JP2739122B2 - Two-component drugs - Google Patents
Two-component drugsInfo
- Publication number
- JP2739122B2 JP2739122B2 JP63502235A JP50223588A JP2739122B2 JP 2739122 B2 JP2739122 B2 JP 2739122B2 JP 63502235 A JP63502235 A JP 63502235A JP 50223588 A JP50223588 A JP 50223588A JP 2739122 B2 JP2739122 B2 JP 2739122B2
- Authority
- JP
- Japan
- Prior art keywords
- drug
- component
- enzyme
- antibody
- medicament according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/05—Immunological preparations stimulating the reticulo-endothelial system, e.g. against cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6891—Pre-targeting systems involving an antibody for targeting specific cells
- A61K47/6899—Antibody-Directed Enzyme Prodrug Therapy [ADEPT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Mycology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microbiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Electrotherapy Devices (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
【発明の詳細な説明】 技術分野 本発明は、薬剤輸送系すなわちドラッグデリバリーシ
ステム(drug delivery system)、特にプロドラッグ
(pro-drug)と、該プロドラッグ用の標的指向化された
(tergetted)トリガーとの間の相互作用を伴う2成分
系医薬に関するものである。Description: TECHNICAL FIELD The present invention relates to drug delivery systems or drug delivery systems, in particular pro-drugs, and tergetted triggers for said prodrugs. And a two-component drug with an interaction between
背景の技術 病気の治療に用いる薬剤の薬理学的作用は、身体にお
ける細胞腫間の相違及びその解剖学的位置によつて大き
く決定される。従つていくつかの薬剤の作用がある組織
に集中することは有利である。ある分子群に対する親和
性によって、体内で改良された保持パターンを有する薬
剤が開発されてはきた。しかしながらガンのようなある
組織に選択的に保持される薬剤を開発する試みは、種々
のガンと関連した抗原とは別に、それらの組織における
特異的な分子配置を欠くために達成するのが困難である
ことがわかつた。BACKGROUND ART The pharmacological action of drugs used to treat diseases is largely determined by the differences between the cell tumors in the body and their anatomical location. It is therefore advantageous to concentrate on tissues where some drugs are acting. Affinities for certain groups of molecules have led to the development of drugs with improved retention patterns in the body. However, attempts to develop drugs that are selectively retained in certain tissues, such as cancer, are difficult to achieve due to the lack of specific molecular arrangements in those tissues apart from antigens associated with various cancers I knew it was.
人間のガンへの攻撃における主要な問題の1つは選択
性の問題である。使用する薬剤の多くは正常な組織並び
にガンに対して細胞毒性を持つ。One of the main problems in attacking human cancer is the problem of selectivity. Many of the drugs used are cytotoxic to normal tissues as well as cancer.
抗ガン性薬剤又は放射性ヌクレオチドを、ガン関連抗
原に対してある程度の特異性をもつ抗体又は抗体フラグ
メントに連結させることによってガンの治療を向上させ
る試みが行われている。これらの抗体の抱合体又は複合
体(conjugate)はその大きさが比較的大きいために身
体の空間中をゆつくり拡散して腫瘍に至る。抱合体は抗
原が他よりも高濃度であるところに、より大きい程度で
保持される。従つて腫瘍及び非腫瘍部位間のその分布に
おける最大の差異は投与から数時間又は数日後に始めて
得られる。この時点で、抗体と薬剤の複合体の濃度は、
非腫瘍及び腫瘍組織の双方において比較的低い値まで低
下している。治療の有効性は、腫瘍及び非腫瘍組織にお
ける活性薬剤の相対濃度と、有効濃度が維持される期間
(しばしば、「血清中濃度−時間曲線下の面積」、AUC
と呼ばれる)とに部分的に左右される。抗体と薬剤の複
合体の遅い局在化は治療の目的に好ましくない時間×濃
度値をもたらす。抗体投薬量の2〜10%がマウスの腫瘍
の標的に局在化することが示されているけれど、人間の
対応する数値は0.1%に近い。プロ−ドラツグの形態で
あり且つある腫瘍中に過剰に存在すると考えられる酵素
によつて活性化される抗ガン薬剤を開発する試みが過去
に行われた。悪いことにこれらの試みは、酵素が必要な
作用の特異性を付与するのに十分な量で又は十分に独特
な分布で腫瘍中に存在することが証明されなかつたから
成功しなかつた。しかしながら酵素によりプロドラッグ
を活性な形態に活性化することはは本質的に良く確立さ
れており、そして広く使用されている抗ガン薬剤、シク
ロホスフアミド及びイフオスフアミドは投与時に不活性
であるが、肝臓の酵素により活性な代謝物に転化され
る。Attempts have been made to improve the treatment of cancer by linking anticancer drugs or radionucleotides to antibodies or antibody fragments with some specificity for cancer-associated antigens. Because of their relatively large size, conjugates or conjugates of these antibodies slowly spread through the body's space and lead to tumors. The conjugate is retained to a greater extent where the antigen is at a higher concentration than the others. Thus, the greatest difference in its distribution between tumor and non-tumor sites is obtained only hours or days after administration. At this point, the concentration of the antibody-drug conjugate is:
It has dropped to relatively low values in both non-tumor and tumor tissues. The effectiveness of treatment depends on the relative concentration of the active agent in tumor and non-tumor tissues, and the time period over which the effective concentration is maintained (often "area under serum concentration-time curve", AUC
Called)). Slow localization of the antibody-drug complex results in unfavorable time × concentration values for therapeutic purposes. Although it has been shown that 2-10% of the antibody dose is localized to the target of mouse tumors, the corresponding figure in humans is close to 0.1%. Attempts have been made in the past to develop anti-cancer drugs that are activated by enzymes that are in the form of pro-drugs and are thought to be present in excess in certain tumors. Unfortunately, these attempts have not been successful because the enzymes have not been proven to be present in tumors in sufficient amounts or in a sufficiently unique distribution to confer the required specificity of action. However, activating prodrugs to their active forms by enzymes is inherently well established, and the widely used anticancer drugs cyclophosphamide and ifosufamide are inactive upon administration, while liver Are converted to active metabolites by the enzyme.
アルキル化剤、アニリン・マスタード(mustard)は
肝臓においてグルクロニダーゼと抱合又は複合すること
によつて急速に不活性化することも示されている。アニ
リン・マスタード−グルクロニドはグルクロニダーゼに
よつて活性な形態に戻すことができる。悪いことに、そ
のような酵素はある種のガンにおいてだけ十分な量で生
じ、そしてそれは実験的なマウスにおいてだけ観察され
た。The alkylating agent, aniline mustard, has also been shown to be rapidly inactivated in the liver by conjugation or conjugation with glucuronidase. Aniline mustard-glucuronide can be returned to the active form by glucuronidase. Worse, such enzymes occurred only in some cancers in sufficient quantities, and were observed only in experimental mice.
更なる例はプラスミンによるペプチジル・プロ−ドラ
ツグのバリン−ロイシン−リシン−フエニレンジアミン
・マスタードからのアルキル化剤フエニレンジアミン・
マスタードの遊離である。プラスミンはプラスミノーゲ
ン活性化剤のプラスミノーゲンへの作用によつて生成す
る。A further example is the alkylating agent phenylenediamine from the valine-leucine-lysine-phenylenediamine mustard of peptidyl pro-drag with plasmin.
Free of mustard. Plasmin is produced by the action of plasminogen activators on plasminogen.
本発明者は最近、抗体又は抗体フラグメントを酵素と
抱合又は複合させることが可能であること、及び得られ
る抱合体又は複合体がその抗体活性及びその酵素活性を
保持することを明らかにした。今回本発明者は細胞毒性
化合物を予じめ選択した部位に活性な形で選択的に輸送
し且つ放出させるためにこの系を更に発展させることが
できた。The inventor has recently shown that an antibody or antibody fragment can be conjugated or conjugated to an enzyme, and that the resulting conjugate or conjugate retains its antibody activity and its enzymatic activity. The present inventors have now been able to further develop this system to selectively transport and release cytotoxic compounds in active form at preselected sites.
発明の詳細な説明 最も広い要旨において、本発明は、別個に且つ連続的
に投与される2成分からなり且つ新生物細胞の生長を抑
制するのに使用される2成分系医薬であって、 (i) 第1の成分が、腫瘍関連抗原と結合することが
できる抗体フラグメンであって細胞毒性薬物のプロドラ
ッグを細胞毒性薬物に転化し得る酵素と抱合されている
抗体フラグメントであり、 (ii) 第2の成分が、酵素の影響下に細胞毒性薬物に
転化し得る細胞毒性薬物のプロドラッグである ことを特徴とする2成分系医薬を提供するものである。DETAILED DESCRIPTION OF THE INVENTION In its broadest aspect, the present invention is directed to a two-component medicament consisting of two components that are administered separately and sequentially and is used to inhibit the growth of neoplastic cells, comprising: i) the first component is an antibody fragment capable of binding to a tumor-associated antigen, wherein the antibody fragment is conjugated to an enzyme capable of converting a prodrug of a cytotoxic drug to a cytotoxic drug; It is intended to provide a two-component drug, wherein the second component is a prodrug of a cytotoxic drug which can be converted into a cytotoxic drug under the influence of an enzyme.
これとの関連において、また本記述を通して、「腫瘍
(tumor)」とは白血病を含めてすべての形態の新生物
の生長に関するものであることを理解すべきである。In this context and throughout this description, it should be understood that "tumor" refers to the growth of all forms of neoplasm, including leukemia.
本発明によれば、腫瘍をもつ哺乳動物に対する第1の
成分の投与は、その第1の成分が腫瘍の腫瘍関連抗原を
認識し且つそれに結合するならば、腫瘍の領域において
第1の成分を選択的に高濃度化せしめるであろう。第1
の成分の投与から適当な期間の後、ある割合の抗体−酵
素複合体は腫瘍関連抗原の部位に位置し、それに特異的
に結合しているであろう。According to the present invention, administration of a first component to a mammal having a tumor comprises administering the first component in the area of the tumor if the first component recognizes and binds to a tumor-associated antigen of the tumor. It will selectively increase the concentration. First
After an appropriate period of time after administration of the component, a percentage of the antibody-enzyme conjugate will be located at the site of the tumor-associated antigen and will specifically bind to it.
普通、薬剤自体よりもかなり低い細胞毒性を示す適当
なプロ−ドラツグを選択することにより、抗体−酵素が
高濃度で存在する場所、即ち標的部位において有効量の
細胞毒性化合物が放出されることとなろう。Usually, by selecting an appropriate pro-drug that exhibits significantly lower cytotoxicity than the drug itself, an effective amount of the cytotoxic compound is released where the antibody-enzyme is present at high concentrations, i.e., at the target site. Become.
それ故に、選択的な治療の1つの尺度は、従来の方
法、特に、腫瘍関連抗原に対する抗体に細胞毒性化合物
を直接結合させる方法、或いは細胞毒性化合物をプロ−
ドラッグから遊離させるのに十分な濃度で内因性酵素が
存在することに依存している方法によって得られている
選択性の程度よりもかなり高い水準で得ることができる
ということが理解されよう。Therefore, one measure of selective treatment is to use conventional methods, in particular, the method of directly binding the cytotoxic compound to an antibody against a tumor-associated antigen, or the method of prototyping a cytotoxic compound.
It will be appreciated that much higher levels of selectivity can be obtained than with methods that rely on the presence of endogenous enzymes at concentrations sufficient to release the drug.
本発明は本質的にいずれかの種類の、プロ−ドラツグ
形の細胞毒性化合物の輸送に適用することができる。The present invention is applicable to the transport of essentially any type of protoxic drug form of a cytotoxic compound.
2成分系医薬の成分の各に必要とされる特性を以下に
記述しよう。抗体が指向する抗原の標的又はエピトープ
は理想的には、ガン細胞膜の広範囲に発現される成分で
ありしかも体液中に分泌されないものであるべきであ
る。しかしながら、免疫シンチグラフイー(immunoscin
tigraphy)での経験は、抗原又はエピトープが正常な細
胞によつてもある程度まで発現されること及びそれがガ
ン細胞よりも豊富に分泌されるならばガン部位への抗体
の選択的な分布を阻害することなくして体液中への分布
がガン細胞又は正常細胞によつて行なわれることを示唆
する。The properties required for each of the components of the two-component drug will be described below. The target or epitope of the antigen to which the antibody is directed ideally should be a widely expressed component of the cancer cell membrane and not secreted into body fluids. However, immunoscintigraphy (immunoscin
experience with tigraphy has shown that the antigen or epitope is expressed to some extent by normal cells and that if it is more abundantly secreted than cancer cells, it inhibits the selective distribution of antibodies to the cancer site Without dissemination, suggesting that distribution in body fluids is performed by cancer cells or normal cells.
腫瘍関連抗原に対する抗体及びそのフラグメントにつ
いてはすでにかなりの研究が行なわれ、例えば人間の絨
毛性ゴナドトロピン(hCG)、α−フェトプロティン、
ガン胎児性抗原(CEA)、及び胎盤性アルカリホスフア
ターゼ(PLAP)、前立腺特異抗原、Ca-125及び人間の乳
脂膜蛋白質を認識し且つこれに結合する抗体はすでに容
易に入手しうる。Considerable research has already been conducted on antibodies against tumor-associated antigens and fragments thereof, including human chorionic gonadotropin (hCG), α-fetoprotein,
Antibodies that recognize and bind to carcinoembryonic antigen (CEA), and placental alkaline phosphatase (PLAP), prostate specific antigen, Ca-125 and human milk fat membrane proteins are already readily available.
