JP2738539B2 - AC magnetic property measurement method - Google Patents

AC magnetic property measurement method

Info

Publication number
JP2738539B2
JP2738539B2 JP6300588A JP6300588A JP2738539B2 JP 2738539 B2 JP2738539 B2 JP 2738539B2 JP 6300588 A JP6300588 A JP 6300588A JP 6300588 A JP6300588 A JP 6300588A JP 2738539 B2 JP2738539 B2 JP 2738539B2
Authority
JP
Japan
Prior art keywords
core
measured
magnetic
reset
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6300588A
Other languages
Japanese (ja)
Other versions
JPH01235879A (en
Inventor
勇二 松本
晋 中島
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Ferrite Ltd filed Critical Hitachi Metals Ltd
Priority to JP6300588A priority Critical patent/JP2738539B2/en
Publication of JPH01235879A publication Critical patent/JPH01235879A/en
Application granted granted Critical
Publication of JP2738539B2 publication Critical patent/JP2738539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁心の磁気増幅器動作における交流磁気特
性の測定方法、及び測定装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for measuring AC magnetic characteristics in the operation of a magnetic core with a magnetic amplifier.

[従来の技術] 磁気増幅器における可飽和磁心に代表される飽和領域
を含むマイナーループ動作を行う磁心の交流磁気特性
は、一般に磁心の増幅度と磁心損失の2点から評価され
る。磁心の増幅度を評価するための手法としては,第6
図に示す回路を用いたCMC(制御磁化特性Control Magne
tization Characteristics)が知られている。本回路に
おける測定時の各部波形及び測定結果を第7図、及び第
8図に示す。第8図において動作磁束密度量ΔBcm、及
び制御磁化力Hは次式により求められる。
[Prior Art] In a magnetic amplifier, AC magnetic characteristics of a magnetic core performing a minor loop operation including a saturation region typified by a saturable magnetic core are generally evaluated from two points of the amplification degree of the magnetic core and the core loss. As a method for evaluating the amplification of the magnetic core,
CMC using the circuit shown in the figure
tization Characteristics) are known. FIGS. 7 and 8 show waveforms of respective parts and measurement results at the time of measurement in this circuit. In FIG. 8, the operating magnetic flux density amount ΔBcm and the control magnetizing force H are obtained by the following equations.

vs:検出巻線端電圧 (V) Ic:制御電流 (A) Ns:検出巻線巻数 Nc:制御巻線巻数 Ae:有効磁心断面積 (m2) le:平均磁路長 (m) ここで、第8図におけるCMCにおいて、小さな制御磁
化力Hにより大きな制御磁束密度量ΔBの得られる磁心
ほどその増幅度が大きく、可飽和磁心として勝れた特性
を示す。(CMCについては村上孝一著「磁気応用工
学」,朝倉書店、参照) 一方、磁心損失を評価するための手法として本出願人
は、先に特願昭62−237966号に示される、ゲート期間の
磁束変化速度を規定して測定する方法を提案した。この
方法では、例えば第9図の回路を用いて測定した磁心損
失を、第10図の各部波形から得られるゲート期間の磁束
変化速度(dB/dt)gateを用いて第11図のように磁心損
失を規定することができる。
vs: Detection winding end voltage (V) Ic: Control current (A) Ns: Number of turns of detection winding Nc: Number of turns of control winding Ae: Effective core area (m 2 ) le: Average magnetic path length (m) In the CMC shown in FIG. 8, a core having a larger control magnetic flux density ΔB due to a smaller control magnetizing force H has a larger amplification degree and shows a characteristic superior to a saturable magnetic core. (For CMC, see Koichi Murakami, “Magnetic Applied Engineering,” Asakura Shoten.) On the other hand, as a method for evaluating core loss, the present applicant has previously disclosed in Japanese Patent Application No. 62-237966, A method for defining and measuring the flux change rate was proposed. In this method, for example, the core loss measured using the circuit of FIG. 9 is calculated by using the magnetic flux change rate (dB / dt) gate during the gate period obtained from the waveforms of the respective parts of FIG. 10 as shown in FIG. Loss can be specified.

