JP2737234B2 - Insulated wire and its manufacturing method - Google Patents

Insulated wire and its manufacturing method

Info

Publication number
JP2737234B2
JP2737234B2 JP1095371A JP9537189A JP2737234B2 JP 2737234 B2 JP2737234 B2 JP 2737234B2 JP 1095371 A JP1095371 A JP 1095371A JP 9537189 A JP9537189 A JP 9537189A JP 2737234 B2 JP2737234 B2 JP 2737234B2
Authority
JP
Japan
Prior art keywords
conductor
coating
insulated wire
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1095371A
Other languages
Japanese (ja)
Other versions
JPH02276109A (en
Inventor
樹哉 角田
徹 山西
昭典 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1095371A priority Critical patent/JP2737234B2/en
Priority to TW079101530A priority patent/TW297798B/zh
Priority to DE69022085T priority patent/DE69022085T2/en
Priority to EP90104732A priority patent/EP0387796B1/en
Priority to US07/492,794 priority patent/US5128175A/en
Priority to FI901266A priority patent/FI111669B/en
Priority to KR1019900003488A priority patent/KR960008356B1/en
Priority to CA002012282A priority patent/CA2012282C/en
Publication of JPH02276109A publication Critical patent/JPH02276109A/en
Priority to US07/803,954 priority patent/US5192834A/en
Application granted granted Critical
Publication of JP2737234B2 publication Critical patent/JP2737234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低誘電率で細径の絶縁電線とその製造方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to an insulated wire having a low dielectric constant and a small diameter, and a method for producing the same.

〔従来の技術〕[Conventional technology]

導体上に薄膜の絶縁層を形成する従来技術としては、
例えば、特公昭57−30253号公報に記載されるような発
泡押出技術がある。これは一般にポリオレフィン系の樹
脂をアゾジカルボンアミドのような化学発泡剤、窒素,
アルゴン等の不活性気体あるいは気体状又は液体状の炭
化水素又はフロロカーボンのいずれか或いはそれらの併
用により発泡させ、大きな空隙率により低誘電率の絶縁
層を得るものである。
As a conventional technique for forming a thin insulating layer on a conductor,
For example, there is a foam extrusion technique as described in JP-B-57-30253. This is generally accomplished by converting a polyolefin resin to a chemical blowing agent such as azodicarbonamide, nitrogen,
It is formed by foaming with an inert gas such as argon, or a gaseous or liquid hydrocarbon or fluorocarbon, or a combination thereof to obtain an insulating layer having a large porosity and a low dielectric constant.

一方、例えば米国特許第3953566号明細書或いは同第4
187390号明細書に示されるような、延伸により大きな空
隙率を有するフッ素樹脂テープを導体上に巻き付けて、
絶縁層を形成させる方法がある。この方法は発泡押出技
術に比較して誘電率の既知のテープ材料を導体上に巻き
付けるため、絶縁層の誘電率の安定性を確保でき、さに
薄膜でかつ高空隙率の絶縁層を実現することができる。
On the other hand, for example, U.S. Pat.
As shown in the 187390 specification, by winding a fluororesin tape having a large porosity by stretching over a conductor,
There is a method of forming an insulating layer. Since this method wraps a tape material with a known dielectric constant on a conductor compared to foam extrusion technology, it can ensure the stability of the dielectric constant of the insulating layer, and realizes a thin film and high porosity insulating layer. be able to.

更に特公昭56−43564,同57−39006各号公報には、粒
径数μm〜数mmのガラス、アルミナ等無機材料からなる
中空球又は発泡状球体の表面に熱可塑性樹脂を被覆した
ものを溶融押出する方法及びポリエチレン,ポリ塩化ビ
ニル等の熱可塑性樹脂と無機質中空球をキシレン等の溶
剤に溶解して導体に塗布・乾燥し、絶縁電線を得る方法
が提案されている。
Further, Japanese Patent Publication Nos. 56-43564 and 57-39006 each disclose a method in which a glass having a particle diameter of several μm to several mm, a hollow sphere or a foamed sphere made of an inorganic material such as alumina is coated with a thermoplastic resin. A melt extrusion method and a method in which a thermoplastic resin such as polyethylene or polyvinyl chloride and inorganic hollow spheres are dissolved in a solvent such as xylene, applied to a conductor, and dried to obtain an insulated wire have been proposed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで近時、医療分野,コンピュータ計測分野その
他の分野で、細径の高密度信号伝送線への要求が高まっ
ており、細径の導体に薄い被覆を施し、かつ低誘電率で
ある細径絶縁電線の開発が急がれている。
In recent years, in the medical field, computer measurement field, and other fields, there has been a growing demand for small-diameter, high-density signal transmission lines. The development of electric wires is urgent.