抗体フラグメント−酵素の抱合体の製造に使用される
抗体は標的の抗原又はエピトープに高い親和性を有すべ
きであり、広範囲の親和性を有する抗体が免疫シンチグ
ラフイーにおいて成功裏に使用されてきた。抗体は一般
にIgGクラスのものであるが、他の種類の免疫グロブリ
ンを除外するものではない。それらはポリクローナル又
は更に好ましくはモノクローナルであつてよく、不純物
を極度に含むべきでない。抗体フラグメントは標準的な
方法で調製することができる。抱合体に使用される抗体
のフラグメントは1つ又はそれ以上の抗原結合部位を保
有していてよく且つこれらは化学的結合を含む別の技術
或いは遺伝子工学でのハイブリツド分子の生成によつて
酵素に抱合せしめうる。同様の又は異なる特異性を有し
ていてよい2つの抗原結合部位を有する抗体フラグメン
トはFcフラグメントを除去する標準的な方法によつて製
造することができ、或いはそれらはそれぞれ1つだけの
抗原結合部位を有する2つのフラグメントを一緒に結合
させて、或いは遺伝子工学により構築してもよい。この
2つのフラグメント間の化学的結合又は橋架けの性質は
生体内で容易には壊れないようなものであるべきであ
り、構築された抗体中のフラグメント間の橋架けは酵素
への結合に適した化学的構造を有していてよい。酵素は
巨大分子であるから、完全な抗体及び酵素からなる抱合
体を抗体単独よりかなり大きく、これはガン部位への複
合体の分布をより遅延させうる。抗体フラグメント例え
ばF(ab′)2は、より小さく且つFc成分による(due t
o Fc component)非特異的結合を受けず、従って抗体−
酵素抱合体における抗体成分として使用される。しか
し、他の抗体フラグメント例えばFab1を除外するもので
はない。Antibodies used in the production of antibody fragment-enzyme conjugates should have a high affinity for the target antigen or epitope, and antibodies with a wide range of affinities have been used successfully in immunoscintigraphy. Was. Antibodies are generally of the IgG class, but do not exclude other types of immunoglobulins. They can be polyclonal or, more preferably, monoclonal and should not be extremely contaminated. Antibody fragments can be prepared by standard methods. The fragment of the antibody used in the conjugate may carry one or more antigen binding sites and these may be linked to the enzyme by another technique involving chemical conjugation or by the production of hybrid molecules by genetic engineering. Can be tied. Antibody fragments having two antigen-binding sites, which may have similar or different specificities, can be produced by standard methods of removing Fc fragments, or they can each have only one antigen binding site. The two fragments having the site may be ligated together or constructed by genetic engineering. The nature of the chemical bond or bridge between the two fragments should not be easily broken in vivo, and the bridge between the fragments in the constructed antibody is suitable for binding to the enzyme. May have a different chemical structure. Because enzymes are macromolecules, conjugates consisting of whole antibodies and enzymes are significantly larger than antibodies alone, which can delay the distribution of the complexes to the cancer site. Antibody fragments such as F (ab ') 2 are smaller and due to the Fc component (due to
o Fc component) does not undergo non-specific binding, and thus
Used as an antibody component in enzyme conjugates. However, it does not exclude other antibody fragments eg Fab 1.
適当な酵素は、ヒドロラーゼ、アミダーゼ、スルフア
ターゼ、リパーゼ、グルクロニダーゼ及びカルボキシペ
プチダーゼ、ホスフアターゼ例えばカルボキシペプチダ
ーゼG2を含めて広く選択しうる。Suitable enzymes may be widely selected, including hydrolases, amidases, sulfatases, lipases, glucuronidases and carboxypeptidases, phosphatases such as carboxypeptidase G2.
非哺乳動物の酵素の使用は、プロ−ドラツグからの細
胞毒性の薬剤の遊離が非哺乳動物の酵素の作用によつて
だけ保証されるならば、内因性酵素によるプロ−ドラツ
グからの細胞毒性薬剤の時期尚早の遊離が回避されるか
ら有利である。The use of a non-mammalian enzyme may be useful if the release of the cytotoxic drug from the pro-drug is only assured by the action of the non-mammalian enzyme. This is advantageous because premature liberation is avoided.
抗体フラグメント及び酵素は普通1:1の比で一緒に結
合し、これが最も簡単な取合わせ(arrangement)であ
る。しかしながら本発明はそのような1:1の比に制限さ
れるものではない。Antibody fragments and enzymes usually bind together in a 1: 1 ratio, which is the simplest arrangement. However, the invention is not limited to such a 1: 1 ratio.
酵素及び抗体を1:1の割合で満足裏に化学的に連結す
るために、生理学的条件下に不安定でないヘテロ二官能
性結合剤を用いなければならない。例えばカルボキシペ
プチダーゼG2及び適当な抗体は、抗体にチオール基を豊
富にし且つ酵素をこれらのチオール基と反応しうる二官
能性試剤例えばヨード酢酸のN−ヒドロキシ−コハク酸
イミドエステルNHIA[レクター(Rector)等]、N−マ
レイミドベンゾイルコハク酸イミドエステルMBS(シグ
マ社)、N−サクシンイミジル−3−(2−ピリジル−
ジチオ)−プロピオネートSPDP(フアーマシア社)で処
理することによつて一緒に結合することができる。しか
しながら他の公表された経路又は市販の二官能性の薬剤
を用いる不安定でない結合を生成する同様の反応も使用
しうる。即ち製造される化合物は、酵素活性と免疫学的
活性が維持されねばならないことを除いて結合の独特さ
を必要としない。この連結法は、フラグメント化抗体
(例えばFab′2−抗hCG)に適用でき、しかも他の公知
の腫瘍関連抗原に向けて指向された抗体又はフラグメン
ト化抗体、例えば上述したものに適用することができ
る。In order to satisfactorily chemically link the enzyme and antibody in a 1: 1 ratio, a heterobifunctional linking agent that is not unstable under physiological conditions must be used. For example, carboxypeptidase G2 and suitable antibodies are bifunctional reagents that enrich the antibody with thiol groups and are capable of reacting the enzyme with these thiol groups, such as the N-hydroxy-succinimide ester of iodoacetic acid NHIA [Rector. Etc.), N-maleimidobenzoylsuccinimide ester MBS (Sigma), N-succinimidyl-3- (2-pyridyl-
They can be ligated together by treatment with dithio) -propionate SPDP (Pharmacia). However, similar reactions that produce non-labile linkages using other published routes or commercially available bifunctional agents may also be used. That is, the compounds produced do not require the uniqueness of conjugation except that enzymatic and immunological activities must be maintained. This ligation method is applicable to fragmented antibodies (eg, Fab ′ 2 -anti-hCG), and may be applied to antibodies or fragmented antibodies directed against other known tumor-associated antigens, such as those described above. it can.
本発明の本質は、酵素の選択的な作用のもとで細胞毒
性薬剤に逆戻りしうるプロ−ドラツグに転化されるいず
れかの細胞毒性薬剤の輸送に適用しうることは容易に理
解されよう。即ちプロ−ドラツグは種々の種類の抗腫瘍
化合物例えば 1.アルキル化剤(ナイトロジェンマスタード)、例えば
シクロホスフアミド、ビスルフアン、クロランブシル、
ニトロソ尿素など、 2.挿入剤、例えばアドリアマイシン及びダクチノマイシ
ン、 3.紡すい体毒、例えばビンカアルカロイド、 4.抗葉酸塩、抗プリン、抗ピリミジン又はヒドロキシ尿
素を含む抗代謝物、 のいずれかから製造することができる。It will be readily appreciated that the essence of the invention is applicable to the transport of any cytotoxic agent that is converted into a pro-drug that can revert to the cytotoxic agent under the selective action of the enzyme. That is, pro-drugs are various types of anti-tumor compounds such as 1. Alkylating agents (nitrogen mustards) such as cyclophosphamide, bisulfan, chlorambucil,
Nitrosoureas, etc .; 2. Intercalating agents, such as adriamycin and dactinomycin; 3. Spinal poisons, such as vinca alkaloids; 4. Antifolates, antipurines, antipyrimidines or antimetabolites, including hydroxyurea Can be manufactured from
本発明者の実験はこの段階においてナイトロジェンマ
スタードの使用に集中しており、本発明で使用するため
の興味ある1つのプロ−ドラツグはカルボン酸残基がグ
ルタミン酸でアミド化されているビス(2−クロルエチ
ル)アミノ安息香酸である。次いでグルタミル側鎖は例
えばカルボキシペプチダーゼを用いて酵素的に除去し
て、ナイトロジェンマスタードを遊離させることができ
る。Our experiments have focused on the use of nitrogen mustards at this stage, and one pro-drug of interest for use in the present invention is bis (2) where the carboxylic acid residue is amidated with glutamic acid. -Chloroethyl) aminobenzoic acid. Glutamyl side chains can then be removed enzymatically using, for example, carboxypeptidase to release the nitrogen mustard.
安息香酸及びその置換誘導体に基づくナイトロジェン
マスタードであって、そのカルボキシ基が例えばグルタ
ミン酸を用いたアミド化によって保護されているナイト
ロジェンマスタードのあるものは新規な化合物であり、
本発明の別の要旨を構成する。Some nitrogen mustards based on benzoic acid and its substituted derivatives, wherein the carboxy group is protected by amidation using, for example, glutamic acid, are novel compounds,
This constitutes another aspect of the present invention.
前記の新規化合物は式 [式中、Mはジ置換アミノ「マスタード」基であり、そ
してRはα−アミノ酸RNH2の残基であり、またMは次の
基:すなわち である] のものを含む。Said new compound has the formula Wherein, M is a disubstituted amino "mustard" group and R is the residue of a α- amino RNH 2, and M is the following group: i.e. Is included.
前記の新規化合物は式 の対応する化合物からHO基をC1又はCH3SO3−に置換する
反応剤との反応により製造できるし或いは式 のナイトロジェンマスタード又はそのカルボキシ誘導体
と、カルボキシ基が保護されたアミノ酸RNH2との反応及
びカルボキシ保護基の除去により製造することができ
る。Said new compound has the formula Corresponding compound C1 or HO group from CH 3 SO 3 in - to be prepared by reaction of the reactants to substitute or formula Can be manufacturing and nitrogen mustard or a carboxy derivative, the reaction and removal of the carboxy protecting group and an amino acid RNH 2 carboxy group is protected.
例示の目的のために、これらの新規な化合物が製造し
うる。例えば安息香酸が市販されている式Iの化合物か
ら(2−クロルエチル)(2−メシルエチル)アミノ基
で置換しうる場合、p−アミノベンゾイルグルタミン酸
のエチル保護誘導体から次の反応で製造できる。For illustrative purposes, these novel compounds may be prepared. For example, if benzoic acid can be substituted with a (2-chloroethyl) (2-mesylethyl) amino group from a commercially available compound of formula I, it can be prepared from the ethyl protected derivative of p-aminobenzoylglutamic acid by the following reaction.
他の新規な安息香酸ナイトロジェンマスタード誘導体
すなわち下記の化合物は本発明の有効性を示すのに適当
である: p−N−ビス(メシル)アミノベンゾイルグルタミン酸 安息香酸ナイトロジェンマスタードは本発明の系の異
なる観点を実験的に例示するのに有用であるけれど、細
胞培養実験における活性化された薬剤及びプロ−ドラツ
グ間の毒性の差は5〜10倍にすぎず、これは生体内での
状態において反映されるように見える。臨床的使用のた
めの薬剤はこの差異が更に大きい、例えば少くとも100
倍、好ましくはプロ−ドラツグよりも500〜1000倍以上
の毒性であることを必要とする。そのようなプロ−ドラ
ツグの例は、末端アミノ基がD−アミノ酸とのアミドと
して誘導体化されているアンスラサイクリン、及びハロ
ゲンで置換されたアルカンアミド基を有するp−フエニ
レンジアミンに基づくナイトロジェンマスタードであ
る。例えば必須のアミノ基が誘導体(即ちR′)化され
たアドリアマイシン及びその同族体のペプチジル・プロ
−ドラツグ は、次後に前記の酵素又は同様の酵素により活性薬剤と
して遊離されうるから使用することができ、これはこの
アンスラサイクリン薬剤の範囲まで本分野を広げるもの
である。 Other novel benzoic acid nitrogen mustard derivatives, ie, the following compounds, are suitable to demonstrate the efficacy of the present invention: p-N-bis (mesyl) aminobenzoylglutamic acid Nitrogen mustard benzoate is useful for experimentally illustrating different aspects of the system of the present invention, but activated drugs and prodrugs in cell culture experiments The difference in toxicity between them is only 5-10 fold, which appears to be reflected in the in vivo condition. Drugs for clinical use have even greater differences, for example at least 100
It is required to be 500 times to 1000 times more toxic than a pro-drug. Examples of such prodrugs are anthracyclines in which the terminal amino group has been derivatized as an amide with a D-amino acid, and nitrogen mustards based on p-phenylenediamines having an alkanamide group substituted by halogen. It is. For example, adriamycin in which the essential amino group has been derivatized (ie, R ') and its homolog peptidyl pro-drag. Can be used since it can be subsequently released as an active agent by the aforementioned or similar enzymes, which extends the field to this anthracycline agent range.