なおゲート期間の磁束変化速度は第9図により示すよ
うにTbに於ける波形v7が矩形波状であれば(3)式によ
り求められる。
Note that the magnetic flux change rate during the gate period can be obtained by equation (3) if the waveform v7 at Tb is a rectangular wave as shown in FIG.

[発明が解決しようとする問題点] 上記従来技術による飽和領域を含むマイナーループ動
作時の交流磁気特性測定方法においては、以下のような
問題を有していた。前記CMCにおいては、第12図に示す
ようなリセット条件,すなわち、同図A)に示すような
オンデューティ比D=Ton/Tpの異なる場合、あるいは同
図B)のようにリセット時の電圧を一定として、そのパ
ルス幅を変えることでリセット量を変化させる場合の特
性を直接説明できなかった。その一例を第13図に示す。
本例はオンデューティ比Dを変えた時のリセット特性と
CMCの比較を示したものであり、D=0.3,及び0.7の場合
のリセット特性はCMCと大きく異なることからもわか
る。
[Problems to be Solved by the Invention] The method of measuring AC magnetic characteristics at the time of a minor loop operation including a saturation region according to the related art has the following problems. In the CMC, the reset condition as shown in FIG. 12, ie, when the on-duty ratio D = Ton / Tp is different as shown in FIG. The characteristics in the case where the reset amount is changed by changing the pulse width when the pulse width is changed cannot be directly explained. One example is shown in FIG.
This example shows the reset characteristics when the on-duty ratio D is changed and
This is a comparison of CMC, and can be seen from the fact that the reset characteristics when D = 0.3 and 0.7 are significantly different from those of CMC.

一方、前記ゲート時の(dB/dt)gateを規定して磁心
損失を評価する手法は、第14図に示すような条件下で
は、(dB/dt)resetが(dB/dt)gateに対して無視でき
なくなり、第15図に示すように、磁心損失を(dB/dt)g
ateのみから直接説明できなかった。
On the other hand, the method of evaluating the core loss by specifying the (dB / dt) gate at the time of the gate is as follows. Under the conditions shown in FIG. 14, (dB / dt) reset is smaller than (dB / dt) gate. As shown in Fig. 15, the core loss can be reduced to (dB / dt) g
I could not explain directly from ate alone.

[問題点を解決するための手段] 本発明は、上記従来技術の欠点を改良するため、磁気
増幅器動作における磁心の交流磁気特性測定方法におい
て、ゲート期間の磁束変化速度(dB/dt)gateと共に、
リセット期間の磁束変化速度(dB/dt)resetを規定し
て、実際の可飽和リアクトルの設計に直接利用できる交
流磁気特性の測定を可能とした交流磁気特性測定方法で
ある。なお、本発明の測定方法は従来のCMC、及びゲー
ト期間のdB/dtを規定して測定を行う特願昭62−237966
号に示される測定方法の改良に関するものである。
[Means for Solving the Problems] In order to improve the above-mentioned drawbacks of the prior art, the present invention provides a method for measuring the AC magnetic characteristics of a magnetic core in the operation of a magnetic amplifier, together with a magnetic flux change rate (dB / dt) gate during a gate period. ,
This is an AC magnetic characteristic measuring method that defines a magnetic flux change rate (dB / dt) reset during a reset period and enables measurement of AC magnetic characteristics that can be directly used for designing an actual saturable reactor. Note that the measurement method of the present invention is a conventional CMC and the measurement is performed by defining the dB / dt of the gate period in Japanese Patent Application No. 62-237966.
The present invention relates to the improvement of the measurement method described in the item (1).