上記の従来技術のうち、特公昭57−30253号公報に記
載される方法は、スクリュー押出機によりポリオレフィ
ン系樹脂の溶融,発泡,導体上への被覆を同時に行なう
ため、薄膜の絶縁層においては高発泡度を得ることが難
しく、被覆厚さはせいぜい200μmが下限である、とい
う欠点を有している。また、この方法では発泡度の制御
も容易ではない。
Among the above-mentioned prior arts, the method described in Japanese Patent Publication No. 57-30253 discloses a method for simultaneously melting, foaming, and coating a polyolefin resin on a conductor by a screw extruder. It has a drawback that it is difficult to obtain a degree of foaming and the lower limit of the coating thickness is at most 200 μm. Further, it is not easy to control the degree of foaming by this method.

一方、米国特許第3953566、4187390各号明細書に記載
される方法は、その製法上、絶縁層表面の部分的な凹凸
は避けられず、製造線速も非常に遅いという問題点があ
った。
On the other hand, the methods described in U.S. Pat. Nos. 3,953,566 and 4,187,390 have a problem that, due to the manufacturing method, partial irregularities on the surface of the insulating layer cannot be avoided, and the production line speed is very slow.

特公昭56−43564,同57−39006各号公報に記載の方法
は、発泡度の制御は容易であるが、以下のような欠点を
有している。
The methods described in JP-B-56-43564 and JP-B-57-39006 can easily control the degree of foaming, but have the following disadvantages.

すなわち前者の熱可塑性樹脂を被覆した中空球発泡状
球体を押出被覆する方法では、中空球の表面に被覆され
た熱可塑性樹脂が溶融し導体上に塗布された後に冷却さ
れ中空球を接合するため、高空隙率を得る目的で該熱可
塑性樹脂層を薄くすると、導体上に形成された絶縁層の
機械的強度、特に伸び率が著しく低下し、一方絶縁層の
機械的強度を保持するため中空球の熱可塑性樹脂層を厚
くすると、結果として空隙率が下がり、電線としての誘
電率が上がってしまう。また、押出機内で少なくとも、
150℃以上の温度と高圧を加えるため、用いる中空球と
してはガラス,アルミナ等の無機材料に限定される。し
かし、これらの中空球は材料としての固有誘電率が高
く、低誘電率低損失ケーブルを製造することはできな
い。
In other words, in the former method of extrusion-coating a hollow sphere foamed sphere coated with a thermoplastic resin, the thermoplastic resin coated on the surface of the hollow sphere is cooled after being melted and applied on a conductor, so that the hollow sphere is joined. When the thickness of the thermoplastic resin layer is reduced for the purpose of obtaining a high porosity, the mechanical strength of the insulating layer formed on the conductor, particularly the elongation, is significantly reduced, while the hollow is used to maintain the mechanical strength of the insulating layer. When the thermoplastic resin layer of the sphere is thickened, the porosity decreases as a result, and the dielectric constant of the electric wire increases. Also, at least in the extruder,
Since a temperature of 150 ° C. or higher and a high pressure are applied, hollow spheres to be used are limited to inorganic materials such as glass and alumina. However, these hollow spheres have a high intrinsic dielectric constant as a material, and a low dielectric constant low loss cable cannot be manufactured.

また後者のポリエチレン,ポリ塩化ビニル等の熱可塑
性樹脂と無機質中空球をキシレン等の溶剤に溶解して塗
布後乾燥し、絶縁電線を形成する方法では、前者と同様
に乾燥時に熱を加えるため、用い得る中空球が限定さ
れ、やはり低誘電率低損失ケーブルを製造することが困
難であり、さらに塗布された液状組成物中の溶剤を蒸発
乾燥させるため、製造速度が著しく小さいという欠点を
有している。
In the latter method, a thermoplastic resin such as polyethylene or polyvinyl chloride and inorganic hollow spheres are dissolved in a solvent such as xylene and applied, followed by drying, to form an insulated wire. The hollow spheres that can be used are limited, and it is also difficult to produce a low-dielectric-constant low-loss cable.Moreover, since the solvent in the applied liquid composition is evaporated and dried, the production speed is extremely low. ing.

本発明はこのような従来技術の欠点を解消して、電気
特性の良好な低誘電率で200μm以下の薄肉被覆も実現
できる絶縁電線とその製造方法を提供せんとするもので
ある。
An object of the present invention is to solve the drawbacks of the prior art and to provide an insulated wire capable of realizing a thin coating of 200 μm or less with good electric characteristics and a low dielectric constant, and a method of manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は上記の目的に沿って研究努力の結果、従
来技術では実現できなかった細径低静電容量絶縁電線を
全く新規な構成の被覆により実現できることを見出し、
本発明に達し得たのである。
The present inventors have conducted research efforts in accordance with the above-described objects, and have found that a thin-diameter, low-capacitance insulated wire that could not be realized by the prior art can be realized by coating a completely new configuration,
The present invention has been achieved.