適当なプロ−ドラツグを有する他の抗体/酵素抱合体
を利用してもよい。酵素として、リシル酸基のカルボキ
シル基において特異的にペプチドを加水分解するリゾバ
クター(lysobacter)酵素原(enzymogen)からのエン
ドプロテイナーゼLys−Cを利用してもよい。この酵素
は分子量37,500と適当な酵素ならしめるpH最適値7.7を
有してリシルに富むペプチジル・プロ−ドラツグからナ
イトロジェンマスタードを遊離する。ヒストリチクス菌
(clostridium histolyticum)からのクロストリパイン
(EC3,4,22,8)はL−アルギニンのカルボキシル部位に
おいて優先的にペプチドを開裂する非常に特異的なエン
ドプロテアーゼ(Boehringer Mannheimから入手し得
る)である。クロストリパインは普通プロテアーゼによ
つて攻撃されないアルギニン−プロリンペプチドも開裂
する。その50,000の分子量及びpH最適値7.6は、それを
抗体と抱合するための適当な候補者ならしめ、アルギニ
ル−プロリル修飾ナイトロジェンマスタードからマスタ
ードと共同して窒素を遊離する。Other antibody / enzyme conjugates with appropriate pro-drags may be utilized. As an enzyme, the endoproteinase Lys-C from lysobacter enzymogen, which hydrolyzes the peptide specifically at the carboxyl group of the lysyl acid group, may be used. This enzyme liberates nitrogen mustard from lysyl-rich peptidyl pro-drag with a molecular weight of 37,500 and a pH optimum of 7.7 which makes it a suitable enzyme. Clostripain (EC3,4,22,8) from Clostridium histolyticum is a highly specific endoprotease (available from Boehringer Mannheim) that preferentially cleaves peptides at the carboxyl site of L-arginine. It is. Clostripain also cleaves arginine-proline peptides that are not normally attacked by proteases. Its molecular weight of 50,000 and a pH optimum of 7.6 make it a suitable candidate for conjugation with antibodies, releasing nitrogen from arginyl-prolyl modified nitrogen mustard in cooperation with mustard.
関連するヌクレオチドから毒性のヌクレオチドを遊離
する酵素を用いることも可能である。It is also possible to use enzymes that release toxic nucleotides from the relevant nucleotides.
本発明の2成分系医薬は連続投与により、即ち第1の
成分即ち抗体フラグメント/酵素の抱合体を最初に投与
し、次いでプロ−ドラツグを投与して使用することがで
きる。所望の治療の部位における抱合体の最高濃度を保
証するために、2成分の投与を少くとも4時間離して行
なうことが普通望しい。的確な治療(regime)は、標的
にすべき腫瘍の性質及びプロ−ドラツグの性質を含む種
々の因子によつて影響されるが、普通抱合体が24時間以
内に、しばしば12時間以内に又は8時間で所望の治療部
位において適当な濃度になり、斯くしてこの時点でプロ
−ドラツグを投与しうる。The two-component medicament of the present invention can be used by continuous administration, ie, by administering the first component, ie, the antibody fragment / enzyme conjugate first, and then administering the pro-drug. It is usually desirable to administer the two components at least 4 hours apart to ensure the highest concentration of conjugate at the desired site of treatment. The exact regime is influenced by a variety of factors, including the nature of the tumor to be targeted and the nature of the pro-drug, but usually the conjugate will be within 24 hours, often within 12 hours or 8 hours. Over time, the appropriate concentration will be at the desired treatment site, and the pro-drug may be administered at this point.
2成分は普通非経口的に投与される。本発明の更なる
観点によれば非経口的投与に適当である抱合体の製剤及
びプロ−ドラツグの製剤が提供される。投与は普通静脈
内投与であり、そのような製剤は簡便上注射のための血
液等張性食塩水中で調製される。The two components are usually administered parenterally. According to a further aspect of the present invention, there are provided conjugate formulations and pro-drug formulations which are suitable for parenteral administration. Administration is usually intravenous, and such formulations are conveniently prepared in blood isotonic saline for injection.
本発明医薬の有効性を示す目的のために、本発明者は
ダモン・バイオテク社(Damon Biotech Ltd.,Kirkton C
ampus,Livingston,EH54,7BT,Scotland)から入手しうる
絨毛性ゴナドトロピン(hCG)対して指向されたモノク
ロナール抗体W14A及び該抗体のF(ab′)2フラグメン
ト(2、4)を用いるモデル系で検討した。For the purpose of demonstrating the efficacy of the medicament of the present invention, the present inventor has proposed Damon Biotech Ltd., Kirkton C.
ampus, Livingston, EH54, 7BT, Scotland) in a model system using the monoclonal antibody W14A directed against chorionic gonadotropin (hCG) and the F (ab ') 2 fragment (2,4) of the antibody. investigated.
本実験において、これが葉酸塩、メトトレキセート
(methotrexate)から及びp−アミノ安息香酸にから誘
導されたナイトロジェンマスタードからグルタメート残
基を除去しうることが知られている酵素であるから、本
発明者はシュードモナス属から単離した酵素のカルボキ
シペプチダーゼG2、即ち葉酸塩分解酵素を使用した
(3)。上述した試剤を用いることによるカルボキシペ
プチダーゼG2及びモノクローナル抗体(W14A)のF(a
b′)2フラグメントの間で形成される特別な抱合体は酵
素と免疫学的活性を保持した。カルボキシペプチダーゼ
G2と、hCGに対して指向されたモノクローナル抗体(W14
A)のF(ab′)2フラグメントの間の抱合体は新規な化
合物であり、本発明の一部を構成する。In this experiment, the present inventors have determined that this is an enzyme capable of removing glutamate residues from folate, methotrexate and from nitrogen mustard derived from p-aminobenzoic acid, The enzyme carboxypeptidase G2, an enzyme isolated from the genus Pseudomonas, was used (3). F (a) of carboxypeptidase G2 and monoclonal antibody (W14A) by using the reagents described above
b ') The special conjugate formed between the two fragments retained the enzyme and immunological activity. Carboxypeptidase
G2 and a monoclonal antibody directed against hCG (W14
The conjugate between the F (ab ') 2 fragments of A) is a novel compound and forms part of the present invention.
実施例を通して使用されるプロ−ドラツグ(p−N−
ビス−(2−クロルエチル)アミノベンゾイルグルタミ
ン酸)及びその活性化された薬剤(安息香酸マスター
ド)は、メシルクロライドの代わりにチオニルクロライ
ドを用いた以外は(2−クロルエチル)−(2−メシル
エチル)化合物の製造について上述した一般的方法によ
り製造した。しかしながら、上述したように、薬剤とプ
ロ−ドラツグの間の毒性の差がかなり小さいから、この
特別なプロ−ドラツグが人間に使用されるとは予想され
ない。The pro-drag (p-N-) used throughout the examples
Bis- (2-chloroethyl) aminobenzoylglutamic acid) and its activated drug (mustard benzoate) were obtained from (2-chloroethyl)-(2-mesylethyl) compound except that thionyl chloride was used instead of mesyl chloride. Manufactured by the general method described above for manufacture. However, as mentioned above, the specific pro-drug is not expected to be used in humans because the difference in toxicity between the drug and the pro-drag is so small.
実施例1は完全な抗体W14A又はそのF(ab′)フラグ
メントをCPG2に連結させた抱合体同志の間の比較であ
る。Example 1 is a comparison between conjugates in which the complete antibody W14A or its F (ab ') fragment was linked to CPG2.
実施例1に実験は完全な抗体W14Aの抱合体よりも前記
抗体フラグメントの抱合体の性質が優れていることを示
し、その他の実施例は抗体フラグメントの抱合体の使用
のみに関するものである。Experiments in Example 1 show that the conjugate properties of the antibody fragment are superior to the conjugate of the intact antibody W14A, while the other examples relate only to the use of conjugates of the antibody fragment.
実施例1 完全な抗体を用いる抱合体及びF(ab′)2抱合体間の
比較 それぞれチオエーテル(6)及びジスルフイド(7)
結合を生成するカップリング試薬N−マレイミドベンゾ
イルサクシンイミドエステル(MBS)及びN−サクシニ
ミジル−3−(2−ピリジルジチオ)−プロピオネート
(SPDP)を用いることにより、完全なW14A及びP(a
b′)2フラグメントを131I又は125I標識したCPG2と抱
合させた。抗体に関してカップリング反応の収率は、ウ
ルトロゲル(Ultrogel)AcA34(8)でのゲル濾過によ
りカップリングしてない抗体及びCPG2から分離した後、
SPDPに対して約27%及びMBSに対して40%であった。Example 1 Comparison between conjugates using whole antibodies and F (ab ') 2 conjugates Thioether (6) and disulfide (7), respectively
By using the coupling reagents N-maleimidobenzoylsuccinimide ester (MBS) and N-succinimidyl-3- (2-pyridyldithio) -propionate (SPDP) to form the bond, complete W14A and P (a
b ') The two fragments were conjugated to 131 I or 125 I labeled CPG2. For antibodies, the yield of the coupling reaction was determined by gel filtration on Ultrogel AcA34 (8), after separation from uncoupled antibody and CPG2,
It was about 27% for SPDP and 40% for MBS.
W14A:131I-CPG2抱合体は比活性960uCi/mgのCPG2を用
いて製造した。MBSで連結したW14A:CPG2抱合体の比放射
線活性は0.24uCi/ugであり、そしてSPDPで連結したW14
A:CPG2抱合体のそれは0.21uCi/ugであった。W14A: 131 I-CPG2 conjugate was prepared using CPG2 with a specific activity of 960 uCi / mg. The specific radioactivity of W14A: CPG2 conjugate linked by MBS is 0.24 uCi / ug and W14 linked by SPDP
A: That of the CPG2 conjugate was 0.21 uCi / ug.
F(ab′)2:131I-CPG2抱合体は比活性1048uCi/mgの
CPG2を用いて製造した。MBSで連結したF(ab′)2:CPG
2抱合体の比放射線活性は0.36uCi/ugであり、またSPDP
で連結したF(ab′)2:CPG2抱合体のそれは0.34uCi/ug
であった。F (ab ') 2 : 131 I-CPG2 conjugate has a specific activity of 1048 uCi / mg
Manufactured using CPG2. F (ab ') 2 : CPG linked by MBS
The specific radioactivity of the two conjugates is 0.36 uCi / ug and SPDP
Of the F (ab ') 2 : CPG2 conjugate linked at 0.34 uCi / ug
Met.
写像を検討するために、完全なW14A:131I-CPG2抱合体
を、CC3絨毛膜ガンの異種移植片をもつヌードラットに
静脈内又は腹腔内注射した(9)。F(ab′)2:131I-
CPG2抱合体は静脈内経路だけで投与した。この動物を、
ニユクレア・エンタープライズ(Nuclear Enterprise)
LFOV型ガンマーカメラを用いて掃引した。In order to study the map, complete W14A: the 131 I-CPG2 conjugates were intravenously or intraperitoneally injected into nude rats with xenografts CC3 chorionic cancer (9). F (ab ') 2 : 131 I-
CPG2 conjugate was administered by intravenous route only. This animal,
Nuclear Enterprise
Sweep was performed using an LFOV type gamma camera.
定量的な組織分布には、CC3異種移植物をもつ4匹の
ヌードマウス群を使用した。抱合体を、125Iで標識し
たCPG2を用いて調製し、これを動物がそれぞれ約2uCi/4
5ugを受けるように静脈内注射した。次いで動物を24時
間々隔で殺し、組織試料を集め、これを6M KOHに溶解
し、LKB80,000型「コンプガンマ(Compugamma)」計数
機で計測した。For quantitative tissue distribution, groups of four nude mice with CC3 xenografts were used. Conjugates were prepared using 125 I-labeled CPG2, and each animal was treated with approximately 2 uCi / 4
It was injected intravenously to receive 5 ug. The animals were then sacrificed at 24 hour intervals, tissue samples were collected, dissolved in 6M KOH, and counted on a LKB 80,000 "Compugamma" counter.
結果 抱合体調製物から完全に除去するのが難しいカップリ
ングしてない抗体よりもむしろ、測定される局存化効果
が明白に抱合体の局存化に帰せられるように、CPG2残基
にだけ標識された抱合体を使用した(8)。元々のCPG2
の循環系(circulation)半減期は非常に短く、マウス
で約3時間及びラットで1時間であり、従がつて遊離の
酵素は迅速に消滅した。この酵素はいずれの組織にもか
なりの程度まで蓄積するように見えなかった(5)。Results Rather than the uncoupled antibody, which is difficult to completely remove from the conjugate preparation, only the CPG2 residues were used, so that the measured localization effect was clearly attributable to conjugate localization. A labeled conjugate was used (8). Original CPG2
The circulatory half-life was very short, about 3 hours in mice and 1 hour in rats, thus free enzyme disappeared rapidly. This enzyme did not appear to accumulate to any significant extent in any tissue (5).
(i) W14A:CPG2抱合体 24及び48時間後に得たガンマ−カメラ画像をそれぞれ
第1a及び1b図に示す。MBS及びSPDPで連結した抱合体を
静脈内注射した動物の場合、腫瘍部位が明確に限定さ
れ、局在化の起こったことを確認したが、肝臓での相当
な吸収も起こった。予想されるように、元の酵素は循環
系から迅速に消失し、腫瘍又は肝臓の吸収は観察されな
かった。(I) Gamma-camera images obtained 24 and 48 hours after W14A: CPG2 conjugate are shown in FIGS. 1a and 1b, respectively. In animals injected intravenously with the conjugate linked by MBS and SPDP, the tumor site was clearly defined and localization was confirmed, but significant liver absorption also occurred. As expected, the original enzyme rapidly disappeared from the circulation and no tumor or liver absorption was observed.