[実施例] 以下、本発明を実施例により詳細に説明する。第1図
は本発明による交流磁気特性測定方法の1実施例を示す
測定回路構成である。本回路は電源21、可変抵抗器20、
主スイッチ18、及び試料2の励磁巻線6からなるゲート
回路と電源10、スイッチ19からなる制御回路により構成
されている。試料2の巻線端電圧vsと電流検出器8によ
り測定した励磁電流はA/D変換した後演算処理を行い、
磁心損失等の算出を行っている。
[Examples] Hereinafter, the present invention will be described in detail with reference to examples. FIG. 1 shows the configuration of a measuring circuit showing one embodiment of the method for measuring AC magnetic characteristics according to the present invention. This circuit has a power supply 21, a variable resistor 20,
The control circuit includes a main switch 18, a gate circuit including the excitation winding 6 of the sample 2, a power supply 10, and a switch 19. The A / D conversion is performed on the winding end voltage vs of the sample 2 and the exciting current measured by the current detector 8 to perform an arithmetic process.
Calculation of core loss etc. is performed.

ここで、ゲート時の磁束変化速度、及び最大飽和磁化
力HLmを規定するため電源21の電圧vg、及び可変抵抗器2
0の抵抗値RLを次のように設定する。
Here, the voltage vg of the power supply 21 and the variable resistor 2 for defining the magnetic flux change speed at the time of the gate and the maximum saturation magnetization H L m are defined.
Set the resistance value RL of 0 as follows.

NL:主巻線巻数 さらに本発明においては、リセット期間の磁束変化速
度を規定するため、新に(6)式により制御電圧vcとリ
セット期間Trを設定している。
N L : Number of turns of the main winding Further, in the present invention, the control voltage vc and the reset period Tr are newly set by the equation (6) in order to define the magnetic flux change speed during the reset period.

vc:制御電圧 (V) Tr:リセット期間 (s) (6)式によれば(dB/dt)resetが定まれば制御電圧
vcを決定出来、さらにリセット期間Trと磁束変化量ΔBc
mとの関係が定まる。一般に磁心損失は磁束変化速度dB/
dtに依存するが、磁気増幅器の場合ゲート期間とリセッ
ト期間では磁束変化速度が異なり、さらにゲート時の最
大飽和磁化力HLmにも依存するため、それぞれを独立し
て決定する必要がある。ゲート期間と共にリセット期間
の磁束変化速度を規定して磁心損失を測定するには、第
2図に示すように磁心損失をゲート期間(磁化力が正の
領域とする。)における値と、リセット期間(磁化力H
が負の領域とする。)における値の2つに分離して測定
する事が有効である。
vc: control voltage (V) Tr: reset period (s) According to equation (6), if (dB / dt) reset is determined, control voltage
vc can be determined, and the reset period Tr and the magnetic flux change amount ΔBc
The relationship with m is determined. Generally, the core loss is the flux change rate dB /
depends on dt but different flux rate of change in the case where the gate period and the reset period of the magnetic amplifier, for further depends on the maximum saturation magnetizing force H L m at gate, it is necessary to determine independently respectively. In order to measure the magnetic core loss by defining the magnetic flux change rate in the reset period together with the gate period, as shown in FIG. 2, the core loss is determined in the gate period (the region where the magnetizing force is positive) and the reset period. (Magnetizing force H
Is a negative region. It is effective to separate and measure the two values in ()).

第3図、及び第4図は本発明により上記手法を用いて
測定したゲート期間の磁心損失とリセット期間の磁心損
失の磁束変化速度依存性を示したものであり、ここでは
HLm=80A/m一定とした。両者を比較すると、同一の磁束
変化速度にたいしてはゲート期間の磁心損失のほうが大
であるが、(dB/dt)gateに対し、(dB/dt)resetが大
きい場合には、リセット期間の磁心損失はゲート期間に
おける磁心損失に対し無視し得なくなり、前記従来技術
の問題点でも述べたように、(dB/dt)gateのみ規定し
て、磁心損失を測定することは問題のあることがわか
る。
FIGS. 3 and 4 show the dependence of the core loss during the gate period and the core loss during the reset period on the rate of change in magnetic flux measured using the above method according to the present invention.
H L m = 80 A / m constant. Comparing the two, the core loss during the gate period is larger for the same flux change speed, but when (dB / dt) reset is larger than (dB / dt) gate, the core loss during the reset period is larger. Is not negligible for the core loss during the gate period, and as described in the above-mentioned problem of the related art, it is found that there is a problem in defining the (dB / dt) gate alone and measuring the core loss.