すなわち、本発明は導体外周に熱可塑性樹脂からなる
中空球を混合したエネルギー線硬化型樹脂組成物の被覆
層を有してなる絶縁電線において、該絶縁層中の中空球
の外径が導体の近傍で最大であり、かつ被覆層の外周に
向かって次第に小さくなっていることを特徴とする薄肉
絶縁電線であり、薄膜被覆であっても低静電容量であ
り、しかも製造工程に由来する静電容量変動が少なく、
被覆層が平滑で、高速製造可能という非常に優れた絶縁
電線である。
That is, the present invention relates to an insulated wire having a coating layer of an energy ray-curable resin composition in which hollow spheres made of a thermoplastic resin are mixed on the outer periphery of a conductor, wherein the outer diameter of the hollow spheres in the insulating layer is smaller than that of the conductor. A thin-walled insulated wire characterized in that it has a maximum value in the vicinity and gradually decreases toward the outer periphery of the coating layer. There is little change in electric capacity,
This is a very excellent insulated wire having a smooth coating layer and capable of high-speed production.

また本発明は導体外周に中空球を混合したエネルギー
線硬化型樹脂組成物を塗布し次いで硬化させ絶縁被覆層
を形成する絶縁電線の製造方法において、該中空球とし
て熱可塑性樹脂からなる膨張性中空球を用い、かつ該導
体を予熱した状態でエネルギー線硬化型樹脂組成物を塗
布することにより被覆層中の中空球の外径が導体の近傍
で最大であり、かつ被覆の外周に向かって次第に小さく
なるようにすることを特徴とする薄肉絶縁電線の製造方
法を提供するものである。
The present invention also provides a method for producing an insulated wire in which an energy-ray-curable resin composition containing a mixture of hollow spheres is applied to the outer periphery of a conductor and then cured to form an insulating coating layer. The outer diameter of the hollow sphere in the coating layer is the largest in the vicinity of the conductor by applying the energy ray-curable resin composition while using the sphere, and the conductor is preheated, and gradually toward the outer periphery of the coating It is intended to provide a method of manufacturing a thin-walled insulated wire, characterized in that it is made smaller.

第1図は、本発明の絶縁電線の1例の断面図であり、
1は導体、2は中空球21を混合したエネルギー線硬化型
樹脂22を被覆してなる絶縁層である。図示のように絶縁
層2において中空球21の外径は導体1側に近い程大き
く、絶縁層2の外周に向かって漸次小さくなっている。
FIG. 1 is a sectional view of an example of the insulated wire of the present invention,
Reference numeral 1 denotes a conductor, and 2 denotes an insulating layer coated with an energy ray-curable resin 22 mixed with hollow spheres 21. As shown in the figure, the outer diameter of the hollow sphere 21 in the insulating layer 2 increases as it approaches the conductor 1 side, and gradually decreases toward the outer periphery of the insulating layer 2.

このように絶縁被覆層が導体側程中空球の外径が大き
いという傾斜した外径分布を有する本発明の絶縁電線の
製造方法を、第2図に示す本発明の一具体例により説明
する。同図中3のサプライ装置より繰り出された導体1
は加熱装置6で予熱された後に、4の樹脂塗布装置に入
り、ここでその外周にエネルギー線硬化型樹脂に中空球
2を混合した被覆用樹脂組成分が塗布される。予熱の温
度は例えば100〜300℃程度が好ましい。塗布された該被
覆用樹脂組成物は樹脂硬化装置5において、熱,紫外線
或いは電子線等のエネルギー線を照射を受けて硬化し、
導体1上に被覆2を形成する。この時導体1が予熱され
ているので、中空球は導体側ほど膨張が著しい。樹脂塗
布装置4としては、内部に中空球を含んだ比較的粘度の
高い被覆用樹脂組成物を均一に塗布できる装置が好まし
く、例えば圧力ダイスによる塗布、オープンダイスによ
るディッピング等の公知技術を用いることができる。
The method for manufacturing the insulated wire of the present invention having such an inclined outer diameter distribution that the outer diameter of the hollow sphere is larger toward the conductor in the insulating coating layer will be described with reference to a specific example of the present invention shown in FIG. Conductor 1 extended from supply device 3 in FIG.
After being preheated by the heating device 6, the resin enters a resin coating device 4 where a coating resin component obtained by mixing the hollow spheres 2 with the energy ray-curable resin is applied to the outer periphery thereof. The preheating temperature is preferably, for example, about 100 to 300 ° C. The applied resin composition for coating is cured by irradiation with energy rays such as heat, ultraviolet rays or electron beams in a resin curing device 5,
The coating 2 is formed on the conductor 1. At this time, since the conductor 1 is preheated, the hollow sphere expands significantly toward the conductor. The resin coating device 4 is preferably a device capable of uniformly coating a relatively high-viscosity coating resin composition containing hollow spheres therein. For example, a known technique such as coating with a pressure die and dipping with an open die may be used. Can be.

本発明にいう中空球はその内部に、低沸点の液体、加
熱分解等により気体を発生する化学発泡剤又は例えば空
気,窒素,アルゴン,イソブタン等の気体の少なくとも
1つを内包する中空体で、外殻部分が塩化ビニリデン,
ポリエチレン,フッ素樹脂等の熱可塑性樹脂からなり、
50℃ないし200℃の加熱により膨張するものをいう。
The hollow sphere referred to in the present invention is a hollow body containing therein a low-boiling liquid, a chemical foaming agent that generates a gas by thermal decomposition, or at least one gas such as air, nitrogen, argon, and isobutane. The outer shell is vinylidene chloride,
Made of thermoplastic resin such as polyethylene, fluorine resin, etc.
It expands when heated at 50 ° C to 200 ° C.