SPDPで連結した抱合体はMBSで連結した物質よりも迅
速に腫瘍から除去され、これはジスルフイド結合がより
不安定であることを示唆した。以前の報告書はジスルフ
イド結合が生体内で不安定であることを示唆しており
(10、11)、この連結法はこの適用に不適当であるよう
に見える。The SPDP-linked conjugate was cleared from the tumor more rapidly than the MBS-linked material, suggesting that the disulfide bonds were more unstable. Previous reports have suggested that disulfide bonds are unstable in vivo (10, 11), and this ligation method appears to be inappropriate for this application.
抱合体を腹腔内注射した動物は腫瘍の吸収を示さず、
SPDPで連結した抱合体の場合には48時間までに除去さ
れ、そしてMBSで連結した抱合体では肝臓及び血液のプ
ール内に保持された。薬理動力学的検討(未発表デー
タ)は、腹腔内注射が抱合体の循環系への除放に帰結
し、ピーク値は対比しうる静脈内投薬の30%にすぎなか
った。Animals injected intraperitoneally with the conjugate did not show tumor resorption,
In the case of the conjugate conjugated with SPDP, it was removed by 48 hours, and in the conjugate conjugated with MBS, it was retained in the liver and blood pools. Pharmacokinetic studies (unpublished data) showed that intraperitoneal injection resulted in the release of the conjugate into the circulation, with a peak value of only 30% of comparable intravenous dosing.
(ii) F(ab′)2:CPG2抱合体 静脈内注射から24及び72時間後に得られたガンマ−カ
メラ画像を第2a及び2b図に示す。MBSで連結した抱合体
は鋭敏な腫瘍画像を示し、肝臓への捕捉は殆んど又は全
然示さなかった。SPDPで連結した抱合体は24時間で肝臓
にいくらか吸収されたが、その物質は72時間で除去され
た。腫瘍の吸収は著しく少なく、これらの結果はSPDPで
連結した抱合体が腫瘍像に対して不適当であることを再
確認した。(Ii) F (ab ') 2: CPG2 conjugate Gamma-camera images obtained 24 and 72 hours after intravenous injection are shown in FIGS. 2a and 2b. The conjugate linked by MBS showed a sharp tumor image with little or no liver capture. The conjugate conjugated with SPDP was somewhat absorbed into the liver at 24 hours, but the substance was removed at 72 hours. Tumor resorption was significantly less, and these results reaffirmed that the conjugate linked by SPDP was unsuitable for tumor imaging.
(iii) 抗体:酵素抱合体の定量的な組織分布 MBSで連結したW14A及びF(ab′)2:CPG2抱合体の、
腫瘍、血液及び肝臓における組織分布を第1表に示す。(Iii) Quantitative tissue distribution of antibody: enzyme conjugates W14A and F (ab ') 2 : CPG2 conjugates linked by MBS
Table 1 shows the tissue distribution in tumor, blood and liver.
表の値は組織のg当りの注射した投薬量のパーセント
として計算され、完全なW14A及びF(ab′)2フラグメ
ント対照例と比較した。結果は以下のように要約するこ
とができる。 The values in the table were calculated as the percentage of the injected dose per gram of tissue and compared to the complete W14A and F (ab ') 2 fragment control. The results can be summarized as follows.
F(ab′)2:CPG2の血中量は、 −W14A:CPG2抱合体に対して見出されたものに匹敵し、 −完全なW14Aの値の約50%であり、 −元のF(ab′)2フラグメントの値より約3倍高かっ
た。The blood levels of F (ab ') 2 : CPG2 are comparable to those found for the W14A: CPG2 conjugate,-about 50% of the value of intact W14A,- ab ') about three times higher than the value of the two fragments.
F(ab′)2:CPG2の腫瘍での吸収は、 −元のW14Aで得られたものと対比でき、 −W14A:CPG2抱合体又は遊離のF(ab′)2で達成された
値より3倍高かった。Tumor absorption of F (ab ') 2 : CPG2 is comparable to that obtained with the original W14A, -3 more than the value achieved with the W14A: CPG2 conjugate or free F (ab') 2. It was twice as expensive.
F(ab′)2:CPG2の肝臓での吸収は、 −元のW14Aの量より低く、 −完全なW14A:CPG2抱合体又はF(ab′)2フラグメント
で得られた値に同様であった。Hepatic absorption of F (ab ') 2 : CPG2 was lower than the original amount of W14A, similar to that obtained with the complete W14A: CPG2 conjugate or F (ab') 2 fragment. .
F(ab′)2抱合体の肺、脾臓、腎臓、結腸及び筋肉
における吸収量は肝臓のそれと同様のパターンに従い、
量は元のF(ab′)2フラグメント又はW14A:CPG2抱合体
と同様であった。The absorption of F (ab ') 2 conjugate in lung, spleen, kidney, colon and muscle follows a similar pattern to that of liver,
The amounts were similar to the original F (ab ') 2 fragment or W14A: CPG2 conjugate.
腫瘍以外の器官のバッグラウンド値がW14A:CPG2に同
様であったけれども、フラグメント抱合体の、血液に対
する腫瘍中の比がW14A抱合体に対するより3倍高かった
ので、上述のことはW14A:CPG2抱合体よりもむしろF(a
b′)2:CPG2抱合体を用いることによって得られる利点
を示す。Although the background value of non-tumor organs was similar to W14A: CPG2, the above was true for W14A: CPG2 conjugate because the ratio of fragment conjugate in the tumor to blood was 3 times higher than for W14A conjugate. F (a
b ') 2 : shows the advantages obtained by using the CPG2 conjugate.
実施例2 プロ−ドラツグ+活性薬剤の試験管内細胞毒性 これは細胞毒性化合物とそのより低い毒性のプロ−ド
ラッグの間の毒性の関係を示す。Example 2 In Vitro Cytotoxicity of Pro-Drag + Active Agent This demonstrates the toxicity relationship between a cytotoxic compound and its less toxic pro-drug.
試験管内でのMAWI細胞[直腸結腸ガン、5×104細胞/
ml]に対する50%生育阻止投薬量(ID50)は活性薬剤
(安息香酸マスタード)を用いて25umであった。プロ−
ドラッグで得ることのできた最大阻止率は400umの濃度
で7%であった。MAWI cells in a test tube [colorectal cancer, 5 × 10 4 cells /
The 50% growth inhibitory dose (ID 50 ) was 25 um using the active agent (mustard benzoate). Professional
The maximum inhibition obtained with the drug was 7% at a concentration of 400 um.
濃度6単位で媒体中に存在するカルボキシペプチダー
ゼG2(CPG2)を含むMAWI細胞上のプロ−ドラッグに対す
るID50は30umであった(即ち活性薬剤に対するそれに非
常に類似した)。The ID 50 for the pro-drug on MAWI cells containing carboxypeptidase G2 (CPG2) present in the medium at a concentration of 6 units was 30 um (ie very similar to that for the active drug).
LS174(直腸結腸ガン)細胞の場合、活性な薬剤に対
するID50は30umであり、また6単位/mlでCPG2の存在す
るプロ−ドラッグに対しても同様であった。400umのプ
ロ−ドラッグだけでは未処置の対照培養物と比較して15
%だけ生長を阻止した。In the case of LS174 (colorectal cancer) cells, the ID 50 for the active drug was 30 um, as was the pro-drug with CPG2 present at 6 units / ml. 400 um pro-drug alone compared to untreated control cultures by 15
The growth was stopped by%.
実施例3 抗体−酵素抱合体の投与24時間後及び48時間後の血漿中
の生体内プロ−ドラッグ及び活性薬剤の分布 人間の絨毛膜ガン(CC3)をもつヌードマウスに、抗H
CG(W14 Fab2)に抱合したCPG2の29単位を与え、そして
24又は48時間後にプロ−ドラッグ(41uM/kg)を与え
た。対照のマウスには同一量のプロ−ドラッグを与えた
が、CPG2-W14(Fab2)抱合体を与えなかった。Example 3 Distribution of pro-drugs and active agents in vivo in plasma 24 and 48 hours after administration of antibody-enzyme conjugate Anti-H was isolated from nude mice with human chorionic carcinoma (CC3).
Giving 29 units of CPG2 conjugated to CG (W14 Fab 2 ), and
Pro-drug (41 uM / kg) was given after 24 or 48 hours. The control mice the same amount of pro - gave a drag, but gave no CPG2-W14 (Fab 2) conjugate.
対照マウスの場合、プロ−ドラッグの血漿濃度は注射
後5分での5uMから3時間の0.8uMまで低下した。活性薬
剤は注射から2時間で検知できるようになり、3時間ま
でに15uMに上昇した。プロ−ドラッグ及びCPG2-W14(Fa
b2)を受けるマウスは注射から5分で2.8uM及び60分で
0.5uMのプロ−ドラッグ値を有した;活性薬剤は5分で2
00uMが検出され、3時間で2uMに低下した。In control mice, the plasma concentration of the pro-drug decreased from 5 uM at 5 minutes post injection to 0.8 uM at 3 hours. The active agent became detectable 2 hours after injection and rose to 15 uM by 3 hours. Pro-drug and CPG2-W14 (Fa
b 2) at 2.8uM and 60 minutes 5 minutes from mice injected undergoing
Had a pro-drug value of 0.5 uM; the active drug was 2 in 5 minutes.
00 uM was detected and dropped to 2 uM in 3 hours.
CPG2-14(Fab2)の投与を24時間前に受けるか又は48
時間前に受けるかいずれにしろ、プロドラッグの投与後
5分では、漿血中の活性薬剤濃度は、CPG2-14(Fab2)
の投与を受けていない対照マウスにおける活性薬剤濃度
よりも(150分後であっても)10倍高かった。これはプ
ロ−ドラッグの活性薬剤の転化が抗体酸素抱合体の存在
下に生体内で効果的に起こることを示している。Receiving CPG2-14 (Fab 2 ) 24 hours before administration or 48
Five minutes after administration of the prodrug, whether received before the time, the active drug concentration in the serum is CPG2-14 (Fab 2 )
10 times higher (even after 150 minutes) than the active drug concentration in control mice that did not receive the drug. This indicates that the conversion of the active drug of the pro-drug occurs effectively in vivo in the presence of the antibody oxygen conjugate.
実施例4 プロ−ドラッグ及び活性薬剤の生体内(血漿及び腫瘍)
における分布 第1群マウスはプロ−ドラッグを41uM/kg受け、これ
を5、15、30、60、120、240分後に出血させ、殺ろし、
組織を取り出した。Example 4 In Vivo (Plasma and Tumor) of Pro-Drug and Active Agent
Group 1 mice received 41 uM / kg of the pro-drug, which was bled and killed after 5, 15, 30, 60, 120, 240 minutes,
The tissue was removed.
第2群マウスは同モル濃度(41uM/kg)の活性薬剤を
受ける以外第1群と同様の処置をした。Group 2 mice received the same treatment as Group 1 except that they received the same molar concentration (41 uM / kg) of active drug.
第3群マウスは48時間前にCPG2-W14(Fab2)抱合体を
受けたが、その他は第1群と同様に処理した。Group 3 mice received the CPG2-W14 (Fab 2 ) conjugate 48 hours before, but were otherwise treated as in Group 1.
血漿: 第1群において、プロ−ドラッグのピーク濃度30uMは
120分で2uMに低下した。活性薬剤は120分で最初に検知
されるようになり、240分で40uMに増大した。Plasma: In Group 1, the peak concentration of the pro-drug was 30 uM
It dropped to 2 uM in 120 minutes. Active drug was first detected at 120 minutes and increased to 40 uM at 240 minutes.
第3群において、活性薬剤の濃度は5分で100uM、30
分で150uM、そして240分で60uMであった。In the third group, the concentration of the active agent was 100 uM in 5 minutes, 30
150 uM in minutes and 60 uM in 240 minutes.
腫瘍: 第1群において、プロ−ドラッグの5分における腫瘍
濃度は8uMであり、240分までに0.4uMに低下した;活性
薬剤は240分において0.6uMとして丁度検知できた。Tumors: In group 1, the tumor concentration of the pro-drug at 5 minutes was 8 uM and dropped to 0.4 uM by 240 minutes; the active drug was just detectable as 0.6 uM at 240 minutes.
第2群において、活性薬剤の濃度は30分で35uM及び24
0分で18uMであった。In the second group, the concentration of active agent was 35 uM and 24
It was 18 uM at 0 minutes.
第3群において、活性薬剤の濃度は検討した期間を通
して約20uM付近で変動した。In group 3, the concentration of the active agent fluctuated around 20 uM throughout the period studied.
第3群に対する血漿濃度は腫瘍濃度よりも高かったけ
れど、腫瘍値は使用した抽出操作によりで遊離されなか
ったDNAに共有結合した薬剤を考慮していない。Although the plasma concentration for the third group was higher than the tumor concentration, the tumor values do not take into account drugs covalently bound to DNA that was not released by the extraction procedure used.
実施例5 CC3腫瘍を用いる治療実験 人間の絨毛膜腫瘍をもつヌードマウスに、CPG2-W14
(Fab2)100単位を与えてから、48、60及び72時間後に
食塩水(第A群)又はプロ−ドラッグ9mgの調製物(第
B群)又は22.5mgのそれ(第C群)を与えた。腫瘍の体
積を3つの平面で測定し、そしてその体積を計算した
(第3図)。第B群のマウスは腫瘍の生長開始に遅れを
示し、一方それより高い薬剤投与量は腫瘍の完全な抑制
を示した。Example 5 Treatment Experiment Using CC3 Tumor CPG2-W14 was added to a nude mouse having a human chorionic tumor.
After giving 100 units of (Fab 2 ), 48, 60 and 72 hours after receiving saline (Group A) or 9 mg of preparation of pro-drug (Group B) or 22.5 mg of it (Group C) Was. The volume of the tumor was measured in three planes and its volume was calculated (FIG. 3). Group B mice showed a delay in the onset of tumor growth, while higher drug doses showed complete suppression of the tumor.
実施例6 上述した反応工程図に従い、p−アミノベンゾイルグ
ルタミドエチルエステルのエチレンオキシドとの公知の
方法での反応によって製造したp−ビス(2−ヒドロキ
シエチル)アミノ−ベンゾイルグルタミドエチルエステ
ルから出発してp−[(2−メシルエチル)−(2−ク
ロルエチル)−アミノ]ベンゾイルグルタミド(化合物
IV)を製造した。ビス−2−ヒドロキシエチル化合物
を、3:1(モル)メシルクロライド/ジヒドロキシ化合
物を用いることにより、ピリジン中で80℃下に10分間還
流させて、所望の化合物IVのジエチルエステル17〜20重
量%を含む反応生成物を得た。精製したジエチルエステ
ルの質量スペクトルは506の分子量を示す。次いでジエ
チルエステル保護基を、最初に水性水酸化ナトリウムで
の処理により除去し、次いで得られたジナトリウム塩を
水性塩酸で処理して化合物IVを含む生成物を製造した。
生成物IVは1%酢酸を含む25%アセトニトリル/水を用
いる高速液体クロマトグラフイーにより反応生成物から
単離した。化合物IVは306分で流出した。この流出した
生成物は薄層クロマトグラフイーにより純粋な化合物IV
であることがわかった。更なる同定の目的のために化合
物IVをジメチルエステルに転化した。この質量スペクト
ルは478の分子量を示した。Example 6 According to the reaction scheme described above, starting from p-bis (2-hydroxyethyl) amino-benzoylglutamide ethyl ester prepared by reaction of p-aminobenzoylglutamide ethyl ester with ethylene oxide in a known manner. P-[(2-mesylethyl)-(2-chloroethyl) -amino] benzoylglutamide (compound
IV) was manufactured. The bis-2-hydroxyethyl compound is refluxed in pyridine at 80 ° C. for 10 minutes by using a 3: 1 (mole) mesyl chloride / dihydroxy compound to give 17-20% by weight of the diethyl ester of the desired compound IV. A reaction product containing was obtained. The mass spectrum of the purified diethyl ester shows a molecular weight of 506. The diethyl ester protecting group was then removed, first by treatment with aqueous sodium hydroxide, and then the resulting disodium salt was treated with aqueous hydrochloric acid to produce a product containing compound IV.
Product IV was isolated from the reaction product by high performance liquid chromatography using 25% acetonitrile / water with 1% acetic acid. Compound IV eluted at 306 minutes. The effluent product was purified by thin layer chromatography to give pure compound IV.
It turned out to be. Compound IV was converted to dimethyl ester for the purpose of further identification. The mass spectrum showed a molecular weight of 478.
同様の方法に従い、メシルクロライドとの還流を、3:
1(モル)のメシルサルフエート/ジヒドロキシ化合物
を用いることによりピリジン中2℃下に20分間行なうこ
とにより、対応するビス−(2−メシルエチル)化合物
を製造した。According to a similar method, the reflux with mesyl chloride is 3:
The corresponding bis- (2-mesylethyl) compound was prepared by using 1 (mole) of the mesyl sulfate / dihydroxy compound in pyridine at 2 ° C. for 20 minutes.
参考文献 1.ベゲント(Begent)、R.H.J.,バイオヘム・バイオフ
イズ・アクタ(Biochem.Biophys.Acta)、780:151〜166
(1985)。References 1. Begent, RHJ, Biochem. Biophys. Acta, 780: 151-166.
(1985).
2.シアール(Searle)、F.,アダム(Adam)、T.及びボ
ーデン(Boden)、J.A.,キヤンサー・イミユノル(Canc
er Immunol.)、イミユノセル(Immunother)、21:205
〜208(1986)。2. Searle, F., Adam, T. and Boden, JA, Cancer Imiyunor (Canc)
er Immunol.), Immunother, 21: 205
~ 208 (1986).
3.シヤーウツド(Sherwood)、R.F.,メルトン(Melto
n)、R.G.,アルワン(Alwan)、S.M.及びフゲス(Hughe
s)、F.ユール・J.バイオヘム(Eur.J.Biochem.),148:
447〜453(1985)。3. Sherwood, RF, Melton
n), RG, Alwan, SM and Hughe
s), F. Eur. J. Biochem., 148:
447-453 (1985).
4.シアール、F.,パートリッジ(Partridge)、C.S.,カ
ーダナ(Kardana)、A.,グリーン(Green)、A.J.,バツ
クリー(Buckley)、R.G.,ベゲント、R.H.J.,及びロー
リンズ(Rawlins)、G.A.,イント・J.キヤンサー(Int.
J.Cancer)、33:429〜434(1984)。4. Siar, F., Partridge, CS, Kardana, A., Green, AJ, Buckley, RG, Vegend, RHJ, and Rawlins, GA, Int・ J. Kyansar (Int.
J. Cancer), 33: 429-434 (1984).
5.メルトン、R.G.,ウイブリン(Wiblin)、C.N.,バスカ
ービル(Baskerville)、A.,フオスター(Foster)、R.
L.及びシヤーウツド、R.F.,バイオヘム・フアーマコル
(Biochem.Pharmacol.)、35、印刷中(1986)。5. Melton, RG, Wiblin, CN, Baskerville, A., Foster, R.
L. and Shearwood, RF, Biochem. Pharmacol., 35 , in print (1986).
6.カールソン(Carlsson)、J.ドレビン(Drevin)、D.
及びアクセン(Axen)、R.,バイオヘム・J.(Biochem.
J.)、173:723〜739(1978)。6. Carlsson, J. Drevin, D.
And Axen, R., Biochem J. (Biochem.
J.), 173: 723-739 (1978).
7.キタガワ、T.及びアイカワ、T.,J.バイオヘム(J.Bio
chem.)、79:233〜236(1976)。7. Kitagawa, T. and Aikawa, T., J. Biohem (J. Bio
chem.), 79: 233-236 (1976).
8.シアール、F.ビーア(Bier)、C.,バックリー、R.G.,
ニユーマン(Newman)、S.,ペドリー(Pedley),R.B.,
バグシヤウ(Bagshawe)、K.D.,メルトン、R.G.,アルワ
ン(Alwan)、S.M.及びシヤーウツド、R.F.,ブル・J.キ
ヤンサー(Br.J.Cancer)、53:377〜384(1986)。8. Ciar, F. Bier, C., Buckley, RG,
Newman, S., Pedley, RB,
Bagshawe, KD, Melton, RG, Alwan, SM and Schyauds, RF, Br. J. Cancer, 53: 377-384 (1986).
9.シアール、F.,ボーデン、J.A.,ルイス(Lewis)、J.
C.M.及びバグシヤウ、K.D.,ブル・J、キヤンサー、44:
137〜144(1981)。9. Ciar, F., Boden, JA, Lewis, J.
CM and Bagsyau, KD, Bull J, Kyanser, 44:
137-144 (1981).
10.ソープ(Thorpe)、P.E.,ロス(Ross)、W.C.J.,ブ
ラウン(Brown)、A.N.F.,メイヤーズ(Meyers)、C.
D.,カンバー(Cumber)、A.J.,フオツクスウエル(Foxw
ell)、B.M.J.及びフオーレスター(Forrester)、J.
A.,ユール・J.バイオヘム、140:63〜71(1984)。10. Thorpe, PE, Ross, WCJ, Brown, ANF, Meyers, C.
D., Cumber, AJ, Foxw
ell), BMJ and Forrester, J.
A., Yule J. Biohem, 140: 63-71 (1984).
11.トロウブリッジ(Trowbridge)、I.S.及びドミンゴ
(Domingo)、D.L.,ネーチヤ(Nature、London)、294:
171〜173(1981)。11. Trowbridge, IS and Domingo, DL, Nature, London, 294:
171-173 (1981).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 バグシヨー,ケネス・デイ イギリス国ロンドン ダブリユー6 8 アールエフ・フラムパレスロード (番 地なし) チヤリングクロスホスピタ ル・デパートメントオブメデイカルオン コロジイ内 (72)発明者 ジヤーマン,マイケル イギリス国サリイ エスエム2 5ピー エツクス・サツトン・クリフトンアベニ ユー (番地なし) ジインスチチユー トオブキヤンサーリサーチ内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Baghyo, Kenneth Day London Dubreu 68, UK FRF Palace Road (without address) Jiaman, Michael Sally S2M, UK 5 pcs Etz Sutton Clifton Aveny You (without address) Within the Research Institute
Claims (16)
なり且つ新生物細胞の生長を抑制するのに使用される2
成分系医薬であって、 (i) 第1の成分が、腫瘍関連抗原と結合することが
できる抗体フラグメントであって細胞毒性薬物のプロド
ラッグを細胞毒性薬物に転化し得る酵素と抱合されてい
る抗体フラグメントであり、 (ii) 第2の成分が、酵素の影響下に細胞毒性薬物に
転化し得る細胞毒性薬物のプロドラッグである ことを特徴とする2成分系医薬。Claims: 1. A two-component system which comprises two components which are administered separately and sequentially and which is used to inhibit the growth of neoplastic cells.
A component-based drug, wherein: (i) the first component is an antibody fragment capable of binding to a tumor-associated antigen and conjugated to an enzyme capable of converting a prodrug of a cytotoxic drug to a cytotoxic drug. A two-component drug, which is an antibody fragment, and (ii) the second component is a prodrug of a cytotoxic drug which can be converted into a cytotoxic drug under the influence of an enzyme.
記載の医薬。2. The antibody according to claim 1, wherein the antibody is a monoclonal antibody.
The medicament according to claim.
は2に記載の医薬。3. The medicament according to claim 1, wherein the antibody is of the IgG class.
ントである請求項1〜3のいずれか1項に記載の医薬。4. The medicament according to claim 1, wherein the antibody fragment is an F (ab ′) 2 fragment.
求項1〜4のいずれか1項に記載の医薬。5. The medicament according to claim 1, wherein the enzyme is of a non-mammalian origin.
項1〜5のいずれか1項に記載の医薬。6. The medicament according to any one of claims 1 to 5, wherein the enzyme is carboxypeptidase.
求項6記載の医薬。7. The medicament according to claim 6, wherein the enzyme is carboxypeptidase G2.
トロジェンマスタードとアミノ酸との反応によって得ら
れるアミドである請求項1〜7のいずれか1項に記載の
医薬。8. The medicament according to claim 1, wherein the prodrug is an amide obtained by reacting a disubstituted aminobenzoic acid nitrogen mustard with an amino acid.
載の医薬。9. The medicament according to claim 8, wherein the amino acid is glutamic acid.
ビス(2−クロルエチル)アミノ安息香酸である請求項
8〜9のいずれか1項に記載の医薬。10. The nitrogen mustard is p-type.
The medicament according to any one of claims 8 to 9, which is bis (2-chloroethyl) aminobenzoic acid.
ビス[(2−クロルエチル)−(2−メシルエチル)ア
ミノ]安息香酸又はp−ビス(2−メシルエチル)アミ
ノ安息香酸である請求項8〜9のいずれか1項に記載の
医薬。11. The method according to claim 11, wherein said nitrogen mustard is p-
The medicament according to any one of claims 8 to 9, which is bis [(2-chloroethyl)-(2-mesylethyl) amino] benzoic acid or p-bis (2-mesylethyl) aminobenzoic acid.
後に第2の成分を非経口投与する請求項1〜11のいずれ
か1項に記載の医薬。12. The medicament according to any one of claims 1 to 11, wherein the first component is administered parenterally to the host, and then the second component is administered parenterally.
次の式: (式中、Rはα−アミノ酸RNH2の残基であり、またMは
次の基: である)で表わされるナイトロジェンマスタードである
プロドラッグ。13. The prodrug according to claim 1, wherein
The following formula: (Wherein, R is the residue of α- amino RNH 2, and M is the following group: A prodrug that is a nitrogen mustard represented by
載のプロドラッグ。14. The prodrug according to claim 13, wherein R is a glutamic acid residue.
に許容し得る担体又は希釈剤と一緒に含んでなる医薬組
成物であって、新生物細胞の生長を抑制するのに使用さ
れる医薬組成物。15. A pharmaceutical composition comprising the prodrug according to claim 13 together with a pharmaceutically acceptable carrier or diluent, which is used for inhibiting the growth of neoplastic cells. Pharmaceutical composition.
物。16. The composition according to claim 15, which is suitable for intravenous administration.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB878705477A GB8705477D0 (en) | 1987-03-09 | 1987-03-09 | Drug delivery systems |
GB8705477 | 1987-03-09 | ||
PCT/GB1988/000181 WO1988007378A1 (en) | 1987-03-09 | 1988-03-09 | Improvements relating to drug delivery systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02504630A JPH02504630A (en) | 1990-12-27 |
JP2739122B2 true JP2739122B2 (en) | 1998-04-08 |
Family
ID=10613586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63502235A Expired - Fee Related JP2739122B2 (en) | 1987-03-09 | 1988-03-09 | Two-component drugs |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0408546B1 (en) |
JP (1) | JP2739122B2 (en) |
AT (1) | ATE104861T1 (en) |
DE (1) | DE3889340T2 (en) |
GB (1) | GB8705477D0 (en) |
HK (1) | HK37197A (en) |
WO (1) | WO1988007378A1 (en) |
Families Citing this family (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5773435A (en) * | 1987-08-04 | 1998-06-30 | Bristol-Myers Squibb Company | Prodrugs for β-lactamase and uses thereof |
NZ225599A (en) * | 1987-08-04 | 1991-09-25 | Bristol Myers Co | Antibody-enzyme conjugates and combinations with prodrugs for the treatment of tumour cells |
US5851527A (en) * | 1988-04-18 | 1998-12-22 | Immunomedics, Inc. | Method for antibody targeting of therapeutic agents |
US5632990A (en) * | 1988-04-22 | 1997-05-27 | Cancer Research Campaign Tech. Ltd. | Treatment for tumors comprising conjugated antibody A5B7 and a prodrug |
GB8809616D0 (en) * | 1988-04-22 | 1988-05-25 | Cancer Res Campaign Tech | Further improvements relating to drug delivery systems |
AU633867B2 (en) * | 1989-02-02 | 1993-02-11 | Eli Lilly And Company | Delivery of cytotoxic agents |
GB8920011D0 (en) * | 1989-09-05 | 1989-10-18 | Mann J | New route of synthesis for tertiary butyl esters |
DE4106389A1 (en) * | 1991-02-28 | 1992-09-03 | Behringwerke Ag | FUSION PROTEINS FOR PRODRUG ACTIVATION, THEIR PRODUCTION AND USE |
US6610299B1 (en) | 1989-10-19 | 2003-08-26 | Aventis Pharma Deutschland Gmbh | Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates |
DE3935016A1 (en) * | 1989-10-20 | 1991-04-25 | Behringwerke Ag | GLYCOSYL ETOPOSIDE PRODRUGS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN COMBINATION WITH FUNCTIONALIZED TUMOR-SPECIFIC ENZYME CONJUGATES |
US7241595B2 (en) | 1989-10-20 | 2007-07-10 | Sanofi-Aventis Pharma Deutschland Gmbh | Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates |
US6475486B1 (en) | 1990-10-18 | 2002-11-05 | Aventis Pharma Deutschland Gmbh | Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates |
ATE177321T1 (en) * | 1989-12-11 | 1999-03-15 | Immunomedics Inc | METHOD FOR DETECTING DIAGNOSTIC OR THERAPEUTIC AGENTS BY ANTIBODIES |
CA2069439A1 (en) * | 1989-12-15 | 1991-06-16 | Susumu Iwasa | Monoclonal antibodies, their production and use |
GB9001641D0 (en) * | 1990-01-24 | 1990-03-21 | Imp Cancer Res Tech | Compounds |
DE4002888A1 (en) * | 1990-02-01 | 1991-08-08 | Behringwerke Ag | ANTHRACYCLIN-GLYCOSYL PRODRUGS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN COMBINATION WITH FUNCTIONALIZED TUMOR-SPECIFIC ENZYME CONJUGATES |
FR2676058B1 (en) * | 1991-04-30 | 1994-02-25 | Hoechst Lab | GLYCOSYLATED PRODUCTS, THEIR PREPARATION PROCESS AND THEIR USE IN THE TREATMENT OF CANCERS. |
GB9200417D0 (en) * | 1992-01-09 | 1992-02-26 | Bagshawe Kenneth D | Cytotoxic drug therapy |
GB9200415D0 (en) * | 1992-01-09 | 1992-02-26 | Bagshawe Kenneth D | Inactivation of cytotoxic drugs |
GB9314960D0 (en) * | 1992-07-23 | 1993-09-01 | Zeneca Ltd | Chemical compounds |
DE4233152A1 (en) | 1992-10-02 | 1994-04-07 | Behringwerke Ag | Antibody-enzyme conjugates for prodrug activation |
DE4236237A1 (en) * | 1992-10-27 | 1994-04-28 | Behringwerke Ag | Prodrugs, their preparation and use as medicines |
GB9308166D0 (en) * | 1993-04-20 | 1993-06-02 | Cancer Res Campaign Tech | Cancer therapy |
US20010003001A1 (en) | 1993-04-22 | 2001-06-07 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6461643B2 (en) | 1993-04-22 | 2002-10-08 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
GB9308957D0 (en) * | 1993-04-30 | 1993-06-16 | Cancer Res Campaign Tech | Novel produgs |
US5502037A (en) * | 1993-07-09 | 1996-03-26 | Neuromed Technologies, Inc. | Pro-cytotoxic drug conjugates for anticancer therapy |
GB9323429D0 (en) * | 1993-11-12 | 1994-01-05 | Wellcome Found | Therapy |
GB9324807D0 (en) * | 1993-12-03 | 1994-01-19 | Cancer Res Campaign Tech | Tumour antibody |
GB9415167D0 (en) | 1994-07-27 | 1994-09-14 | Springer Caroline J | Improvements relating to cancer therapy |
JP3805365B2 (en) * | 1994-12-23 | 2006-08-02 | シンジェンタ リミテッド | Compound |
GB9501052D0 (en) | 1995-01-19 | 1995-03-08 | Cancer Res Campaign Tech | Improvements relating to prodrugs |
US6001347A (en) | 1995-03-31 | 1999-12-14 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6436691B1 (en) | 1995-08-16 | 2002-08-20 | Zeneca Limited | Chemical compounds |
GB9516943D0 (en) * | 1995-08-18 | 1995-10-18 | Cancer Soc Auckland Div Nz Inc | Novel cyclopropylindoles and their secoprecursors,and their use as prodrugs |
GB9517001D0 (en) * | 1995-08-18 | 1995-10-18 | Denny William | Enediyne compounds |
GB9524942D0 (en) * | 1995-12-06 | 1996-02-07 | Aepact Ltd | Drug therapy |
IL125073A0 (en) | 1996-01-08 | 1999-01-26 | Genentech Inc | Wsx receptor and ligands |
SI9720025A (en) | 1996-03-29 | 1999-08-31 | Emishphere Technologies, Inc. | Compounds and compositions for delivering active agents |
WO1998000173A2 (en) * | 1996-07-03 | 1998-01-08 | Pharmacia & Upjohn Company | Targeted drug delivery using sulfonamide derivatives |
US6130237A (en) * | 1996-09-12 | 2000-10-10 | Cancer Research Campaign Technology Limited | Condensed N-aclyindoles as antitumor agents |
CA2243643A1 (en) | 1996-11-18 | 1998-05-28 | Susan Haas | Methods and compositions for inducing oral tolerance in mammals |
GB9625913D0 (en) * | 1996-12-13 | 1997-01-29 | Cancer Soc Auckland Div Nz Inc | Novel cyclopropylindoles and their seco precursors,and their use as prodrugs |
US6251933B1 (en) | 1996-12-13 | 2001-06-26 | The Cancer Research Campaign Technology Limited | Seco precursors of cyclopropylindolines and their use as prodrugs |
US6358504B1 (en) | 1997-02-07 | 2002-03-19 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
WO1999060127A2 (en) | 1998-05-15 | 1999-11-25 | Genentech, Inc. | Il-17 homologous polypeptides and therapeutic uses thereof |
DK1695985T3 (en) | 1997-04-07 | 2011-06-14 | Genentech Inc | Method of generating humanized antibodies by random mutagenesis |
DK0973804T3 (en) | 1997-04-07 | 2007-05-07 | Genentech Inc | Anti-VEGF antibodies |
GB9712370D0 (en) | 1997-06-14 | 1997-08-13 | Aepact Ltd | Therapeutic systems |
EP1947119A3 (en) | 1997-12-12 | 2012-12-19 | Genentech, Inc. | Treatment of cancer with anti-erb2 antibodies in combination with a chemotherapeutic agent |
EP3112468A1 (en) | 1998-05-15 | 2017-01-04 | Genentech, Inc. | Il-17 homologous polypeptides and therapeutic uses thereof |
GB9818730D0 (en) | 1998-08-27 | 1998-10-21 | Univ Portsmouth | Collections of compounds |
GB9818731D0 (en) | 1998-08-27 | 1998-10-21 | Univ Portsmouth | Compounds |
AU757510C (en) | 1998-08-27 | 2003-09-11 | Medimmune Limited | Pyrrolobenzodiazepines |
GB2348203B (en) | 1998-11-04 | 2002-06-19 | Imp College Innovations Ltd | Solube beta-forms of prion proteins, methods of preparation and use |
EP1950300A3 (en) | 1998-11-18 | 2011-03-23 | Genentech, Inc. | Antibody variants with higher binding affinity compared to parent antibodies |
GB9907414D0 (en) | 1999-03-31 | 1999-05-26 | Cancer Res Campaign Tech | Improvements relating to prodrugs |
EP1175390B1 (en) | 1999-04-05 | 2005-02-02 | Emisphere Technologies, Inc. | Disodium salts, monohydrates, and ethanol solvates |
AU784045B2 (en) | 1999-06-25 | 2006-01-19 | Genentech Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
KR20110008112A (en) | 1999-08-27 | 2011-01-25 | 제넨테크, 인크. | Dosages for treatment with anti-erbb2 antibodies |
JP4850379B2 (en) | 1999-12-16 | 2012-01-11 | エミスフェアー・テクノロジーズ・インク | Compounds and compositions for transporting active agents |
JP2003519491A (en) | 2000-01-13 | 2003-06-24 | ジェネンテック・インコーポレーテッド | Novel STRA6 polypeptide |
EP1272647B1 (en) | 2000-04-11 | 2014-11-12 | Genentech, Inc. | Multivalent antibodies and uses therefor |
WO2001093826A1 (en) * | 2000-06-06 | 2001-12-13 | Sumitomo Pharmaceuticals Company, Limited | Biocompatible synthetic polymer preparations |
EP2052742A1 (en) | 2000-06-20 | 2009-04-29 | Biogen Idec Inc. | Treatment of B-cell associated diseases such as malignancies and autoimmune diseases using a cold anti-CD20 antibody/radiolabeled anti-CD22 antibody combination |
GB0016162D0 (en) | 2000-06-30 | 2000-08-23 | Cancer Res Campaign Tech | Indole-3-acetic acid derivatives |
US6656718B2 (en) | 2000-07-07 | 2003-12-02 | Cancer Research Technology Limited | Modified carboxypeptidase enzymes and their use |
IL153948A0 (en) | 2000-07-27 | 2003-07-31 | Genentech Inc | Apo-2l receptor agonist and cpt-11 synergism |
US7220824B1 (en) | 2000-08-28 | 2007-05-22 | Bayer Aktiengesellschaft | Integrin-mediated drug targeting |
US6875432B2 (en) | 2000-10-12 | 2005-04-05 | Genentech, Inc. | Reduced-viscosity concentrated protein formulations |
US7087726B2 (en) | 2001-02-22 | 2006-08-08 | Genentech, Inc. | Anti-interferon-α antibodies |
EP1238678A1 (en) | 2001-03-08 | 2002-09-11 | Bayer Aktiengesellschaft | Enzyme-activated cytostatic conjugates with integrin ligands |
EP2000482A1 (en) | 2001-06-20 | 2008-12-10 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
NZ531674A (en) | 2001-09-18 | 2009-03-31 | Genentech Inc | Compositions and methods for the diagnosis and treatment of tumor |
KR100623128B1 (en) | 2002-01-02 | 2006-09-14 | 제넨테크, 인크. | Compositions and Methods for the Diagnosis and Treatment of Tumor |
US20040132101A1 (en) | 2002-09-27 | 2004-07-08 | Xencor | Optimized Fc variants and methods for their generation |
DE10210427A1 (en) | 2002-03-09 | 2003-10-09 | Hans Konrad Mueller-Hermelink | Human monoclonal antibody |
WO2003100033A2 (en) | 2002-03-13 | 2003-12-04 | Biogen Idec Ma Inc. | ANTI-αvβ6 ANTIBODIES |
AU2003230874A1 (en) | 2002-04-16 | 2003-11-03 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
US7232888B2 (en) | 2002-07-01 | 2007-06-19 | Massachusetts Institute Of Technology | Antibodies against tumor surface antigens |
EP1521776A2 (en) | 2002-07-04 | 2005-04-13 | Oncomab Gmbh | Neoplasm specific antibodies and uses thereof |
ES2392525T3 (en) | 2002-07-15 | 2012-12-11 | F. Hoffmann-La Roche Ag | Cancer treatment with the antibody directed against ErbB2 rhuMAb 2C4 |
EP3502133A1 (en) | 2002-09-27 | 2019-06-26 | Xencor, Inc. | Optimized fc variants and methods for their generation |
NZ521851A (en) | 2002-10-08 | 2005-02-25 | Auckland Uniservices Ltd | Nitroaniline-based unsymmetrical mustard alkylating agents for gene dependent enzyme prodrug therapy |
GB0226593D0 (en) | 2002-11-14 | 2002-12-24 | Consultants Ltd | Compounds |
US20090010920A1 (en) | 2003-03-03 | 2009-01-08 | Xencor, Inc. | Fc Variants Having Decreased Affinity for FcyRIIb |
PL1610820T5 (en) | 2003-04-04 | 2014-01-31 | Genentech Inc | High concentration antibody and protein formulations |
WO2004091657A2 (en) | 2003-04-09 | 2004-10-28 | Genentech, Inc. | Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor |
MXPA05012723A (en) | 2003-05-30 | 2006-02-08 | Genentech Inc | Treatment with anti-vegf antibodies. |
GB0321295D0 (en) | 2003-09-11 | 2003-10-15 | Spirogen Ltd | Synthesis of protected pyrrolobenzodiazepines |
US9714282B2 (en) | 2003-09-26 | 2017-07-25 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
WO2005094159A2 (en) | 2003-11-12 | 2005-10-13 | Oncomab Gmbh | Methods of identifying neoplasm-specific antibodies and uses thereof |
EP1531162A1 (en) | 2003-11-14 | 2005-05-18 | Heinz Vollmers | Adenocarcinoma specific antibody SAM-6, and uses thereof |
EP1689432B1 (en) | 2003-11-17 | 2009-12-30 | Genentech, Inc. | Compositions and methods for the treatment of tumor of hematopoietic origin |
PT1704166E (en) | 2004-01-07 | 2015-09-04 | Novartis Vaccines & Diagnostic | M-csf-specific monoclonal antibody and uses thereof |
CA2555820C (en) | 2004-02-19 | 2016-01-19 | Genentech, Inc. | Cdr-repaired antibodies |
US20150017671A1 (en) | 2004-04-16 | 2015-01-15 | Yaping Shou | Methods for detecting lp-pla2 activity and inhibition of lp-pla2 activity |
KR20150092374A (en) | 2004-06-04 | 2015-08-12 | 제넨테크, 인크. | Method for treating multiple sclerosis |
KR101699142B1 (en) | 2004-06-18 | 2017-01-23 | 암브룩스, 인코포레이티드 | Novel antigen-binding polypeptides and their uses |
EP2471813B1 (en) | 2004-07-15 | 2014-12-31 | Xencor, Inc. | Optimized Fc variants |
WO2006021894A2 (en) | 2004-08-26 | 2006-03-02 | Engeneic Gene Therapy Pty Limited | Delivering functional nucleic acids to mammalian cells via bacterially derived, intact minicells |
EP2845865A1 (en) | 2004-11-12 | 2015-03-11 | Xencor Inc. | Fc variants with altered binding to FcRn |
US8367805B2 (en) | 2004-11-12 | 2013-02-05 | Xencor, Inc. | Fc variants with altered binding to FcRn |
EP1841793B1 (en) | 2005-01-07 | 2010-03-31 | Diadexus, Inc. | Ovr110 antibody compositions and methods of use |
US8029783B2 (en) | 2005-02-02 | 2011-10-04 | Genentech, Inc. | DR5 antibodies and articles of manufacture containing same |
AU2006214121B9 (en) | 2005-02-15 | 2013-02-14 | Duke University | Anti-CD19 antibodies and uses in oncology |
WO2006110599A2 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics Inc. | Cacna1e in cancer diagnosis, detection and treatment |
JP2008535853A (en) | 2005-04-07 | 2008-09-04 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド | Cancer-related genes |
JP5047947B2 (en) | 2005-05-05 | 2012-10-10 | デューク ユニバーシティ | Anti-CD19 antibody treatment for autoimmune disease |
CN102875681A (en) | 2005-07-08 | 2013-01-16 | 拜奥根Idec马萨诸塞公司 | Anti-alpha v beta 6 antibodies and uses thereof |
US8652469B2 (en) | 2005-07-28 | 2014-02-18 | Novartis Ag | M-CSF-specific monoclonal antibody and uses thereof |
GB0517957D0 (en) | 2005-09-03 | 2005-10-12 | Morvus Technology Ltd | Method of combating infection |
CA2624189A1 (en) | 2005-10-03 | 2007-04-12 | Xencor, Inc. | Fc variants with optimized fc receptor binding properties |
AU2006315037C1 (en) | 2005-11-18 | 2013-05-02 | Ichnos Sciences SA | Anti-alpha2 integrin antibodies and their uses |
GB0526552D0 (en) | 2005-12-29 | 2006-02-08 | Morvus Technology Ltd | New use |
EP2540741A1 (en) | 2006-03-06 | 2013-01-02 | Aeres Biomedical Limited | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
JP2009529915A (en) | 2006-03-20 | 2009-08-27 | ゾーマ テクノロジー リミテッド | Human antibodies and methods specific for gastrin substances |
US20100278821A1 (en) | 2006-03-21 | 2010-11-04 | The Regents Of The University Of California | N-cadherin: target for cancer diagnosis and therapy |
US20090130108A1 (en) | 2006-03-21 | 2009-05-21 | The Regents Of The University Of California | N-Cadherin and Ly6 E: Targets for Cancer Diagnosis and Therapy |
MX2008012013A (en) | 2006-03-23 | 2008-10-03 | Novartis Ag | Anti-tumor cell antigen antibody therapeutics. |
EP2007428A2 (en) | 2006-04-05 | 2008-12-31 | Genentech, Inc. | Method for using boc/cdo to modulate hedgehog signaling |
EP2407483A1 (en) | 2006-04-13 | 2012-01-18 | Novartis Vaccines and Diagnostics, Inc. | Methods of treating, diagnosing or detecting cancers |
RU2489486C2 (en) | 2006-06-20 | 2013-08-10 | Трансжене С.А. | Method to produce pox viruses and compositions of pox viruses |
AU2007278899B2 (en) | 2006-06-23 | 2012-09-06 | Engenelc Molecular Delivery Pty. Ltd. | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
US7927590B2 (en) | 2006-07-10 | 2011-04-19 | Biogen Idec Ma Inc. | Compositions and methods for inhibiting growth of smad4-deficient cancers |
ES2612383T3 (en) | 2006-07-19 | 2017-05-16 | The Trustees Of The University Of Pennsylvania | WSX-1 / IL-27 as a target for anti-inflammatory responses |
ES2402591T3 (en) | 2006-08-14 | 2013-05-07 | Xencor Inc. | Optimized antibodies that target CD19 |
TWI454480B (en) | 2006-08-18 | 2014-10-01 | Novartis Ag | Prlr-specific antibody and uses thereof |
EP2423332A1 (en) | 2006-08-25 | 2012-02-29 | Oncotherapy Science, Inc. | Prognostic markers and therapeutic targets for lung cancer |
GB2442202A (en) | 2006-09-30 | 2008-04-02 | Morvus Technology Ltd | Vermin poison |
WO2008067283A2 (en) | 2006-11-27 | 2008-06-05 | Diadexus, Inc. | Ovr110 antibody compositions and methods of use |
WO2008112988A2 (en) | 2007-03-14 | 2008-09-18 | Novartis Ag | Apcdd1 inhibitors for treating, diagnosing or detecting cancer |
CN101715489B (en) | 2007-03-30 | 2016-05-25 | 因詹尼克分子递送控股有限公司 | Be delivered to complete cellule functional nucleic acid mammalian cell, that comprise plasmid-free, that be derived from bacterium in body |
CA2685954A1 (en) | 2007-05-03 | 2008-11-13 | Agency For Science, Technology And Research | Antibodies binding to an intracellular prl-1 or prl-3 polypeptide |
CN101861168B (en) | 2007-05-07 | 2014-07-02 | 米迪缪尼有限公司 | Anti-ICOS antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
EP2708557A1 (en) | 2007-05-30 | 2014-03-19 | Xencor, Inc. | Method and compositions for inhibiting CD32B expressing cells |
AU2008276128B2 (en) | 2007-07-16 | 2013-10-10 | Genentech, Inc. | Humanized anti-CD79b antibodies and immunoconjugates and methods of use |
ES2579323T3 (en) | 2007-07-16 | 2016-08-09 | Genentech, Inc. | Anti-CD79B and immunoconjugate antibodies and methods of use |
JP2010536844A (en) | 2007-08-24 | 2010-12-02 | オンコセラピー・サイエンス株式会社 | DKK1 oncogene as a therapeutic target and diagnostic marker for cancer |
MX2010005244A (en) | 2007-11-12 | 2010-10-25 | Theraclone Sciences Inc | Compositions and methods for the therapy and diagnosis of influenza. |
EP3825329A1 (en) | 2007-12-26 | 2021-05-26 | Xencor, Inc. | Fc variants with altered binding to fcrn |
AR070141A1 (en) | 2008-01-23 | 2010-03-17 | Glenmark Pharmaceuticals Sa | SPECIFIC HUMANIZED ANTIBODIES FOR VON WILLEBRAND FACTOR |
CL2009000062A1 (en) | 2008-01-31 | 2010-05-14 | Genentech Inc | Humanized anti-cd79b antibody; with free tank modifications; immunoconjugate containing said antibody and a drug; polynucleotide encoding the antibody; vector, host cell; pharmaceutical composition and use of said composition to treat cancer, preferably lymphomas. |
CA2718878A1 (en) | 2008-03-10 | 2009-09-17 | Theraclone Sciences, Inc. | Compositions and methods for the therapy and diagnosis of cytomegalovirus |
CA2729403A1 (en) | 2008-06-30 | 2010-01-07 | Oncotherapy Science, Inc. | Anti-cdh3 antibodies labeled with radioisotope label and uses thereof |
AR073295A1 (en) | 2008-09-16 | 2010-10-28 | Genentech Inc | METHODS TO TREAT PROGRESSIVE MULTIPLE SCLEROSIS. MANUFACTURING ARTICLE. |
AU2009312532B2 (en) | 2008-11-06 | 2013-05-16 | Ichnos Sciences SA | Treatment with anti-alpha2 integrin antibodies |
CA2743469C (en) | 2008-11-12 | 2019-01-15 | Medimmune, Llc | Antibody formulation |
US20110318370A1 (en) | 2008-11-27 | 2011-12-29 | Andreas Bikfalvi | Cxcl4l1 as a biomarker of pancreatic cancer |
CN108997498A (en) | 2008-12-09 | 2018-12-14 | 霍夫曼-拉罗奇有限公司 | Anti- PD-L1 antibody and they be used to enhance the purposes of T cell function |
SI3260136T1 (en) | 2009-03-17 | 2021-05-31 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv) -neutralizing antibodies |
PE20120878A1 (en) | 2009-04-01 | 2012-08-06 | Genentech Inc | ANTI-FcRH5 ANTIBODIES AND IMMUNOCONJUGATES |
CN102459340A (en) | 2009-04-23 | 2012-05-16 | 特罗科隆科学有限公司 | Granulocyte-macrophage colony-stimulating factor (gm-csf) neutralizing antibodies |
US8445270B2 (en) | 2009-05-12 | 2013-05-21 | Transgene S.A. | Immortalized avian cell lines and use thereof |
US8858948B2 (en) | 2009-05-20 | 2014-10-14 | Theraclone Sciences, Inc. | Compositions and methods for the therapy and diagnosis of influenza |
IN2012DN01577A (en) | 2009-07-21 | 2015-06-05 | Transgene Sa | |
BR112012002574A2 (en) | 2009-08-06 | 2020-11-03 | Genentech, Inc. | method to improve virus removal in protein purification |
US9493578B2 (en) | 2009-09-02 | 2016-11-15 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
US8926976B2 (en) | 2009-09-25 | 2015-01-06 | Xoma Technology Ltd. | Modulators |
WO2011038301A2 (en) | 2009-09-25 | 2011-03-31 | Xoma Technology Ltd. | Screening methods |
BR112012009409A2 (en) | 2009-10-22 | 2017-02-21 | Genentech Inc | method of identifying an inhibitory substance, antagonist molecule, isolated nucleic acid, vector, host cell, method of making the molecule, composition, article of manufacture, method of inhibiting a biological activity, method of treating a pathological condition, method for detect msp in a sample and method to detect hepsin in a sample |
CN102770529B (en) | 2009-11-17 | 2018-06-05 | Musc研究发展基金会 | For the human monoclonal antibodies of people's paranuclein |
TWI507524B (en) | 2009-11-30 | 2015-11-11 | Genentech Inc | Compositions and methods for the diagnosis and treatment of tumor |
JP5944831B2 (en) | 2009-12-23 | 2016-07-05 | シュニムネ ゲーエムベーハーSYNIMMUNE GmbH | Anti-FLT3 antibody and method of use thereof |
EP3450459B1 (en) | 2009-12-28 | 2021-05-26 | OncoTherapy Science, Inc. | Anti-cdh3 antibodies and uses thereof |
WO2011089211A1 (en) | 2010-01-22 | 2011-07-28 | Synimmune Gmbh | Anti-cd133 antibodies and methods of using the same |
EP3590966A1 (en) | 2010-02-23 | 2020-01-08 | Sanofi | Anti-alpha2 integrin antibodies and their uses |
WO2011106297A2 (en) | 2010-02-23 | 2011-09-01 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
JP2013523098A (en) | 2010-03-29 | 2013-06-17 | ザイムワークス,インコーポレイテッド | Antibody with enhanced or suppressed effector function |
HUE038788T2 (en) | 2010-03-31 | 2018-11-28 | Boehringer Ingelheim Int | Anti-CD40 antibodies |
CN102958941A (en) | 2010-05-03 | 2013-03-06 | 霍夫曼-拉罗奇有限公司 | Compositions and methods for the diagnosis and treatment of tumor |
EP2603237A4 (en) | 2010-08-12 | 2014-05-21 | Theraclone Sciences Inc | Anti-hemagglutinin antibody compositions and methods of use thereof |
CA3059961C (en) | 2010-08-31 | 2021-04-13 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv)-neutralizing antibodies |
CN103328511B (en) | 2010-09-10 | 2016-01-20 | 埃派斯进有限公司 | Anti-IL-1 β antibody and using method thereof |
JP6126532B2 (en) | 2010-11-04 | 2017-05-10 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Anti-IL-23 antibody |
JP5766296B2 (en) | 2010-12-23 | 2015-08-19 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Polypeptide-polynucleotide complexes and their use in targeted delivery of effector components |
US20140088019A1 (en) | 2011-02-11 | 2014-03-27 | Zyngenia, Inc. | Monovalent and Multivalent Multispecific Complexes and Uses Thereof |
EP2675478A4 (en) | 2011-02-14 | 2015-06-10 | Theraclone Sciences Inc | Compositions and methods for the therapy and diagnosis of influenza |
WO2012118813A2 (en) | 2011-03-03 | 2012-09-07 | Apexigen, Inc. | Anti-il-6 receptor antibodies and methods of use |
AU2012225246B2 (en) | 2011-03-10 | 2016-01-21 | Omeros Corporation | Generation of anti-FN14 monoclonal antibodies by ex-vivo accelerated antibody evolution |
EP2685968A1 (en) | 2011-03-15 | 2014-01-22 | Theraclone Sciences, Inc. | Compositions and methods for the therapy and diagnosis of influenza |
EP3508500A1 (en) | 2011-04-29 | 2019-07-10 | Apexigen, Inc. | Anti-cd40 antibodies and methods of use |
CN106432506A (en) | 2011-05-24 | 2017-02-22 | 泽恩格尼亚股份有限公司 | Multivalent and monovalent multispecific complexes and their uses |
KR102148982B1 (en) | 2011-06-03 | 2020-08-27 | 조마 테크놀로지 리미티드 | Antibodies specific for tgf-beta |
CA2844289C (en) | 2011-08-12 | 2020-01-14 | Omeros Corporation | Anti-fzd10 monoclonal antibodies and methods for their use |
US8822651B2 (en) | 2011-08-30 | 2014-09-02 | Theraclone Sciences, Inc. | Human rhinovirus (HRV) antibodies |
TWI571473B (en) | 2011-11-02 | 2017-02-21 | 埃派斯進有限公司 | Anti-kdr antibodies and methods of use |
EA031948B1 (en) | 2011-11-16 | 2019-03-29 | Бёрингер Ингельхайм Интернациональ Гмбх | Anti il-36r antibody or an antigen-binding fragment thereof, isolated polynucleotide, host cell and method for the production of this antibody or a fragment thereof, pharmaceutical composition comprising same and use of the antibody or a fragment thereof and the composition |
WO2013101771A2 (en) | 2011-12-30 | 2013-07-04 | Genentech, Inc. | Compositions and method for treating autoimmune diseases |
BR112014018471A2 (en) | 2012-01-31 | 2017-07-04 | Genentech Inc | anti-ige m1 'antibodies and methods of use |
CN109206516A (en) | 2012-05-03 | 2019-01-15 | 勃林格殷格翰国际有限公司 | Anti-il-23 p 19 antibodies |
FR2994390B1 (en) | 2012-08-10 | 2014-08-15 | Adocia | METHOD FOR LOWERING THE VISCOSITY OF HIGH CONCENTRATION PROTEIN SOLUTIONS |
EP2885319B1 (en) | 2012-08-14 | 2019-10-09 | Nanyang Technological University | Angiopoietin-like 4 antibody and a method of its use in cancer treatment |
US10202408B2 (en) | 2012-08-23 | 2019-02-12 | Health Innovation Ventures B.V. | Prodrugs and methods of use thereof |
CA2886574C (en) | 2012-08-23 | 2019-10-08 | Auckland Uniservices Limited | Prodrugs and methods of use thereof |
KR102270618B1 (en) | 2012-10-30 | 2021-06-30 | 아펙시젠, 인코포레이티드 | Anti-cd40 antibodies and methods of use |
DK3199552T3 (en) | 2012-11-20 | 2020-03-30 | Sanofi Sa | ANTI-CEACAM5 ANTIBODIES AND APPLICATIONS THEREOF |
PE20151603A1 (en) | 2012-12-27 | 2015-11-20 | Sanofi Sa | ANTI-LAMP1 ANTIBODIES AND DRUG ANTIBODY CONJUGATES, AND USES OF THEM |
US10035860B2 (en) | 2013-03-15 | 2018-07-31 | Biogen Ma Inc. | Anti-alpha V beta 6 antibodies and uses thereof |
US10035859B2 (en) | 2013-03-15 | 2018-07-31 | Biogen Ma Inc. | Anti-alpha V beta 6 antibodies and uses thereof |
US20140283157A1 (en) | 2013-03-15 | 2014-09-18 | Diadexus, Inc. | Lipoprotein-associated phospholipase a2 antibody compositions and methods of use |
KR20160042438A (en) | 2013-08-12 | 2016-04-19 | 제넨테크, 인크. | Compositions and method for treating complement-associated conditions |
EA033604B1 (en) | 2014-01-31 | 2019-11-08 | Boehringer Ingelheim Int | Anti-baff antibody molecule, pharmaceutical composition comprising this molecule, methods of using same and isolated polynucleotide encoding same |
CN106456768B (en) | 2014-06-13 | 2019-12-03 | 腾博龙公司 | Conjugate containing anti-EGFR1 antibody |
WO2016038609A1 (en) | 2014-09-08 | 2016-03-17 | Yeda Research And Development Co. Ltd. | Anti-her3 antibodies and uses of same |
JP6655618B2 (en) | 2014-12-01 | 2020-02-26 | トランジェーヌTransgene | Stable liquid vaccinia virus formulation |
WO2016141111A1 (en) | 2015-03-03 | 2016-09-09 | Xoma (Us) Llc | Treatment of post-prandial hyperinsulinemia and hypoglycemia after bariatric surgery |
WO2016161410A2 (en) | 2015-04-03 | 2016-10-06 | Xoma Technology Ltd. | Treatment of cancer using inhibitors of tgf-beta and pd-1 |
WO2016196381A1 (en) | 2015-05-29 | 2016-12-08 | Genentech, Inc. | Pd-l1 promoter methylation in cancer |
JP2018532693A (en) | 2015-08-06 | 2018-11-08 | ゾーマ (ユーエス) リミテッド ライアビリティ カンパニー | Antibody fragments against the insulin receptor and their use to treat hypoglycemia |
KR20240107346A (en) | 2015-10-06 | 2024-07-09 | 제넨테크, 인크. | Method for treating multiple sclerosis |
BR112018011270A2 (en) | 2015-12-04 | 2018-11-21 | Univ California | isolated antibody, pharmaceutical composition, and methods for treating or reducing the recurrence rate of a cancer in a patient and for detecting cancer stem cells. |
WO2017194568A1 (en) | 2016-05-11 | 2017-11-16 | Sanofi | Treatment regimen using anti-muc1 maytansinoid immunoconjugate antibody for the treatment of tumors |
EP4371570A3 (en) | 2016-06-08 | 2024-07-17 | Xencor, Inc. | Treatment of igg4-related diseases with anti-cd19 antibodies crossbinding to cd32b |
EP3490600A1 (en) | 2016-08-01 | 2019-06-05 | Xoma (Us) Llc | Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof |
JP2020512344A (en) | 2017-03-27 | 2020-04-23 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Anti-IL-36R antibody combination treatment |
AU2019291890A1 (en) | 2018-06-29 | 2020-12-17 | Boehringer Ingelheim International Gmbh | Anti-CD40 antibodies for use in treating autoimmune disease |
EA202191244A1 (en) | 2018-11-05 | 2021-10-11 | Байер Фарма Акциенгезельшафт | NEW CYTOSTATIC CONJUGATES WITH INTEGRIN LIGANDS |
KR20210124260A (en) | 2019-02-07 | 2021-10-14 | 사노피 | Use of anti-CEACAM5 immunoconjugates to treat lung cancer |
EP3693023A1 (en) | 2019-02-11 | 2020-08-12 | Sanofi | Use of anti-ceacam5 immunoconjugates for treating lung cancer |
DE102019121007A1 (en) | 2019-08-02 | 2021-02-04 | Immatics Biotechnologies Gmbh | Antigen binding proteins that specifically bind to MAGE-A |
US20210032370A1 (en) | 2019-08-02 | 2021-02-04 | Immatics Biotechnologies Gmbh | Recruiting agent further binding an mhc molecule |
JP2023525423A (en) | 2020-01-15 | 2023-06-16 | イマティクス バイオテクノロジーズ ゲーエムベーハー | Antigen binding protein that specifically binds to PRAME |
CN115515643A (en) | 2020-02-28 | 2022-12-23 | 建新公司 | Modified binding polypeptides for optimized drug conjugation |
BR112023001733A2 (en) | 2020-09-04 | 2023-03-28 | Merck Patent Gmbh | ANTI-CEACAM5 AND CONJUGATE ANTIBODIES AND THEIR USES |
CN117062836A (en) | 2021-02-05 | 2023-11-14 | 勃林格殷格翰国际有限公司 | anti-IL 1RAP antibodies |
AU2022270361A1 (en) | 2021-05-05 | 2023-11-16 | Immatics Biotechnologies Gmbh | Antigen binding proteins specifically binding prame |
JP2024529467A (en) | 2021-07-27 | 2024-08-06 | イマティクス バイオテクノロジーズ ゲーエムベーハー | Antigen-binding protein that specifically binds to CT45 |
EP4412655A1 (en) | 2021-10-04 | 2024-08-14 | Vincerx Pharma GmbH | Compounds, pharmaceutical compositions, and methods for the treatment, prevention, or management of hyperproliferative disorder |
WO2023057814A1 (en) | 2021-10-04 | 2023-04-13 | Vincerx Pharma Gmbh | Compounds, pharmaceutical compositions, and methods for the treatment, prevention, or management of hyperproliferative disorders |
CN118556062A (en) | 2021-10-04 | 2024-08-27 | 文赛克斯制药有限责任公司 | Compounds, pharmaceutical compositions and methods for treating, preventing or managing hyperproliferative disorders |
IL313224A (en) | 2021-12-02 | 2024-07-01 | Sanofi Sa | Cea assay for patient selection in cancer therapy |
AU2022402334A1 (en) | 2021-12-02 | 2024-07-18 | Sanofi | Ceacam5 adc–anti-pd1/pd-l1 combination therapy |
WO2023170239A1 (en) | 2022-03-09 | 2023-09-14 | Merck Patent Gmbh | Methods and tools for conjugation to antibodies |
AU2023230951A1 (en) | 2022-03-09 | 2024-09-05 | Merck Patent Gmbh | Anti-gd2 antibodies, immunoconjugates and therapeutic uses thereof |
WO2024180192A1 (en) | 2023-03-01 | 2024-09-06 | Sanofi | Use of anti-ceacam5 immunoconjugates for treating neuroendocrine cancers expressing ceacam5 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2584294B1 (en) * | 1985-07-08 | 1992-02-21 | Berdal Pascal | PHARMACEUTICAL COMPOSITIONS WITH A CYTOTROPHIC VIEW |
-
1987
- 1987-03-09 GB GB878705477A patent/GB8705477D0/en active Pending
-
1988
- 1988-03-09 JP JP63502235A patent/JP2739122B2/en not_active Expired - Fee Related
- 1988-03-09 AT AT8888902177T patent/ATE104861T1/en not_active IP Right Cessation
- 1988-03-09 DE DE3889340T patent/DE3889340T2/en not_active Expired - Fee Related
- 1988-03-09 WO PCT/GB1988/000181 patent/WO1988007378A1/en active IP Right Grant
- 1988-03-09 EP EP88902177A patent/EP0408546B1/en not_active Expired - Lifetime
-
1997
- 1997-03-27 HK HK37197A patent/HK37197A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO1988007378A1 (en) | 1988-10-06 |
DE3889340D1 (en) | 1994-06-01 |
EP0408546B1 (en) | 1994-04-27 |
GB8705477D0 (en) | 1987-04-15 |
EP0408546A1 (en) | 1991-01-23 |
DE3889340T2 (en) | 1994-09-01 |
HK37197A (en) | 1997-04-04 |
ATE104861T1 (en) | 1994-05-15 |
JPH02504630A (en) | 1990-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2739122B2 (en) | Two-component drugs | |
US5716990A (en) | Drug delivery systems | |
EP0560947B1 (en) | Trivalent monospecific antigen binding proteins | |
JP4113670B2 (en) | Use of bispecific antibodies for pre-targeting diagnosis and pretargeting therapy | |
US6511663B1 (en) | Tri- and tetra-valent monospecific antigen-binding proteins | |
JP2726635B2 (en) | Antibody-enzyme conjugate | |
JPH02503088A (en) | Method for preparing antibody fragment complexes | |
JP2005517674A (en) | Novel immunoconjugates useful for tumor treatment | |
JPH08507517A (en) | Acid-cleavable compounds, their preparation and use as divalent acid-labile crosslinkers | |
JPS63284134A (en) | Antitumoral macromolecular platinum compound | |
JP2002543111A (en) | Amplification of folate-mediated targeting to tumor cells using polymers | |
EP0122132A2 (en) | Anti-tumour substance | |
US6468503B2 (en) | Method and composition for the treatment of cancer by the enzymatic conversion of soluble radioactive toxic precipitates in the cancer | |
JPS63503144A (en) | Amine derivatives of folic acid analogs | |
JP2005501052A (en) | Polymer delivery system | |
CA2025899A1 (en) | Site specific in-vivo activation of therapeutic drugs | |
CA2048094A1 (en) | Methods of conjugating actinomycin d | |
JP2008507562A (en) | Composition for multi-step delivery of hot spot radiation to cancer | |
US5151266A (en) | Use of anionic detergents with conjugates of monoclonal or polyclonal antibodies | |
JPH05500953A (en) | Methods for reducing non-target retention of immune conjugates and their metabolites | |
EP0485749A2 (en) | Chemical modification of antibodies for creating of immunoconjugates | |
Hay et al. | Antibody-directed enzyme-prodrug therapy (ADEPT) | |
EP0213881B1 (en) | The use of amphipathic molecules for radioimaging and therapy with conjugates of monoclonal or polyclonal antibodies | |
US20030215387A1 (en) | Bifunctional antibodies and their use in targeting anti-tumour agents | |
US20030203836A1 (en) | Methods for reduced renal uptake of protein conjugates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |