (2) or a salt thereof used in the present invention has high solubility in ethylene glycol. As a result, according to the present invention, it is possible to provide an electrolytic solution for a medium-to-high pressure electrolytic capacitor which operates stably in a wide temperature range from low to high temperatures and has a high spark starting voltage, and therefore uses the electrolytic solution of the present invention. Thus, the reliability of the electrolytic capacitor for medium and high pressure can be remarkably improved.

実施例 以下に製造例及び実施例を掲げて本発明をより一層明
らかにする。
Examples Hereinafter, the present invention will be further clarified with reference to Production Examples and Examples.

製造例1 撹拌機付反応容器に無水メタノール460kgを5れ、こ
れを5℃に冷却し、シクロヘキサノン160kg及び濃硫酸1
0kgを加えて撹拌しながら更に35%過酸化水素水160kgを
徐々に加えて5℃を保ちながら10分間撹拌を続けて反応
させる。この反応液にメタクリル酸メチル200kgを溶解
し、別に窒素ガス中で硫酸第一鉄(7水塩)480kgを反
応温度を−20〜−5℃に保ちながら徐々に添加して反応
させる。反応後、静置分液し、上層のエステル層と下層
の第二鉄塩溶液を分離する。エステル層を水洗、乾燥
し、次いで100〜120℃/1mmHgで蒸留して、R′が水素原
子であり、且つR1、R2及びR3が共にメチル基である一般
式(5)の化合物を263kg得る。収率70% 元素分析値(C12H22O4として) C H 理論値(%): 62.58 9.63 実測値(%): 62.34 9.91 沸点:108〜110℃/1mmHg HNMR(CDCl3、270MHz、ppm/TMS) 1.14(d,J=5.4Hz,3H,C ) 1.25〜1.80(br,10H,メチレン) 2.30(t,J=8.1Hz,2H,−COC −) 2.43(sextet,J=5.4Hz,1H,C−CH3) 3.67(s,6H,OC ) マススペクトル(m/e): 230(P+),199(P+−OCH3), IRスペクトル(ニート,cm-1): 2930,2850,1740,1430,1360,1200 CNMR(CDCl3,270MHz,ppm/TMS) 17.0(H3),24.7,27.0,28.7,29.3,33.6,34.0,39.3,
51.4(OH3),51.7(OH3),174.2(C=O),177.
2(C=O) 上記で得られる化合物を次いで常法に従い加水分解
し、更にアンモニアを吹込んでアンモニウム塩とした。
このアンモニウム塩を化合物Aとする。
Production Example 1 A reaction vessel equipped with a stirrer was charged with 460 kg of anhydrous methanol, cooled to 5 ° C., and charged with 160 kg of cyclohexanone and concentrated sulfuric acid.
After adding 0 kg and stirring, 160 kg of 35% aqueous hydrogen peroxide is gradually added, and stirring is continued for 10 minutes while keeping the temperature at 5 ° C. to cause a reaction. In this reaction solution, 200 kg of methyl methacrylate is dissolved, and 480 kg of ferrous sulfate (heptahydrate) is gradually added in a nitrogen gas while keeping the reaction temperature at -20 to -5 ° C to cause a reaction. After the reaction, the mixture is allowed to stand and separated to separate an upper ester layer and a lower ferric salt solution. The ester layer is washed with water, dried, and then distilled at 100 to 120 ° C./1 mmHg to obtain a compound of the general formula (5) wherein R ′ is a hydrogen atom and R 1 , R 2 and R 3 are both methyl groups. Get 263 kg. Yield 70% Elemental analysis value (as C 12 H 22 O 4 ) Theoretical value of C H (%): 62.58 9.63 Actual value (%): 62.34 9.91 Boiling point: 108-110 ° C./1 mmHg HNMR (CDCl 3 , 270 MHz, ppm / TMS) 1.14 (d, J = 5.4Hz, 3H, C H 3) 1.25~1.80 (br, 10H, methylene) 2.30 (t, J = 8.1Hz , 2H, -COC H 2 -) 2.43 (sextet, J = 5.4Hz, 1H, C H -CH 3) 3.67 (s, 6H, OC H 3) mass spectrum (m / e): 230 ( P +), 199 (P + -OCH 3), IR spectrum (neat, cm -1): 2930,2850,1740,1430,1360,1200 CNMR ( CDCl 3, 270MHz, ppm / TMS) 17.0 (C H 3), 24.7,27.0,28.7,29.3,33.6,34.0 , 39.3,
51.4 (O C H 3), 51.7 (O C H 3), 174.2 (C = O), 177.
2 (C = O) The compound obtained above was then hydrolyzed according to a conventional method, and further blown with ammonia to obtain an ammonium salt.
This ammonium salt is referred to as Compound A.

製造例2 撹拌機付反応容器に無水メタノール460kgを入れ、こ
れを5℃に冷却し、シクロヘキサノン160kg及び濃硫酸1
0kgを加えて撹拌しながら更に35%過酸化水素水160kgを
徐々に加えて5℃を保ちながら10分間撹拌を続けて反応
させる。この反応液にメタクリル酸メチル400kgを溶解
し、別に窒素ガス中で硫酸第一鉄(7水塩)480kgを反
応温度を−20〜−5℃に保ちながら徐々に添加して反応
させる。反応後、静置分液し、上層のエステル層と下層
の第二鉄塩溶液を分離する。エステル層を水洗、乾燥
し、次いで140〜170℃/1mmHgで蒸留して、R′が基 であり、且つR1、R2及びR3が共にメチル基である一般式
(5)の化合物を326kg得る。収率61% 元素分析値(C17H30O6として) C H 理論値(%): 61.79 9.15 実測値(%): 62.01 8.92 沸点:153〜155℃/1mmHg HNMR(CDCl3、270MHz、ppm/TMS) 1.10(d,J=5.4Hz,3H,C ) 1.15(s,3H,C ) 1.20〜1.80(m,12H,メチレン) 2.27(t,J=6.8Hz,2H,COC ) 2.40〜2.60(c,1H,COC) 2.63、3.64及び3.67(各s,9H,OCH3) マススペクトル(m/e): 330(P+),299(P+−OCH3), IRスペクトル(ニート,cm-1): 2950,2855,1745,1430,1360,1205 CNMR(CDCl3,270MHz,ppm/TMS) 17.1(H3),19.6(H3),21.2,24.3,24.6,28.9,2
9.7,33.9,35.8,39.4,43.1,51.5(OH3),51.6(OH
3),51.7(OH3),174.3(C=O),177.3(C=
O),177.5(C=O) 上記で得られる化合物を次いで常法に従い加水分解
し、更にアンモニアを吹込んでアンモニウム塩とした。
このアンモニウム塩を化合物Bとする。
Production Example 2 460 kg of anhydrous methanol was placed in a reaction vessel equipped with a stirrer, cooled to 5 ° C., and 160 kg of cyclohexanone and 1% of concentrated sulfuric acid were added.
After adding 0 kg and stirring, 160 kg of 35% aqueous hydrogen peroxide is gradually added, and stirring is continued for 10 minutes while keeping the temperature at 5 ° C. to cause a reaction. 400 kg of methyl methacrylate is dissolved in the reaction solution, and 480 kg of ferrous sulfate (heptahydrate) is gradually added to the reaction solution while keeping the reaction temperature at -20 to -5 ° C in nitrogen gas. After the reaction, the mixture is allowed to stand and separated to separate an upper ester layer and a lower ferric salt solution. The ester layer was washed with water, dried, and then distilled at 140 to 170 ° C./1 mmHg. And 326 kg of a compound of the general formula (5) in which R 1 , R 2 and R 3 are both methyl groups are obtained. Yield 61% Elemental analysis (as C 17 H 30 O 6 ) Theoretical value of CH (%): 61.79 9.15 Actual value (%): 62.01 8.92 Boiling point: 153 to 155 ° C./1 mmHg HNMR (CDCl 3 , 270 MHz, ppm / TMS) 1.10 (d, J = 5.4Hz, 3H, C H 3) 1.15 (s, 3H, C H 3) 1.20~1.80 (m, 12H, methylene) 2.27 (t, J = 6.8Hz , 2H, COC H 2) 2.40~2.60 (c, 1H , COC H) 2.63,3.64 and 3.67 (each s, 9H, OCH 3) mass spectrum (m / e): 330 ( P +), 299 (P + -OCH 3) , IR spectrum (neat, cm -1): 2950,2855,1745,1430,1360,1205 CNMR ( CDCl 3, 270MHz, ppm / TMS) 17.1 (C H 3), 19.6 (C H 3), 21.2,24.3, 24.6,28.9,2
9.7,33.9,35.8,39.4,43.1,51.5 (O C H 3), 51.6 (O C H
3), 51.7 (O C H 3), 174.3 (C = O), 177.3 (C =
O), 177.5 (C = O) The compound obtained above was then hydrolyzed according to a conventional method, and further blown with ammonia to give an ammonium salt.
This ammonium salt is referred to as Compound B.

製造例3 撹拌機付反応容器に無水メタノール460kgを入れ、こ
れを5℃に冷却し、シクロヘキサノン80kg及び濃硫酸5k
gを加えて撹拌しながら更に35%過酸化水素水80kgを徐
々に加えて5℃を保ちながら10分間撹拌を続けて反応さ
せる。この反応液にα−メチルスチレン120kgを溶解
し、別に窒素ガス中で硫酸第一鉄(7水塩)240kgを反
応温度を−20〜−5℃に保ちながら徐々に添加して反応
させる。反応後、静置分液し、上層のエステル層と下層
の第二鉄塩溶液を分離する。エステル層を水洗、乾燥
し、次いで150〜175℃/2mmHgで蒸留して、式 で表わされる化合物を137kg得る。収率90% 元素分析値(C17H26O3として) C H 理論値(%): 73.34 9.41 実測値(%): 73.37 9.19 沸点:163〜165℃/1mmHg HNMR(CDCl3、270MHz、ppm/TMS) 1.05〜1.85(m,8H,メチレン) 1.51(s,3H,C ) 1.70(t,J=6.8Hz,2H,C 2COCH3) 2.25(t,J=8.1Hz,2H,C 2CO) 3.06(s,3H,OC ) 3.65(s,3H,COOC ) 7.15〜7.45(m,5H,C6 ) マススペクトル(m/e): 278(P+),263(P+−CH3),247(P+−OCH3), 135(P+−CH3OOC(CH2),105 IRスペクトル(ニート,cm-1): 3050,3020,2930,2850,1735,1480,1450,1370,1170,107
0,770,680 CNMR(CDCl3,270MHz,ppm/TMS) 22.9(H3),23.7,24.8,28.9,29.6,33.9,42.8,52.2
(OH3), 51.4(COOH3), 79.1(OCH3),126.9, 128.2(オルト),1261(メタ),124.8(パラ), 174.3(OOCH3) 上記で得られる化合物を次いで常法に従い加水分解
し、更にアンモニアを吹込んでアンモニウム塩とした。
このアンモニウム塩を化合物Cとする。
Production Example 3 460 kg of anhydrous methanol was placed in a reaction vessel equipped with a stirrer, cooled to 5 ° C., and 80 kg of cyclohexanone and 5 k of concentrated sulfuric acid were added.
Then, 80 kg of 35% hydrogen peroxide solution is gradually added with stirring, and stirring is continued for 10 minutes while keeping the temperature at 5 ° C. to cause a reaction. In this reaction solution, 120 kg of α-methylstyrene is dissolved, and 240 kg of ferrous sulfate (heptahydrate) is gradually added while keeping the reaction temperature at −20 to −5 ° C. in nitrogen gas to cause a reaction. After the reaction, the mixture is allowed to stand and separated to separate an upper ester layer and a lower ferric salt solution. The ester layer was washed with water, dried, and then distilled at 150 to 175 ° C / 2 mmHg to obtain the formula 137 kg of the compound represented by are obtained. Yield 90% Elemental analysis value (as C 17 H 26 O 3 ) Theoretical value of C H (%): 73.34 9.41 Observed value (%): 73.37 9.19 Boiling point: 163 to 165 ° C./1 mmHg HNMR (CDCl 3 , 270 MHz, ppm / TMS) 1.05~1.85 (m, 8H , methylene) 1.51 (s, 3H, C H 3) 1.70 (t, J = 6.8Hz, 2H, C H 2 COCH 3) 2.25 (t, J = 8.1Hz, 2H , C H 2 CO) 3.06 ( s, 3H, OC H 3) 3.65 (s, 3H, COOC H 3) 7.15~7.45 (m, 5H, C 6 H 5) mass spectrum (m / e): 278 ( P + ), 263 (P + -CH 3 ), 247 (P + -OCH 3 ), 135 (P + -CH 3 OOC (CH 2 ) 6 ), 105 IR spectrum (neat, cm -1 ): 3050, 3020 , 2930,2850,1735,1480,1450,1370,1170,107
0,770,680 CNMR (CDCl 3, 270MHz, ppm / TMS) 22.9 (C H 3), 23.7,24.8,28.9,29.6,33.9,42.8,52.2
(O C H 3), 51.4 (COO C H 3), 79.1 (C OCH 3), 126.9, 128.2 ( ortho), 1261 (meth) 124.8 (para), 174.3 (C OOCH 3) The compound obtained in the above Was then hydrolyzed according to a conventional method, and ammonia was further blown into ammonium salts.
This ammonium salt is referred to as Compound C.

実施例1 化合物A 6部 エチレングリコール 94部 実施例2 化合物A 5部 エチレングリコール 92部 硼酸アンモニウム 3部 実施例3 化合物A 5部 エチレングリコール 92部 セバシン酸アンモニウム 3部 実施例4 化合物B 6部 エチレングリコール 94部 実施例5 化合物B 5部 エチレングリコール 92部 硼酸アンモニウム 3部 実施例6 化合物B 5部 エチレングリコール 92部 セバシン酸アンモニウム 3部 実施例7 化合物C 10部 エチレングリコール 87部 硼酸アンモニウム 3部 実施例8 化合物A 5部 エチレングリコール 92部 安息香酸アンモニウム 3部 実施例9 化合物B 5部 エチレングリコール 92部 安息香酸アンモニウム 3部 比較例1 エチレングリコール 75部 硼酸アンモニウム 25部 比較例2 エチレングリコール 95部 セバシン酸アンモニウム 5部 比較例3 エチレングリコール 95部 アゼライン酸アンモニウム 5部 実施例1〜7及び比較例1〜3で得られる電解液につ
き、比抵抗(Ωcm)及び火花開始電圧(V)を調べた。
結果を下記第1表に示す。
Example 1 Compound A 6 parts Ethylene glycol 94 parts Example 2 Compound A 5 parts Ethylene glycol 92 parts Ammonium borate 3 parts Example 3 Compound A 5 parts Ethylene glycol 92 parts Ammonium sebacate 3 parts Example 4 Compound B 6 parts Ethylene Glycol 94 parts Example 5 Compound B 5 parts Ethylene glycol 92 parts Ammonium borate 3 parts Example 6 Compound B 5 parts Ethylene glycol 92 parts Ammonium sebacate 3 parts Example 7 Compound C 10 parts Ethylene glycol 87 parts Ammonium borate 3 parts Execution Example 8 Compound A 5 parts Ethylene glycol 92 parts Ammonium benzoate 3 parts Example 9 Compound B 5 parts Ethylene glycol 92 parts Ammonium benzoate 3 parts Comparative example 1 Ethylene glycol 75 parts Ammonium borate 25 parts Comparative example 2 Ethylene glycol 95 parts Sebacine Acid Moniumu 5 parts Comparative Example 3 Ethylene glycol 95 parts of azelaic acid ammonium 5 parts Examples 1 to 7 and Comparative obtained in Examples 1-3 electrolyte per examined the specific resistance ([Omega] cm) and spark starting voltage (V).
The results are shown in Table 1 below.

次に実施例1〜3、7及び比較例1〜3で得られる電
解液を用いたアルミ電解コンデンサ(400V、220μF)
の110℃、2500時間後の高温負荷寿命試験結果を下記第
2表に示す。
Next, an aluminum electrolytic capacitor (400 V, 220 μF) using the electrolytic solution obtained in Examples 1 to 3 and 7 and Comparative Examples 1 to 3
Table 2 below shows the results of a high-temperature load life test after 2500 hours at 110 ° C.

上記第2表から明らかなように、本発明の電解液を用
いたアルミ電解コンデンサは、いずれも、容量変化率、
tanδ、漏れ電流及び外観変化の全ての特性において格
段に優れている。
As is clear from Table 2 above, the aluminum electrolytic capacitors using the electrolytic solution of the present invention all have a capacity change rate,
All properties of tan δ, leakage current and appearance change are remarkably excellent.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−277208(JP,A) 特開 平2−298007(JP,A) 特開 平2−298008(JP,A) 特開 平2−298009(JP,A) 特開 平2−145539(JP,A) 特開 平2−145542(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-277208 (JP, A) JP-A-2-298007 (JP, A) JP-A-2-298008 (JP, A) JP-A-2-298 298009 (JP, A) JP-A-2-14539 (JP, A) JP-A-2-145542 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)一般式 〔式中R3は低級アルキル基を示す。Rは水素原子又は基 (R3は前記に同じ)を示す。〕 で表される化合物又はその塩、及び (B)一般式 〔式中R4は低級アルキル基を示す。R1は低級アルキル基
を示す。〕 で表される化合物又はその塩 からなる群から選ばれた少なくとも1種を溶質とし、こ
れをエチレングリコールを主溶剤とする溶剤に溶解して
なることを特徴とする電解コンデンサ駆動用電解液。
(1) General formula (A) [Wherein R 3 represents a lower alkyl group. R is a hydrogen atom or a group (R 3 is the same as above). Or a salt thereof, and (B) a compound represented by the general formula: [In the formula, R 4 represents a lower alkyl group. R 1 represents a lower alkyl group. ] An electrolytic solution for driving an electrolytic capacitor, characterized in that at least one selected from the group consisting of a compound represented by the following formula or a salt thereof is dissolved in a solvent containing ethylene glycol as a main solvent.
JP8244989A 1988-11-30 1989-03-31 Electrolyte for driving electrolytic capacitors Expired - Lifetime JP2741397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8244989A JP2741397B2 (en) 1988-11-30 1989-03-31 Electrolyte for driving electrolytic capacitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-304762 1988-11-30
JP30476288 1988-11-30
JP8244989A JP2741397B2 (en) 1988-11-30 1989-03-31 Electrolyte for driving electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH02224217A JPH02224217A (en) 1990-09-06
JP2741397B2 true JP2741397B2 (en) 1998-04-15

Family

ID=26423459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8244989A Expired - Lifetime JP2741397B2 (en) 1988-11-30 1989-03-31 Electrolyte for driving electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP2741397B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566581B1 (en) 1998-11-26 2006-05-25 오카무라 세이유 가부시키가이샤 Long chain dibasic acid composition and electrolyte using the same
US7163643B2 (en) 2003-06-26 2007-01-16 Matsushita Electric Industrial Co., Ltd. Driving electrolyte and electrolytic capacitor using the same

Also Published As

Publication number Publication date
JPH02224217A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
JPS61286357A (en) Manufacture of n-alpha-alkoxy-ethyl-formamide
JP2741397B2 (en) Electrolyte for driving electrolytic capacitors
JPS5824526A (en) Manufacture of alkanoic acid and ester of same by rearrangement of alpha-halo-ketone under presence of non-noble metal salt in proton medium
WO2003050828A1 (en) Composition for electrolytic solution and process for producing the same
WO1988005772A1 (en) Process for preparing tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxymethyl)methane
JPS6251651A (en) Manufacture of 3-aminoacrylic acid ester
JP3671262B2 (en) Long chain dibasic acid and electrolytic solution for electrolytic capacitor drive
CA2764241C (en) Disubstituted-aminodifluorosulfinium salts, process for preparing same and method of use as deoxofluorination reagents
JPH0742269B2 (en) 4-Alkoxy-3-pyrrolin-2-one-1-yl-acetic acid alkyl ester and process for producing the same
JPH0338264B2 (en)
US1550350A (en) Alkaminesters of the p-aminobenzoic acids and process of making same
JPH0142254B2 (en)
JP4311889B2 (en) Method for producing (meth) acrylic anhydride
JPH05221939A (en) Preparation of succinylchlorine halide
JP2662245B2 (en) Method for producing bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate
JP4213244B2 (en) Purification method of keto acid
JP2000128868A (en) Tetraalkylfluoroformamidinium trifluoroacetate and its production
PL147517B1 (en) Method of obtaining cyanoorganic compounds
JPH0399084A (en) Separating agent for organic compound
WO2001077063A1 (en) Process for the preparation of quaternary alkylammonium salts represented by r1r2r3r4n+ • bf4?-¿
JPS62132881A (en) Improved production of riboflavin
McDonald Reaction of oxalyl chloride with amine hydrochlorides
JPS628428B2 (en)
JPH02145542A (en) Dibasic acid ester
JP5334390B2 (en) Polymerization inhibitor and polymerization prevention method for vinyl group-containing compounds

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100130

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100130