この中空球は200μm以下の薄肉で低静電容量の被覆
層を実現するために、球径1〜50μmφ,殻厚0.5μm
以下が好ましく、これは被覆層の平滑さを損なわない、
中空球混入による空隙率を高める、といった理由によ
る。
This hollow sphere has a sphere diameter of 1 to 50 μm and a shell thickness of 0.5 μm in order to realize a thin and low capacitance coating layer of 200 μm or less.
The following is preferable, which does not impair the smoothness of the coating layer,
The reason is that the porosity is increased by mixing hollow spheres.

本発明に係るエネルギー線硬化型樹脂組成物として
は、例えば熱硬化型樹脂、紫外線硬化型樹脂、電子線硬
化型樹脂等が挙げられるが、高速で被覆を形成せしめる
という点で、硬化速度の速い紫外線硬化型樹脂が好まし
い。このようなエネルギー線硬化型樹脂層としては、例
えばシリコーン樹脂,エポキシ樹脂,ウレタン樹脂,ポ
リエステル樹脂,エポキシアクリレート,ウレタンアク
リレート,フッ化アクリレート,シリコーンアクリレー
ト,ポリエステルアクリレート等を用いることができる
が、被覆の静電容量をさげるために、エネルギー線硬化
型樹脂組成物自体の誘電率は低いほうがよく、エネルギ
ー線硬化型樹脂の誘電率は、4.0以下、望ましくは3.0以
下がよい。更にエネルギー線硬化型樹脂の誘電率を下げ
るために、シリコン樹脂,フッ化アクリレート,シリコ
ンアクリレート等を特に選ぶことが好ましい。また、一
般にこの種の絶縁電線被覆用樹脂に添加される発泡剤,
酸化防止剤,光安定剤,樹脂カップリング剤,表面処理
剤,粒子分散剤等の添加物を添加することは、低静電容
量と被覆樹脂の安定性,機械的特性,機能性等を高める
ために有効である。
As the energy ray-curable resin composition according to the present invention, for example, a thermosetting resin, an ultraviolet ray-curable resin, an electron beam-curable resin, and the like can be mentioned, but in terms of forming a coating at a high speed, the curing speed is high. UV-curable resins are preferred. As such an energy ray-curable resin layer, for example, silicone resin, epoxy resin, urethane resin, polyester resin, epoxy acrylate, urethane acrylate, fluorinated acrylate, silicone acrylate, polyester acrylate and the like can be used. In order to reduce the capacitance, the dielectric constant of the energy ray-curable resin composition itself is preferably low, and the dielectric constant of the energy ray-curable resin is preferably 4.0 or less, more preferably 3.0 or less. In order to further lower the dielectric constant of the energy ray-curable resin, it is particularly preferable to select silicon resin, fluorinated acrylate, silicon acrylate and the like. Also, foaming agents generally added to this kind of resin for covering insulated wires,
The addition of additives such as antioxidants, light stabilizers, resin coupling agents, surface treatment agents, particle dispersants, etc., enhances the low capacitance and the stability, mechanical properties, functionality, etc. of the coating resin. It is effective for.

膨張性中空球とエネルギー線硬化型樹脂を混合して得
られる被覆用樹脂組成物において、膨張性中空球のエネ
ルギー線硬化型樹脂に対する混合割合は、中空球の膨張
とエネルギー線硬化型樹脂の硬化によって形成される被
覆の空隙率を40%以上にするために、5容量%以上、被
覆用樹脂組成物を連続して塗布可能なものとするため、
すなわち連続塗布可能な粘性流動体として使用するため
に50容量%以下、の範囲内で目的の空隙率とするために
任意に設定することができる。
In the coating resin composition obtained by mixing the expandable hollow sphere and the energy ray-curable resin, the mixing ratio of the expandable hollow sphere to the energy ray-curable resin is such that the expansion of the hollow sphere and the curing of the energy ray-curable resin are performed. In order to make the porosity of the coating formed by 40% or more, 5% by volume or more, so that the coating resin composition can be applied continuously,
That is, it can be arbitrarily set in order to obtain a target porosity within a range of 50% by volume or less for use as a viscous fluid that can be continuously applied.

また中空球とエネルギー線硬化型樹脂を混合した後の
被覆用樹脂組成物の粘度は100〜100000cpsの範囲にある
ことが実用上好ましい。特に容易に塗布加工するために
は、1000〜10000cpsの粘度範囲にあることが望ましく、
エネルギー線硬化型樹脂の中でも粘度を自由に選択でき
る紫外線硬化型樹脂が1000〜10000cpsの被覆用樹脂組成
物を得るのに適している。
It is practically preferable that the viscosity of the coating resin composition after mixing the hollow spheres and the energy ray-curable resin is in the range of 100 to 100,000 cps. In particular, in order to easily apply the coating process, it is desirable that the viscosity is in the range of 1000 to 10,000 cps,
Among the energy ray-curable resins, an ultraviolet-curable resin whose viscosity can be freely selected is suitable for obtaining a coating resin composition of 1,000 to 10,000 cps.

被覆厚さについては、特に限定されるところはない
が、エネルギー線硬化型樹脂を十分に硬化させるため
に、500μm以下が好ましい。
The coating thickness is not particularly limited, but is preferably 500 μm or less in order to sufficiently cure the energy ray-curable resin.

なお、本発明に係る導体は特に限定されるところはな
く、従来公知の電気導体、例えば銅、アルミニウム或い
はこれらの合金やこれらの表面をメッキしたもの等を用
いることができる。
The conductor according to the present invention is not particularly limited, and a conventionally known electric conductor, for example, copper, aluminum, an alloy thereof, or a material obtained by plating the surface thereof can be used.

〔作用〕[Action]

本発明により、従来技術が実現し得なかった細径低静
電容量絶縁電線を実現できる理由は、以下の通りであ
る。
The reason why the present invention can realize a small-diameter low-capacitance insulated wire that cannot be realized by the prior art is as follows.

ここで本発明の作用を説明するにあたり、空隙率と誘
電率の関係を説明すると、本発明の空隙率Vは密度法に
よって測定され、下記(1)式により算出されるもので
ある。
Here, in describing the operation of the present invention, the relationship between the porosity and the dielectric constant will be described. The porosity V of the present invention is measured by a density method and calculated by the following equation (1).

(ρ−ρ)/ρ×100(%) ……(1) ここでρはベース樹脂の密度、 ρは中空球入り樹脂の密度である。0 −ρ) / ρ 0 × 100 (%) (1) where ρ 0 is the density of the base resin, and ρ is the density of the resin containing hollow spheres.

中空球入りの樹脂組成物の誘電率εは、ベースとする
樹脂そのものの誘電率εと、中空球内の気体の誘電率
ε、及び中空球を含有することにより形成できる空隙
率Vにより決定され、下記(2)式で表されることは、
すでに知られている。
The dielectric constant ε of the resin composition containing the hollow spheres is determined by the dielectric constant ε 1 of the base resin itself, the dielectric constant ε 2 of the gas in the hollow spheres, and the porosity V that can be formed by containing the hollow spheres. Is determined and expressed by the following equation (2):
Already known.

したがって中空球を形成する材質とその空隙率、該樹
脂組成物中の中空球含有率、該樹脂組成物の材質を各々
選択することにより、被覆層中に所望の空隙を安定に形
成できるので、所望の誘電率を有する絶縁層を形成する
ことができる。
Therefore, by selecting the material forming the hollow spheres and its porosity, the content of the hollow spheres in the resin composition, and the material of the resin composition, it is possible to stably form the desired voids in the coating layer, An insulating layer having a desired dielectric constant can be formed.

そして、εを本発明の目的とする低誘電率、すなわち
1.60以下にするにはベース樹脂のεを選択し、空隙率
は40%より大きくすることが必要である。
Then, ε is a low dielectric constant aimed at by the present invention, that is,
To 1.60 selects epsilon 1 of the base resin, the porosity is required to be greater than 40%.

本発明の絶縁電線は第1図のように中空球の外径が導
体側ほど大きくなっているので、導体近傍での誘電率が
低く絶縁性が良いという利点がある。
As shown in FIG. 1, the insulated wire of the present invention has an advantage that the outer diameter of the hollow sphere is larger on the conductor side, so that the dielectric constant near the conductor is low and the insulation is good.

本発明では導体を予め100〜300℃程度に予熱してお
き、これに中空球を混合した被覆用樹脂組成物を塗布す
るので、高温の導体に接する部分では該中空球の内包す
る液体,発泡剤または気体は著しく膨張するが、塗布層
の外周部分は導体の温度の影響はもはや及び難く、殆ど
膨張することがない。この状態で次工程の被覆の硬化装
置に入り、熱硬化の場合には若干外周部の中空球の膨張
があるが、全体には内部から外周にかけて外径が漸次小
さくなるような絶縁層が形成できる。
In the present invention, the conductor is preheated to about 100 to 300 ° C. in advance, and the coating resin composition mixed with the hollow spheres is applied thereto. Although the agent or gas expands remarkably, the outer peripheral portion of the coating layer hardly expands because the influence of the temperature of the conductor is no longer exerted. In this state, it enters the coating curing device in the next step, and in the case of thermal curing, there is a slight expansion of the hollow sphere at the outer periphery, but an insulating layer is formed so that the outer diameter gradually decreases from inside to outside. it can.

また硬化のために高い熱をかけるベース樹脂では樹脂
製中空球内の気体が膨張・収縮したり、中空球そのもの
が変形して空隙率を維持できなくなる危険があるが、本
発明におけるエネルギー線硬化型樹脂として紫外線硬化
型樹脂を用いると、硬化の際に熱がかからないので上記
した中空球の外径分布の傾斜の点で好ましいに加え、誘
電率が低い樹脂製中空球を用いることができ、またエネ
ルギー線硬化型樹脂として固有誘電率の低い樹脂を選択
することで非常に低誘電率な被覆を実現できるのであ
る。
In addition, in the base resin to which high heat is applied for curing, there is a risk that the gas in the resin hollow sphere expands and contracts, or the hollow sphere itself is deformed and the porosity cannot be maintained. When an ultraviolet-curable resin is used as the mold resin, in addition to the above-mentioned preferable in terms of the inclination of the outer diameter distribution of the hollow sphere, heat is not applied at the time of curing, a resin hollow sphere having a low dielectric constant can be used. Further, by selecting a resin having a low intrinsic dielectric constant as the energy ray-curable resin, it is possible to realize a coating having a very low dielectric constant.

膨張した中空球は1〜100μm程度の平均した粒径と
0.5μm以下の薄い殻厚を有するので、薄膜被覆しても
空隙は確実に形成できるため、従来品が到達し得ない20
0μm以下の絶縁層でも静電容量が1.60以下という高速
伝送可能な絶縁電線の製造が可能である。
The expanded hollow sphere has an average particle size of about 1 to 100 μm.
Since it has a thin shell thickness of 0.5 μm or less, voids can be reliably formed even when coated with a thin film.
Even with an insulating layer of 0 μm or less, it is possible to manufacture an insulated wire capable of high-speed transmission with a capacitance of 1.60 or less.

また、本発明は中空球を混合したエネルギー線硬化型
樹脂組成物を塗布し、その後熱、紫外線或いは電子線等
のエネルギー線照射によって該樹脂組成物を硬化させる
ため、従来の熱可塑性樹脂を発泡させたり、テープ巻付
けによる場合より、大幅に製造速度を向上できる。
In addition, the present invention applies an energy ray-curable resin composition mixed with hollow spheres, and then cures the resin composition by irradiation of energy rays such as heat, ultraviolet rays or electron beams. And the production speed can be greatly improved as compared with the case of tape winding.

前記のように該樹脂組成物中の中空球含有率や該樹脂
組成物の材質を選択することにより、誘電率が予め決定
された樹脂組成物を被覆して絶縁層を形成するため、製
造工程上の不安定性に起因する静電容量の変動を回避で
きる。したがって、安定した品質の絶縁電線を容易に製
造できる。
By selecting the content of the hollow spheres in the resin composition and the material of the resin composition as described above, the dielectric layer is coated with a predetermined resin composition to form an insulating layer. The fluctuation of the capacitance due to the above instability can be avoided. Therefore, an insulated wire of stable quality can be easily manufactured.

さらに本発明は粒径が1〜100μmという細かい中空
球が導体側ほど径が大きく外周部ほど径が小さくなって
いることと、外周部ほどベース樹脂の割合が多いため、
絶縁層表面も平滑なものとすることができるので、被覆
の機械的強度を向上できる。
Furthermore, the present invention is that the fine hollow spheres having a particle diameter of 1 to 100 μm have a larger diameter on the conductor side and a smaller diameter on the outer peripheral portion, and the ratio of the base resin is larger on the outer peripheral portion,
Since the insulating layer surface can be made smooth, the mechanical strength of the coating can be improved.

〔実施例〕〔Example〕

実施例1 粘度700cpsのシリコーンアクリレートを主成分とする
紫外線硬化型樹脂(硬化後の誘電率2.95)に、イソブタ
ンガス発泡剤を内包した平均粒径5〜10μm、殻厚0.5
μmの塩化ビニリデン系ポリマーの殻からなる中空球体
を該紫外線硬化型樹脂に対し20体積%添加し、撹拌分散
させて粘度5000cpsの被覆用樹脂組成物を作製した。
Example 1 An ultraviolet-curable resin mainly composed of silicone acrylate having a viscosity of 700 cps (dielectric constant after curing is 2.95), containing an isobutane gas foaming agent, has an average particle size of 5 to 10 μm, and a shell thickness of 0.5.
20 μm by volume of a hollow sphere made of a vinylidene chloride polymer shell having a thickness of μm was added to the ultraviolet-curable resin, followed by stirring and dispersion to prepare a coating resin composition having a viscosity of 5000 cps.

第2図の製造ラインに従い外径150μmのφの銀メッ
キ銅線を200℃の赤外炉で予備加熱した後に、上記の被
覆用樹脂組成物を加圧ダイスにより40μmの厚みに塗布
し、水銀ランプからなる紫外線−赤外線照射装置を通し
て中空球の膨張と紫外線硬化型樹脂の硬化を同時に行っ
て、外径400μmφの本発明の絶縁電線を得た。
According to the production line shown in FIG. 2, a silver-plated copper wire having an outer diameter of 150 μm was preliminarily heated in an infrared furnace at 200 ° C., and then the above-mentioned resin composition for coating was applied to a thickness of 40 μm with a pressure die to obtain mercury. The expansion of the hollow sphere and the curing of the ultraviolet-curable resin were simultaneously performed through an ultraviolet-infrared irradiation device comprising a lamp to obtain an insulated wire of the present invention having an outer diameter of 400 μmφ.