第1表〜第6表は本手法を用いて測定した磁心損失に
対する駆動周波数、オンデューティ比、及び第12図B)
に示す主スイッチのオフ期間Toffに占めるリセット期間
の比Tr/Toffの影響を調べたものであり、第1表、第3
表、及び第5表はゲート期間の磁心損失、第2表、第4
表、及び第6表はリセット期間の磁心損失を示したもの
である。いずれの場合も、磁束変化速度が同一であれ
ば、ほぼ一定値を示すことがわかる。
Tables 1 to 6 show the drive frequency, on-duty ratio, and magnetic core loss measured using this method, and Fig. 12B).
Table 1 shows the effect of the ratio Tr / Toff of the reset period on the off period Toff of the main switch shown in Table 1.
Tables 5 and 5 show the core loss during the gate period, and Tables 2 and 4
Tables and Table 6 show the core loss during the reset period. In each case, it can be seen that if the magnetic flux change speed is the same, the value shows a substantially constant value.

第5図は本発明を用いて磁心のリセット特性、すなわ
ち磁心の増幅度を測定した結果であり、本図より得られ
る曲線の傾きが小さいものほど、増 幅度が高いことを示す。第7表、第8表、及び第9表
は、本手法を用いて測定したリセット特性に対する、駆
動周波数、オンデューティ比、及び主スイッチのオフ期
間Toffに占めるリセット期間Trの比Tr/Toffの影響を調
べたものであり、いずれの場合も実験値と第5図の曲線
よりの読取り値は、極めて良く一致することがわかる。
FIG. 5 shows the results of measurement of the reset characteristic of the magnetic core, that is, the amplification degree of the magnetic core, using the present invention. Indicates that the width is high. Tables 7, 8, and 9 show the relationship between the reset characteristics measured using this method, the drive frequency, the on-duty ratio, and the ratio Tr / Toff of the reset period Tr in the off period Toff of the main switch. The effect was examined, and it can be seen that the experimental value and the value read from the curve in FIG.

以上の説明では、HLm=80A/m一定の場合について説明
したが、HLmの値を変えても、測定のHLmの値を一定にさ
えすれば同様の結果を得ることができる。
In the above description, the description has been given of the H L m = 80A / m constant, even with different values of H L m, is possible to obtain the same result if only the value of H L m of the measuring constant it can.

[発明の効果] 以上の説明からも明らかなように、本発明によれば、
従来のCMC、あるいは、ゲート期間のdB/dtを規定して測
定を行う特願昭62−237966号で提案した測定方法では不
可能であった、磁心の磁気増幅器動作における精密な増
幅度、及び磁心損失の評価を行うことができ、従来明確
な設計方法の確立されていなかった、磁気増幅器用可飽
和リアクトル、サージ吸収用可飽和リアクトル、高電圧
パルス発生装置の磁気スイッチ用可飽和リアクトル等の
飽和領域を含む動作を行うリアクトルの設計に適用でき
る等、その効果は大きい。
[Effects of the Invention] As is clear from the above description, according to the present invention,
Conventional CMC, or precise amplification in the magnetic amplifier operation of the magnetic core, which was not possible with the measurement method proposed in Japanese Patent Application No. 62-237966, in which measurement is performed by specifying the dB / dt of the gate period, and The core loss can be evaluated, and a saturable reactor for a magnetic amplifier, a saturable reactor for surge absorption, a saturable reactor for a magnetic switch of a high-voltage pulse generator, and the like, for which a clear design method has not been established in the past. The effect is great, for example, it can be applied to the design of a reactor that performs an operation including a saturation region.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による磁心損失測定方法の構成図、第2
図は第1図により測定した動作B−H曲線の図、第3図
は第1図により測定したゲート期間の磁心損失を示す
図、第4図は第1図により測定したリセット期間の磁心
損失を示す図、第5図はリセット特性を示す図、第6図
は制御磁化特性測定回路図、第7図は第6図の各部動作
波形を示す図、第8図は第6図による測定結果を示す
図、第9図は磁心損失測定回路図、第10図は第9図の各
部動作波形を示す図、第11図は第9図による測定結果を
示す図、第12図はリセット電圧の波形例を示す図、第13
図は制御磁化特性のオンデューティ比依存性を示す図、
第14図はリセット電圧の波形例を示す図、第15図は従来
の測定方法による測定例を示す図である。
FIG. 1 is a block diagram of a method for measuring core loss according to the present invention, and FIG.
The figure is a diagram of the operation BH curve measured according to FIG. 1, FIG. 3 is a diagram showing the core loss during the gate period measured according to FIG. 1, and FIG. 4 is the core loss during the reset period measured according to FIG. , FIG. 5 is a diagram showing reset characteristics, FIG. 6 is a circuit diagram of a control magnetization characteristic measurement circuit, FIG. 7 is a diagram showing operation waveforms of each part in FIG. 6, and FIG. 8 is a measurement result according to FIG. , FIG. 9 is a circuit diagram of a magnetic core loss measuring circuit, FIG. 10 is a diagram showing operation waveforms of each part of FIG. 9, FIG. 11 is a diagram showing measurement results according to FIG. 9, and FIG. Diagram showing waveform examples, thirteenth
The figure shows the on-duty ratio dependence of the control magnetization characteristics.
FIG. 14 is a diagram showing a waveform example of a reset voltage, and FIG. 15 is a diagram showing a measurement example according to a conventional measurement method.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】過飽和リアクトルに用いる被測定磁心が飽
和領域を含む非対称マイナーループ上で動作するときの
磁心損失を測定する交流磁気特性測定方法において、前
記被測定磁心の励磁は矩形波電圧で行うとともに、磁化
力が正の領域であるゲート期間と磁化力が負の領域であ
るリセット期間とを有し、前記ゲート期間の当該被測定
磁心の磁束変化速度(dB/dt)gateに対する前記被測定
磁心の磁心損失(ただし、(dB/dt)gate=ΔBcm/Tb、
ΔBcmは動作磁束密度、Tbはゲート期間中に被測定磁心
に巻回された巻線に誘起する電圧パルスの幅)、および
前記リセット期間の当該被測定磁心の磁束変化速度(dB
/dt)resetに対する当該被測定磁心の磁心損失(ただ
し、(dB/dt)reset=ΔBcm/Trであり、ΔBcmは動作磁
束密度、Trはリセット期間中に被測定磁心に巻回された
巻線に誘起する電圧パルスの幅)のそれぞれの総和によ
り、飽和領域を含む非対称マイナーループ動作中の当該
被測定磁心の磁心損失を求めることを特徴とする交流磁
気特性測定方法。
An AC magnetic characteristic measuring method for measuring a core loss when a measured core used for a supersaturated reactor operates on an asymmetric minor loop including a saturation region, wherein the measured core is excited by a rectangular wave voltage. together, magnetizing force has a magnetizing force gate period is a positive region and a reset period is a negative region, the magnetic flux change speed (dB / dt) of the measured magnetic core of the gate period the measured against gate Core loss of core (However, (dB / dt) gate = ΔBcm / Tb,
ΔBcm is the operating magnetic flux density, Tb is the width of the voltage pulse induced in the winding wound around the measured core during the gate period), and the rate of change of the magnetic flux of the measured core during the reset period (dB)
/ dt) Core loss of the measured core with respect to reset (however, (dB / dt) reset = ΔBcm / Tr, ΔBcm is the operating magnetic flux density, and Tr is the winding wound around the measured core during the reset period. A method of measuring AC magnetic characteristics, comprising: calculating a core loss of the measured core during an asymmetric minor loop operation including a saturation region, based on the total sum of voltage pulses induced in the magnetic field.
【請求項2】過飽和リアクトルに用いる被測定磁心が飽
和領域を含むマイナーループ上で動作するときの増幅度
を測定する交流磁気特性測定方法において、前記被測定
磁心の励磁は矩形波電圧で行うとともに、磁化力が正の
領域であるゲート期間と磁化力が負の領域であるリセッ
ト期間とを有し、前記リセット期間の当該被測定磁心の
磁束変化速度((dB/dt)resetに対する前記被測定磁心
の磁化力H(ただし、(dB/dt)reset=ΔBcm/Trであ
り、ΔBcmは動作磁束密度、Trはリセット期間中に被測
定磁心に巻回された巻線に誘起する電圧パルスの幅)を
測定することにより当該被測定磁心の増幅度を求めるこ
とを特徴とする交流磁気特性測定方法。
2. An AC magnetic characteristic measuring method for measuring the degree of amplification when a core to be measured used in a supersaturated reactor operates on a minor loop including a saturation region, wherein the excitation of the core to be measured is performed by a rectangular wave voltage. A gate period in which the magnetizing force is in a positive region and a reset period in which the magnetizing force is in a negative region, wherein the magnetic flux change rate ((dB / dt) reset of the core under measurement during the reset period is measured with respect to reset . Magnetizing force H of the magnetic core (However, (dB / dt) reset = ΔBcm / Tr, ΔBcm is the operating magnetic flux density, and Tr is the width of the voltage pulse induced in the winding wound around the measured core during the reset period. A) measuring the amplification degree of the magnetic core to be measured.
【請求項3】特許請求の範囲第1項または第2項のいず
れか1項に記載の交流磁気特性測定方法において、磁束
変化速度を決定する場合に、最大飽和磁化力(HLm)を
一定にすることを特徴とする交流磁気特性測定方法。
3. The method according to claim 1, wherein when the magnetic flux change rate is determined, the maximum saturation magnetizing force (H L m) is determined. A method for measuring AC magnetic characteristics, characterized by being constant.
JP6300588A 1988-03-16 1988-03-16 AC magnetic property measurement method Expired - Lifetime JP2738539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300588A JP2738539B2 (en) 1988-03-16 1988-03-16 AC magnetic property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300588A JP2738539B2 (en) 1988-03-16 1988-03-16 AC magnetic property measurement method

Publications (2)

Publication Number Publication Date
JPH01235879A JPH01235879A (en) 1989-09-20
JP2738539B2 true JP2738539B2 (en) 1998-04-08

Family

ID=13216771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300588A Expired - Lifetime JP2738539B2 (en) 1988-03-16 1988-03-16 AC magnetic property measurement method

Country Status (1)

Country Link
JP (1) JP2738539B2 (en)

Also Published As

Publication number Publication date
JPH01235879A (en) 1989-09-20

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
SU847947A3 (en) Device for continuous testing of steel web material
JP2738539B2 (en) AC magnetic property measurement method
Biorci et al. Frequency spectrum of the Barkhausen noise
Datta et al. Saturation and engineering magnetostriction of an iron‐base amorphous alloy for power applications
US4827214A (en) Method for measuring losses of a magnetic core
JPH01105188A (en) Method and device for measuring alternating current magnetic characteristic
Boglietti et al. Iron loss measurements with inverter supply: A first discussion to define a standard methodology
JPH095084A (en) Magnetic sensor
Ripka et al. Excitation tuning in fluxgate sensors
Guuinic et al. Full scale laboratory investigations on the three single phase ferroresonance phenomenon
SU1196778A1 (en) Method of contactless measurement of liquid electric conductivity and apparatus for accomplishment of same
SU1062592A1 (en) Magnetic noise structuroscopy device
SU892388A1 (en) Coercive force measuring method
JPS6258180A (en) Method and apparatus for measuring ac magnetic characteristic
SU822097A1 (en) Method of determining parameters of ferromagnetic materials
Brownell et al. Detailed measurements of slow magnetization processes in tape-wound cores
JPH0785105B2 (en) Magnetic material tester
SU1700503A1 (en) Method of determination of magnetic parameters of materials
SU1137347A1 (en) Method of measuring force
RU2147752C1 (en) Quick-acting device for measurement of magnetic field strength
SU1226260A1 (en) Arrangement for measuring coercive force of ferromagnetic materials
SU894540A1 (en) Method of magnetic noise structuroscopy
Saynajakangas et al. Measurements of spectra of clustered Barkhausen transitions in technical steel
Hoinville et al. In situ measurement of the remanence curve of magnetic recording media