該絶縁電線の被覆断面を観察したところ中心の導体に
最も近い部分で中空球の大きさが40〜50μmφ、被覆断
面中央部分で20〜30μmφ、最外被部分で10〜20μmφ
と予熱した導体に近いほど膨張度の大きい分布であっ
た。また当該絶縁電線の被覆の空隙率(密度法による)
は70%、誘電率は1.46(f=1M Hz)と低誘電率であっ
た。
Observation of the coating cross section of the insulated wire revealed that the size of the hollow sphere was 40-50 μmφ at the portion closest to the center conductor, 20-30 μmφ at the center of the coating cross section, and 10-20 μmφ at the outermost coating.
The distribution was such that the degree of expansion was larger as the conductor was closer to the preheated conductor. The porosity of the covering of the insulated wire (by the density method)
Was 70% and the dielectric constant was 1.46 (f = 1 MHz), which was a low dielectric constant.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の絶縁電線は絶縁層中に
熱可塑性樹脂からなる中空球を含有し、これが熱により
膨張した部分を有するので導体に近いほど大きな空隙率
をもち低誘電率が実現できる。また被覆外被に近いほど
中空球の膨張度は小さいため、大きな空隙率を有しなが
ら外被表面はベース樹脂がリッチでより平滑な被覆とし
て形成されていて、被覆の機械的強度向上の点で有利で
ある。
As described above, the insulated wire of the present invention contains a hollow sphere made of a thermoplastic resin in the insulating layer, which has a portion expanded by heat, so that the closer to the conductor, the larger the porosity and the lower the dielectric constant. it can. Also, since the degree of expansion of the hollow sphere is smaller as it is closer to the coating jacket, the coating surface is formed as a richer and smoother coating of the base resin while having a large porosity, and the mechanical strength of the coating is improved. Is advantageous.

そして本発明の製造方法は上記の中空球の外径が傾斜
した分布を実現できるという効果を奏する。本発明の薄
肉絶縁電線は医療用計測器,コンピュータ計測機などの
高速伝送用絶縁電線としての用途に好適である。
The production method of the present invention has an effect that a distribution in which the outer diameter of the hollow sphere is inclined can be realized. The thin insulated wire of the present invention is suitable for use as a high-speed transmission insulated wire such as a medical measuring instrument and a computer measuring instrument.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の絶縁電線の1例の断面図、第2図は本
発明の絶縁電線の製造法の1例を示す概略説明図であ
る。 図中、1は導体、2は中空球含有被覆層、21は中空球、
22は樹脂、3はサプライ装置、4は塗布装置、5はエネ
ルギー線照射装置、6は予熱炉、7は巻取機を表す。
FIG. 1 is a cross-sectional view of one example of the insulated wire of the present invention, and FIG. 2 is a schematic explanatory view showing one example of the method of manufacturing the insulated wire of the present invention. In the figure, 1 is a conductor, 2 is a hollow sphere-containing coating layer, 21 is a hollow sphere,
22 is a resin, 3 is a supply device, 4 is a coating device, 5 is an energy beam irradiation device, 6 is a preheating furnace, and 7 is a winding machine.

フロントページの続き (56)参考文献 特開 昭57−13610(JP,A) 特開 昭58−64713(JP,A) 特開 昭59−227933(JP,A) 特開 昭63−181208(JP,A) 特開 昭63−211515(JP,A) 実公 昭59−37936(JP,Y2)Continuation of front page (56) References JP-A-57-13610 (JP, A) JP-A-58-64713 (JP, A) JP-A-59-227933 (JP, A) JP-A-63-181208 (JP, A) , A) JP-A-63-211515 (JP, A) J.P.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導体外周に熱可塑性樹脂からなる中空球を
混合したエネルギー線硬化型樹脂組成物の被覆層を有し
てなる絶縁電線において、該絶縁層中の中空球の外径が
導体の近傍で最大であり、かつ被覆層の外周に向かって
次第に小さくなっていることを特徴とする薄肉絶縁電
線。
1. An insulated wire having a coating layer of an energy ray-curable resin composition in which hollow spheres made of a thermoplastic resin are mixed on the outer periphery of a conductor, wherein the outer diameter of the hollow spheres in the insulating layer is equal to that of the conductor. A thin-walled insulated wire having a maximum value in the vicinity and gradually decreasing toward the outer periphery of the coating layer.
【請求項2】導体外周に中空球を混合したエネルギー線
硬化型樹脂組成物を塗布し次いで硬化させ絶縁被覆層を
形成する絶縁電線の製造方法において、該中空球として
熱可塑性樹脂からなる膨張性中空球を用い、かつ該導体
を予熱した状態でエネルギー線硬化型樹脂組成物を塗布
することにより被覆層中の中空球の外径が導体の近傍で
最大であり、かつ被覆の外周に向かって次第に小さくな
るようにすることを特徴とする薄肉絶縁電線の製造方
法。
2. A method for producing an insulated wire in which an energy ray-curable resin composition containing a mixture of hollow spheres is applied to the outer periphery of a conductor and then cured to form an insulating coating layer. The outer diameter of the hollow sphere in the coating layer is largest near the conductor by applying the energy ray-curable resin composition while using the hollow sphere and preheating the conductor, and toward the outer periphery of the coating. A method for manufacturing a thin-walled insulated wire, characterized in that the wire is gradually reduced in size.
JP1095371A 1989-03-15 1989-04-17 Insulated wire and its manufacturing method Expired - Fee Related JP2737234B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1095371A JP2737234B2 (en) 1989-04-17 1989-04-17 Insulated wire and its manufacturing method
TW079101530A TW297798B (en) 1989-03-15 1990-02-27
EP90104732A EP0387796B1 (en) 1989-03-15 1990-03-13 Insulated electric wire and process for producing the same
US07/492,794 US5128175A (en) 1989-03-15 1990-03-13 Insulated electric wire and process for producing the same
DE69022085T DE69022085T2 (en) 1989-03-15 1990-03-13 Insulated electrical wire and process for its manufacture.
FI901266A FI111669B (en) 1989-03-15 1990-03-14 Insulated electric cable and its manufacturing method
KR1019900003488A KR960008356B1 (en) 1989-03-15 1990-03-15 Insulated wire
CA002012282A CA2012282C (en) 1989-03-15 1990-03-15 Insulated electric wire and process for producing the same
US07/803,954 US5192834A (en) 1989-03-15 1991-12-09 Insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095371A JP2737234B2 (en) 1989-04-17 1989-04-17 Insulated wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02276109A JPH02276109A (en) 1990-11-13
JP2737234B2 true JP2737234B2 (en) 1998-04-08

Family

ID=14135771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095371A Expired - Fee Related JP2737234B2 (en) 1989-03-15 1989-04-17 Insulated wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2737234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080632A (en) * 2014-11-07 2017-07-10 후루카와 덴키 고교 가부시키가이샤 Insulating wire and rotating electric machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620370B2 (en) * 1989-05-01 1997-06-11 住友電気工業株式会社 Insulated wire, its manufacturing method and coaxial insulated wire
US20110017494A1 (en) * 2009-07-24 2011-01-27 General Electric Company Insulating compositions and devices incorporating the same
JP5699971B2 (en) * 2012-03-28 2015-04-15 日立金属株式会社 Insulated wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713610A (en) * 1980-06-30 1982-01-23 Tokyo Shibaura Electric Co Electrically insulating material
JPS5864713A (en) * 1981-10-12 1983-04-18 古河電気工業株式会社 Method of controlling electrostatic capacity of foamable insulating wire
JPS5937936U (en) * 1982-09-02 1984-03-10 シャープ株式会社 Air supply and exhaust system for closed hot air heaters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080632A (en) * 2014-11-07 2017-07-10 후루카와 덴키 고교 가부시키가이샤 Insulating wire and rotating electric machine
KR102136081B1 (en) * 2014-11-07 2020-07-21 후루카와 덴키 고교 가부시키가이샤 Insulating wire and rotating electric machine

Also Published As

Publication number Publication date
JPH02276109A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
US5192834A (en) Insulated electric wire
US5128175A (en) Insulated electric wire and process for producing the same
US5115103A (en) Insulated conductor and method of producing the same
CA1154216A (en) Foamed perfluorocarbon resin compositions
US4368350A (en) Corrugated coaxial cable
US4683166A (en) Foamed plastic insulated wire and method for producing same
US4826725A (en) Manufacture of low density, sintered polytetrafluorethylene articles
JP2737234B2 (en) Insulated wire and its manufacturing method
JP2514705B2 (en) Insulated wire and its manufacturing method
JP2651006B2 (en) Manufacturing method of insulated wire
US4547328A (en) Method for producing foamed plastic insulator
JP2737285B2 (en) Method and apparatus for manufacturing insulated wire
JP2789645B2 (en) Insulated wire and its manufacturing method
JP2620370B2 (en) Insulated wire, its manufacturing method and coaxial insulated wire
EP0198620A2 (en) Manufacture of low density, sintered polytetrafluoroethylene articles
JPH0997523A (en) Insulated electric wire and its manufacture
JPH09180546A (en) Insulated wire and manufacture thereof
KR820002000B1 (en) Manufacturing method of high foamable polyolefin insulating-wire
JPH0448508A (en) Foamed plastic insulated wire
JPH0422014A (en) Manufacture of multi-core cable
JPH05258615A (en) Insulated electric cable and its manufacture
JPH06267353A (en) Manufacture of foaming insulated wire
JPS5811047B2 (en) Manufacturing method of highly foamed polyolefin insulated wire
JPH04144007A (en) Foamed electric wire for coaxial cable and manufacture thereof
JPH01221815A (en) Manufacture of highly formed fluorine resin insulated cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees