JP2620370B2 - Insulated wire, its manufacturing method and coaxial insulated wire - Google Patents

Insulated wire, its manufacturing method and coaxial insulated wire

Info

Publication number
JP2620370B2
JP2620370B2 JP1109141A JP10914189A JP2620370B2 JP 2620370 B2 JP2620370 B2 JP 2620370B2 JP 1109141 A JP1109141 A JP 1109141A JP 10914189 A JP10914189 A JP 10914189A JP 2620370 B2 JP2620370 B2 JP 2620370B2
Authority
JP
Japan
Prior art keywords
insulating layer
conductor
insulated wire
inner insulating
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1109141A
Other languages
Japanese (ja)
Other versions
JPH02291609A (en
Inventor
樹哉 角田
徹 山西
昭典 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1109141A priority Critical patent/JP2620370B2/en
Priority to TW079101530A priority patent/TW297798B/zh
Priority to EP90104732A priority patent/EP0387796B1/en
Priority to DE69022085T priority patent/DE69022085T2/en
Priority to US07/492,794 priority patent/US5128175A/en
Priority to FI901266A priority patent/FI111669B/en
Priority to CA002012282A priority patent/CA2012282C/en
Priority to KR1019900003488A priority patent/KR960008356B1/en
Publication of JPH02291609A publication Critical patent/JPH02291609A/en
Priority to US07/803,954 priority patent/US5192834A/en
Application granted granted Critical
Publication of JP2620370B2 publication Critical patent/JP2620370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Laminated Bodies (AREA)
  • Communication Cables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低誘電率で細径の絶縁電線とその製造方法並
びに同軸の絶縁電線に関するものである。
Description: TECHNICAL FIELD The present invention relates to an insulated wire having a low dielectric constant and a small diameter, a method for manufacturing the same, and a coaxial insulated wire.

〔従来の技術〕[Conventional technology]

導体上に薄膜の絶縁層を形成する従来技術としては、
例えば特公昭57−30253号公報に記載されるような発泡
押出技術がある。これは一般にポリオレフィン系の樹脂
をアゾジカルボンアミドのような化学発泡剤、窒素,ア
ルゴン等の不活性気体あるいは気体状又は液体状の炭化
水素又はフロロカーボンのいずれか或いはそれらの併用
により発泡させ、大きな空隙率により低誘電率の絶縁層
を得るものである。
As a conventional technique for forming a thin insulating layer on a conductor,
For example, there is a foam extrusion technique as described in JP-B-57-30253. This is generally achieved by foaming a polyolefin resin with a chemical foaming agent such as azodicarbonamide, an inert gas such as nitrogen or argon, or a gaseous or liquid hydrocarbon or fluorocarbon, or a combination thereof, to form a large void. An insulating layer having a low dielectric constant is obtained depending on the ratio.

一方、例えば米国特許第3953566号明細書或いは同第4
187390号明細書に示されるような、延伸により大きな空
隙率を有するフッ素樹脂テープを導体上に巻き付けて、
絶縁層を形成させる方法がある。この方法は発泡押出技
術に比較して誘電率の既知のテープ材料を導体上に巻き
付けるため、絶縁層の誘電率の安定性を確保でき、さら
に薄膜でかつ高空隙率の絶縁層を実現することができ
る。
On the other hand, for example, U.S. Pat.
As shown in the 187390 specification, by winding a fluororesin tape having a large porosity by stretching over a conductor,
There is a method of forming an insulating layer. In this method, a tape material with a known dielectric constant is wound around the conductor compared to the foam extrusion technique, so that the dielectric constant of the insulating layer can be stabilized, and a thin-film and high-porosity insulating layer can be realized. Can be.

更に特公昭56−43564,同57−39006各号公報には、粒
径数μm〜数mmのガラス、アルミナ等無機材料からなる
中空球又は発泡状球体の表面に熱可塑性樹脂を被覆した
ものを溶融押出する方法及びポリエチレン,ポリ塩化ビ
ニル等の熱可塑性樹脂と無機質中空球をキシレン等の溶
剤に溶解して導体に塗布・乾燥し、絶縁電線を得る方法
が提案されている。
Further, Japanese Patent Publication Nos. 56-43564 and 57-39006 each disclose a method in which a glass having a particle diameter of several μm to several mm, a hollow sphere or a foamed sphere made of an inorganic material such as alumina is coated with a thermoplastic resin. A melt extrusion method and a method in which a thermoplastic resin such as polyethylene or polyvinyl chloride and inorganic hollow spheres are dissolved in a solvent such as xylene, applied to a conductor, and dried to obtain an insulated wire have been proposed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで近時、医療分野,コンピュータ計測分野その
他の分野で、細径の高密度信号伝送線への要求が高まっ
ており、細径の導体に薄い被覆を施し、かつ低誘電率で
ある細径絶縁電線の開発が急がれている。
In recent years, in the medical field, computer measurement field, and other fields, there has been a growing demand for small-diameter, high-density signal transmission lines. The development of electric wires is urgent.

上記の従来技術のうち、特公昭57−30253号公報に記
載される方法は、スクリュー押出機によりポリオレフィ
ン系樹脂の溶融,発泡、導体上への被覆を同時に行なう
ため、薄膜の絶縁層においては高発泡度を得ることが難
しく、被覆厚さはせいぜい200μmが下限である、とい
う欠点を有している。また、この方法では発泡度の制御
も容易ではない。
Among the above-mentioned prior arts, the method described in Japanese Patent Publication No. 57-30253 discloses that a polyolefin resin is melted, foamed, and coated on a conductor simultaneously by a screw extruder. It has a drawback that it is difficult to obtain a degree of foaming and the lower limit of the coating thickness is at most 200 μm. Further, it is not easy to control the degree of foaming by this method.

一方、米国特許第3953566、4187390各号明細書に記載
される方法は、その製法上、絶縁層表面の部分的な凹凸
は避けられず、製造線速も非常に遅いという問題点があ
った。
On the other hand, the methods described in U.S. Pat. Nos. 3,953,566 and 4,187,390 have a problem that, due to the manufacturing method, partial irregularities on the surface of the insulating layer cannot be avoided, and the production line speed is very slow.

特公昭56−43564,同57−39006角号公報に記載の方法
は、発泡度の制御は容易であるが、以下のような欠点を
有している。すなわち前者の熱可塑性樹脂を被覆した中
空球発泡状球体を押出被覆する方法では、中空球の表面
に被覆された熱可塑性樹脂が溶融し導体上に塗布された
後に冷却され中空球を接合するため、高空隙率を得る目
的で該熱可塑性樹脂層を薄くすると、導体上に形成され
た絶縁層の機械的強度、特に伸び率が著しく低下し、一
方絶縁層の機械的強度を保持するため中空球の熱可塑性
樹脂層を厚くすると、結果として空隙率が下がり、電線
としての誘電率が上がってしまう。また、押出機内で少
なくとも150℃以上の温度と高圧を加えるため、用いる
中空球としてはガラス,アルミナ等の無機材料に限定さ
れる。しかし、これらの中空球は材料としての固有誘電
率が高く、低誘電率低損失ケーブルを製造することはで
きない。
The methods described in JP-B-56-43564 and JP-B-57-39006 are easy to control the degree of foaming, but have the following disadvantages. In other words, in the former method of extrusion-coating a hollow sphere foamed sphere coated with a thermoplastic resin, the thermoplastic resin coated on the surface of the hollow sphere is cooled after being melted and applied on a conductor, so that the hollow sphere is joined. When the thickness of the thermoplastic resin layer is reduced for the purpose of obtaining a high porosity, the mechanical strength of the insulating layer formed on the conductor, particularly the elongation, is significantly reduced, while the hollow is used to maintain the mechanical strength of the insulating layer. When the thermoplastic resin layer of the sphere is thickened, the porosity decreases as a result, and the dielectric constant of the electric wire increases. Further, since a temperature and a high pressure of at least 150 ° C. are applied in the extruder, the hollow spheres used are limited to inorganic materials such as glass and alumina. However, these hollow spheres have a high intrinsic dielectric constant as a material, and a low dielectric constant low loss cable cannot be manufactured.

また後者のポリエチレン,ポリ塩化ビニル等の熱可塑
性樹脂と無機質中空球をキシレン等の溶剤に溶解して塗
布後乾燥し、絶縁電線を形成する方法では、前者と同様
に乾燥時に熱を加えるため、用い得る中空球が限定さ
れ、やはり低誘電率低損失ケーブルを製造することが困
難であり、さらに塗布された液状組成物中の溶剤を蒸発
乾燥させるため、製造速度が著しく小さいという欠点を
有している。
In the latter method, a thermoplastic resin such as polyethylene or polyvinyl chloride and inorganic hollow spheres are dissolved in a solvent such as xylene and applied, followed by drying, to form an insulated wire. The hollow spheres that can be used are limited, and it is also difficult to produce a low-dielectric-constant low-loss cable.Moreover, since the solvent in the applied liquid composition is evaporated and dried, the production speed is extremely low. ing.

本発明はこのような従来技術の欠点を解消して、電気
特性の良好な低誘電率で200μm以下の薄肉被覆も実現
できる絶縁電線とその製造方法並びに同軸の絶縁電線を
提供せんとするものである。
The present invention solves the drawbacks of the prior art and provides an insulated wire, a method of manufacturing the same, and a coaxial insulated wire capable of realizing a thin coating of 200 μm or less with good electric characteristics and a low dielectric constant. is there.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は上記の目的に沿って研究努力の結果、従
来技術では実現できなかった細径低静電容量絶縁電線を
全く新規な構成の被覆により実現できることを見出し、
本発明に達し得たのである。
The present inventors have conducted research efforts in accordance with the above-described objects, and have found that a thin-diameter, low-capacitance insulated wire that could not be realized by the prior art can be realized by coating a completely new configuration,
The present invention has been achieved.

すなわち、本発明は 1) 導体外周に内部絶縁層と外部絶縁層を有してなる
絶縁電線において、上記内部絶縁層は膨張性中空球を内
包した紫外線硬化型樹脂組成物からなり、該膨張性中空
球は内部に低沸点の液体,化学発泡剤又は気体の少なく
とも1つを内包し、外殻部分が熱可塑性樹脂からなるも
のであり、かつ該導体の長さ方向断面において厚肉部を
周期的に又は非周期的に有し、該厚肉部に接して円筒状
の外部絶縁層を形成してなることを特徴とする絶縁電
線、 2) 導体外周に内部絶縁層と外部絶縁層を有してなる
絶縁電線において、上記内部絶縁層は膨張性中空球を内
包した紫外線硬化型樹脂組成物からなり、該膨張性中空
球は内部に低沸点の液体,化学発泡剤又は気体の少なく
とも1つを内包し、外殻部分が熱可塑性樹脂からなるも
のであり、かつ該導体の円周方向断面における厚肉部を
長さ方向に連続し又は周期的に有し、該厚肉部に接して
円筒状の外部絶縁層を形成してなることを特徴とする絶
縁電線、及び 3) 導体外周に内部絶縁層と外部絶縁層を有してなる
絶縁電線において、上記内部絶縁層は膨張性中空球を内
包した紫外線硬化型樹脂組成物からなり、該膨張性中空
球は内部に低沸点の液体,化学発泡剤又は気体の少なく
とも1つを内包し、外殻部分が熱可塑性樹脂からなるも
のであり、かつ該内部絶縁層はらせん状に厚肉部を有
し、該厚肉部に接して円筒状の外部絶縁層を形成してな
ることを特徴とする絶縁電線、 を提供するものである。
That is, the present invention provides: 1) In an insulated wire having an inner insulating layer and an outer insulating layer on the outer periphery of a conductor, the inner insulating layer is made of an ultraviolet-curable resin composition containing expandable hollow spheres. The hollow sphere contains at least one of a low-boiling liquid, a chemical foaming agent, and a gas therein, has an outer shell made of a thermoplastic resin, and periodically forms a thick portion in a longitudinal cross section of the conductor. An insulated wire characterized by having a cylindrical outer insulating layer formed in contact with the thick portion, either periodically or aperiodically; 2) having an inner insulating layer and an outer insulating layer around the conductor In the insulated wire, the inner insulating layer is made of an ultraviolet-curable resin composition containing expandable hollow spheres, and the expandable hollow spheres have at least one of a low-boiling liquid, a chemical foaming agent, and a gas. And the outer shell is made of thermoplastic resin And having a thick portion in a circumferential cross section of the conductor continuously or periodically in a longitudinal direction, and forming a cylindrical external insulating layer in contact with the thick portion. And 3) an insulated wire having an inner insulating layer and an outer insulating layer on the outer periphery of a conductor, wherein the inner insulating layer is made of a UV-curable resin composition containing expandable hollow spheres. The expandable hollow sphere contains at least one of a low-boiling liquid, a chemical foaming agent, and a gas therein, has an outer shell made of a thermoplastic resin, and the inner insulating layer has a helically thick portion. And an insulated wire having a cylindrical outer insulating layer formed in contact with the thick portion.

本発明の絶縁電線は薄膜被覆であっても低静電容量で
あり、しかも製造工程に由来する静電容量変動が少な
く、被覆層が平滑で、高速製造可能という非常に優れた
絶縁電線である。
The insulated wire of the present invention is a very excellent insulated wire that has a low capacitance even if it is a thin film coating, has a small variation in capacitance due to the manufacturing process, has a smooth coating layer, and can be manufactured at high speed. .

本発明においては上記の外部絶縁層に代えて外部導体
を設けた同軸の絶縁電線であってもよい。
In the present invention, a coaxial insulated wire provided with an external conductor instead of the external insulating layer may be used.

また上記絶縁電線の外部絶縁層のさらに外周に、中心
の導体と同軸に外部導体層を形成することにより同軸の
絶縁電線としてもよい。
Further, a coaxial insulated wire may be formed by forming an outer conductor layer coaxially with the center conductor on the outer periphery of the outer insulating layer of the insulated wire.

また本発明は 4) 導体外周に樹脂組成物を塗布した後硬化させて内
部絶縁層を形成し、次いで外部絶縁層を形成する絶縁電
線の製造方法において、膨張性中空球を混合した紫外線
硬化型樹脂組成物を導体外周に塗布し、該膨張性中空球
は内部に低沸点の液体,化学発泡剤又は気体の少なくと
も1つを内包し、外殻部分が熱可塑性樹脂からなるもの
であり、該紫外線硬化型樹脂層に紫外線を照射して硬化
させた後もしくは硬化と同時に該紫外線硬化型樹脂を加
熱することにより、該導体の長さ方向断面において厚肉
部を周期的に又は非周期的に有する内部絶縁層を形成
し、次いで該厚肉部に接して円筒状に外部絶縁層を形成
することを特徴とする絶縁電線の製造方法、 5) 導体外周に樹脂組成物を塗布した後硬化させて内
部絶縁層を形成し、次いで外部絶縁層を形成する絶縁電
線の製造方法において、膨張性中空球を混合した紫外線
硬化型樹脂組成物を導体外周に塗布し、該膨張性中空球
は内部に低沸点の液体,化学発泡剤又は気体の少なくと
も1つを内包し、外殻部分が熱可塑性樹脂からなるもの
であり、該紫外線硬化型樹脂層に紫外線を照射して硬化
させた後もしくは硬化と同時に該紫外線硬化型樹脂を加
熱することにより、該導体の円周方向断面における厚肉
部を長さ方向に連続し又は周期的に有する内部絶縁層を
形成し、次いで該厚肉部に接して円筒状に外部絶縁層を
形成することを特徴とする絶縁電線の製造方法、及び 6) 導体外周に樹脂組成物を塗布した後硬化させて内
部絶縁層を形成し、次いで外部絶縁層を形成する絶縁電
線の製造方法において、膨張性中空球を混合した紫外線
硬化型樹脂組成物を導体外周に塗布し、該膨張性中空球
は内部に低沸点の液体,化学発泡剤又は気体の少なくと
も1つを内包し、外殻部分が熱可塑性樹脂からなるもの
であり、該紫外線硬化型樹空球は内部に低沸点の液体,
化学発泡剤又は気体の少なくとも1つを内包し、外殻部
分が熱可塑性樹脂からなるものであり、該紫外線硬化型
樹脂層に紫外線を照射して硬化させた後もしくは硬化と
同時に該紫外線硬化型樹脂を加熱することにより、らせ
ん状に厚肉部を有する内部絶縁層を形成し、次いで該厚
肉部に接して円筒状に外部絶縁層を形成することを特徴
とする絶縁電線の製造方法、 を提供するものである。
4) A method of manufacturing an insulated wire in which an inner insulating layer is formed by applying a resin composition to the outer periphery of a conductor and then curing the coated resin composition, and then forming an outer insulating layer, the method comprises: A resin composition is applied to the outer periphery of the conductor, and the expandable hollow sphere contains at least one of a low-boiling liquid, a chemical foaming agent or a gas therein, and an outer shell portion is made of a thermoplastic resin. By heating the UV-curable resin after or simultaneously with curing the UV-curable resin layer by irradiating ultraviolet rays to the UV-curable resin layer, the thick portion in the longitudinal cross section of the conductor is periodically or aperiodically formed. A method of manufacturing an insulated wire, comprising: forming an inner insulating layer having an inner insulating layer, and then forming an outer insulating layer in a cylindrical shape in contact with the thick portion. 5) A resin composition is applied to the outer periphery of the conductor and cured after application. To form an internal insulating layer, Next, in a method for manufacturing an insulated wire for forming an outer insulating layer, an ultraviolet-curable resin composition mixed with expandable hollow spheres is applied to the outer periphery of the conductor, and the expandable hollow spheres have a low-boiling liquid, Or, at least one of the gases is included, and the outer shell portion is made of a thermoplastic resin. Thereby forming an internal insulating layer having a thick section in the circumferential cross section of the conductor continuously or periodically in the length direction, and then forming a cylindrical outer insulating layer in contact with the thick section. And 6) a method of manufacturing an insulated wire in which a resin composition is applied to the outer periphery of the conductor and then cured to form an inner insulating layer, and then an outer insulating layer is formed. Hollow sphere The combined UV-curable resin composition is applied to the outer periphery of the conductor, and the expandable hollow sphere contains at least one of a low-boiling liquid, a chemical foaming agent, and a gas therein, and the outer shell portion is made of a thermoplastic resin. Wherein the ultraviolet-curable tree sphere contains a low-boiling liquid,
The ultraviolet curable resin layer contains at least one of a chemical foaming agent and a gas, and has an outer shell portion made of a thermoplastic resin. A method for manufacturing an insulated wire, comprising: forming an inner insulating layer having a helically thick portion by heating a resin; and then forming an outer insulating layer in a cylindrical shape in contact with the thick portion, Is provided.

本発明の同軸の絶縁電線は、上記の製造方法と同様に
厚肉部を有する内部絶縁層を形成し、次いで外部絶縁層
に代えて円筒形の外部導体を設けるか、あるいは外部絶
縁層のさらに外周に、中心の導体と同軸に外部導体層を
形成することにより製造できる。
The coaxial insulated wire of the present invention forms an inner insulating layer having a thick portion in the same manner as the above manufacturing method, and then provides a cylindrical outer conductor instead of the outer insulating layer, or further includes an outer insulating layer. It can be manufactured by forming an outer conductor layer on the outer periphery coaxially with the center conductor.

第1図乃至第4図は本発明の絶縁電線の内部絶縁層の
形状と外部絶縁層又は外部導体の形成の具体例を示した
斜視図であって、第1図は導体1の円周方向に厚肉部
(凸部)と凹部を交互に有する膨張性中空球含有紫外線
硬化型樹脂組成物の内部絶縁層2を設けたもので、21は
膨張した気泡部、22は中空球の外殻、23は紫外線硬化型
樹脂である。第2図は導体1の長さ方向に内部絶縁層2
が厚肉部と凹部を交互に有する例である。第3図(a)
は導体1の円周及び長さ方向に、つまりらせん状に厚肉
部を有する内部絶縁層2の例であり、外部絶縁層3はテ
ープ状のものを巻きつけて形成している。同図(b)は
内部絶縁層の断面を拡大して示した図である。第4図は
外部絶縁層3の外周に外部導体4を設け、さらに外被5
を設けた同軸電線の一例を示し、Aは空隙である。
1 to 4 are perspective views showing a specific example of the shape of the inner insulating layer and the formation of the outer insulating layer or the outer conductor of the insulated wire of the present invention, and FIG. Is provided with an inner insulating layer 2 of an inflatable hollow sphere-containing ultraviolet curable resin composition having alternately thick portions (convex portions) and concave portions, wherein 21 is an expanded bubble portion, and 22 is an outer shell of the hollow sphere. And 23 are ultraviolet-curable resins. FIG. 2 shows the inner insulating layer 2 in the longitudinal direction of the conductor 1.
Is an example having a thick portion and a concave portion alternately. Fig. 3 (a)
Is an example of the inner insulating layer 2 having a thick portion in the circumferential and longitudinal directions of the conductor 1, that is, in a spiral shape, and the outer insulating layer 3 is formed by winding a tape-shaped one. FIG. 2B is an enlarged view of a cross section of the internal insulating layer. FIG. 4 shows that an outer conductor 4 is provided on the outer periphery of the outer insulating layer 3,
An example of a coaxial wire provided with is shown, where A is a gap.

本発明の被覆用樹脂組成物とは、紫外線硬化型樹脂組
成物又は紫外線硬化型樹脂に膨張性中空球を混合したも
のである。
The coating resin composition of the present invention is an ultraviolet-curable resin composition or a mixture of an ultraviolet-curable resin and expandable hollow spheres.

本発明にいう膨張性中空球とは、内部に低沸点の液
体,加熱分解等により気体を発生する化学発泡剤又は空
気,窒素,アルゴン,イソブタン等の気体の少なくとも
1つを内包する球体で、外殻部分が塩化ビニリデン,ポ
リエチレン,フッ素樹脂等の熱可塑性樹脂からなり、50
℃ないし200℃の加熱により膨張するものをいう。
The expandable hollow sphere referred to in the present invention is a sphere containing therein at least one of a low-boiling liquid, a chemical foaming agent that generates a gas by thermal decomposition, or a gas such as air, nitrogen, argon, or isobutane. The outer shell is made of thermoplastic resin such as vinylidene chloride, polyethylene, fluororesin, etc.
It expands when heated at a temperature between ℃ and 200 ℃.

この中空球は200μm以下の薄肉で低静電容量の被覆
層を実現するために、球径1〜50μmφ,殻厚0.5μm
以下が好ましく、これは被覆層の平滑さを損なわない、
中空球混入による空隙率を高める、といった理由によ
る。
This hollow sphere has a sphere diameter of 1 to 50 μm and a shell thickness of 0.5 μm in order to realize a thin and low capacitance coating layer of 200 μm or less.
The following is preferable, which does not impair the smoothness of the coating layer,
The reason is that the porosity is increased by mixing hollow spheres.

本発明においては、高速で被覆を形成せしめるという
点で、硬化速度の速い紫外線硬化型樹脂を用いる。この
ような紫外線硬化型樹脂として、例えばシリコーン樹
脂,エポキシ樹脂,ウレタン樹脂,ポリエステル樹脂,
エポキシアクリレート,ウレタンアクリレート,フッ化
アクリレート,シリコーンアクリレート,ポリエステル
アクリレート等を用いることができるが、被覆の静電容
量をさげるために、紫外線硬化型樹脂組成物自体の誘電
率は低いほうがよく、紫外線硬化型樹脂の誘電率は4.0
以下、望ましくは3.0以下がよい。更に紫外線硬化型樹
脂の誘電率を下げるために、シリコン樹脂,フッ化アク
リレート,シリコンアクリレート等を特に選ぶことが好
ましい。
In the present invention, an ultraviolet curable resin having a high curing speed is used in that a coating is formed at a high speed. Examples of such UV-curable resins include silicone resins, epoxy resins, urethane resins, polyester resins,
Epoxy acrylate, urethane acrylate, fluorinated acrylate, silicone acrylate, polyester acrylate, etc. can be used, but in order to reduce the capacitance of the coating, the lower the dielectric constant of the UV-curable resin composition itself, the better. The dielectric constant of the mold resin is 4.0
Below, desirably 3.0 or less is desirable. In order to further reduce the dielectric constant of the ultraviolet curing resin, it is particularly preferable to select silicone resin, fluorinated acrylate, silicon acrylate, or the like.

また、紫外線硬化型樹脂は硬化後に加熱により内包し
た中空球が膨張する際に発生する伸び歪に耐えるため、
30%以上好ましくは100%以上の伸び率を有することが
望ましい。
In addition, since the ultraviolet-curable resin resists the elongation strain generated when the hollow spheres enclosed by heating expand after curing,
It is desirable to have an elongation of 30% or more, preferably 100% or more.

そして、一般にこの種の絶縁電線被覆用樹脂に添加さ
れる発泡剤,酸化防止剤,光安定剤,樹脂カップリング
剤,表面処理剤,粒子分散剤等の添加物を添加すること
は、低静電容量と被覆樹脂の安定性,機械的特性,機能
性等を高めるために有効である。
In general, the addition of additives such as a foaming agent, an antioxidant, a light stabilizer, a resin coupling agent, a surface treatment agent, and a particle dispersing agent to be added to this kind of resin for covering an insulated wire is low static. It is effective for enhancing the capacitance, the stability of the coating resin, the mechanical properties, the functionality, and the like.

膨張性中空球と紫外線硬化型樹脂を混合して得られる
被覆用樹脂組成物において、膨張性中空球の紫外線硬化
型樹脂に対する混合割合は、中空球の膨張と紫外線硬化
型樹脂の硬化によって形成される被覆の空隙率を40%以
上にするために5容量%以上、被覆用樹脂組成物を連続
して塗布可能なものとするため、すなわち連続塗布可能
な粘性流動体として使用するために50容量%以下、の範
囲内で目的の空隙率を得るように任意に設定することが
できる。特に、本発明においてらせん状に厚肉部を有す
る被覆形態を形成するには、体積膨張率10倍以上の膨張
性中空球を紫外線硬化型樹脂に対し20容量%以上添加し
た被覆用樹脂組成物を用いるのが有効である。
In the coating resin composition obtained by mixing the expandable hollow sphere and the ultraviolet-curable resin, the mixing ratio of the expandable hollow sphere to the ultraviolet-curable resin is formed by expansion of the hollow sphere and curing of the ultraviolet-curable resin. 5% by volume or more to make the porosity of the coating to be 40% or more, and 50 volumes to make it possible to apply the coating resin composition continuously, that is, to use as a viscous fluid that can be applied continuously. % Can be arbitrarily set so as to obtain a target porosity within the range of not more than%. In particular, in order to form a coating form having a helically thick portion in the present invention, a coating resin composition in which expandable hollow spheres having a volume expansion coefficient of 10 times or more are added in an amount of 20% by volume or more to an ultraviolet-curable resin. It is effective to use

また、中空球と紫外線硬化型樹脂を混合した後の被覆
用樹脂組成物の粘度は100〜100000cpsの範囲にあること
が実用上好ましい。特に容易に塗布加工するためには、
1000〜10000cpsの粘度範囲にあることが望ましく、粘度
を自由に選択できる紫外線硬化型樹脂が1000〜10000cps
の被覆用樹脂組成物を得るのに適している。
In addition, it is practically preferable that the viscosity of the coating resin composition after mixing the hollow spheres and the ultraviolet curable resin is in the range of 100 to 100,000 cps. Especially for easy application processing,
It is desirable that the viscosity be in the range of 1,000 to 10,000 cps, and the ultraviolet curable resin whose viscosity can be freely selected is 1000 to 10,000 cps
It is suitable for obtaining a resin composition for coating.

本発明における円筒状の外部絶縁層はポリイミド,ポ
リエチレンテレフタレート,フッ素樹脂,ポリエチレン
等のテープを横巻きする方法或いはポリエチレン,フッ
素樹脂等をパイプ状に溶融押出する方法等により形成す
ることができるが、3〜5μm厚の薄い絶縁層を形成す
るためには前者が好ましい。
The cylindrical outer insulating layer in the present invention can be formed by a method of horizontally winding a tape of polyimide, polyethylene terephthalate, fluororesin, polyethylene, or the like, or a method of melt-extruding polyethylene, fluororesin, or the like into a pipe shape. The former is preferable for forming a thin insulating layer having a thickness of 3 to 5 μm.

なお、本発明に係る内部導体は特に限定されるところ
はなく、従来公知の電気導体、例えば銅、アルミニウム
或いはこれらの合金やこれらの表面をメッキしたもの等
を用いることができる。また外部導体についても同様の
材質のテープの横巻きもしくは細線の編組を用いること
ができる。
The internal conductor according to the present invention is not particularly limited, and a conventionally known electric conductor, for example, copper, aluminum, an alloy thereof, or a plated surface thereof can be used. As for the outer conductor, it is possible to use a horizontally wound tape or a braid of a fine wire of the same material.

次に本発明の絶縁電線の製造方法を、第5図に示す本
発明の一具体例により説明する。同図中6のサプライ装
置より繰り出された導体1は7の樹脂塗布装置により、
その外周に紫外線硬化型樹脂に膨張性中空球を混合した
被覆用樹脂組成物が塗布される。塗布された該被覆用樹
脂組成物は、樹脂硬化装置8において紫外線の照射を受
けて硬化し、導体1上に被覆2を形成する。樹脂塗布装
置7としては、内部に中空球を含んだ比較的粘度の高い
被覆用樹脂組成物を均一に塗布できる装置であり、例え
ば圧力ダイスによる塗布、オープンダイスによるディッ
ピング等の公知技術を用いることができる。
Next, a method for manufacturing an insulated wire according to the present invention will be described with reference to a specific example of the present invention shown in FIG. In the same figure, the conductor 1 fed from the supply device 6 is applied by the resin coating device 7.
The outer periphery is coated with a coating resin composition in which expandable hollow spheres are mixed with an ultraviolet-curable resin. The applied resin composition for coating is irradiated with ultraviolet rays in a resin curing device 8 and cured to form a coating 2 on the conductor 1. The resin coating device 7 is a device capable of uniformly coating a relatively high-viscosity coating resin composition containing hollow spheres therein. For example, a known technique such as coating with a pressure die and dipping with an open die may be used. Can be.

外周に被覆用樹脂組成物の被覆を形成された導体は加
熱炉9で50〜200℃に加熱され、これにより中空球が膨
張し、被覆層は加熱前の体積の約10〜40倍になり、導体
の長さ方向断面において厚肉部を周期的に又は非周期的
に有する発泡絶縁層、または導体の円周方向断面におけ
る厚肉部を長さ方向に連続し又は周期的に有する発泡絶
縁層、さらに又はらせん状に厚肉部を有する発泡絶縁層
が形成される。テープ巻き装置10において発泡絶縁層の
厚肉部に接してポリエチレンテレフタレート等のテープ
を横巻きにされ外部絶縁層を形成された絶縁電線は巻取
機11に巻き取られる。
The conductor having the coating of the coating resin composition formed on the outer periphery is heated to 50 to 200 ° C. in the heating furnace 9, whereby the hollow sphere expands, and the coating layer becomes about 10 to 40 times the volume before heating. , A foamed insulating layer having a thick section periodically or aperiodically in the longitudinal section of the conductor, or a foamed insulating layer having a thick section continuously or periodically in the circumferential section of the conductor in the longitudinal direction A layer or a foamed insulating layer having a helically thick portion is formed. In the tape winding device 10, an insulated wire in which a tape of polyethylene terephthalate or the like is wound horizontally in contact with the thick portion of the foamed insulating layer to form an external insulating layer is wound by a winder 11.

〔作用〕[Action]

本発明により、従来技術が実現し得なかった細径低静
電容量絶縁電線を実現できる理由は、以下の通りであ
る。
The reason why the present invention can realize a small-diameter low-capacitance insulated wire that cannot be realized by the prior art is as follows.

ここで本発明の作用を説明するにあたり、空隙率と誘
電率の関係から説明する。一般に空隙を有する樹脂の誘
電率εは次式(1)により決まることが知られている。
Here, the operation of the present invention will be described from the relationship between the porosity and the dielectric constant. It is generally known that the dielectric constant ε of a resin having voids is determined by the following equation (1).

ここでεは構成樹脂そのものの誘電率、εは空隙
中の気体の誘電率、Vは空隙体の空隙率を表す。
Here, [epsilon] 1 represents the dielectric constant of the constituent resin itself, [epsilon] 2 represents the dielectric constant of the gas in the void, and V represents the voidage of the void body.

本発明の場合、円筒状の外部絶縁層と内部導体の間が
らせん状等の厚肉部を有する内部絶縁層で保持一体化さ
れているため、内部絶縁層と外部絶縁層の間に大きな空
隙が存在し、かつ内部絶縁層自体が中空球の膨張により
高い空隙率を有するため、全体として80%乃至95%とい
う薄肉の絶縁電線としては極限に近い空隙を実現するこ
とができるので、結果として内部絶縁層の見掛けの誘電
率を1.40以下の低誘電率層でも形成することができるも
のである。
In the case of the present invention, since the space between the cylindrical outer insulating layer and the inner conductor is held and integrated by the inner insulating layer having a thick portion such as a spiral, a large gap is formed between the inner insulating layer and the outer insulating layer. Is present, and the inner insulating layer itself has a high porosity due to the expansion of the hollow spheres, and as a result, a gap close to the limit can be realized as a thin insulated wire of 80% to 95% as a whole. It can be formed even with a low dielectric constant layer whose apparent dielectric constant of the internal insulating layer is 1.40 or less.

〔実施例〕〔Example〕

実施例1 粘度700cpsのシリコーン樹脂からなる紫外線硬化型樹
脂(硬化後の誘電率2.90)に、イソブタンガス発泡性の
発泡剤を含んだ平均粒径1〜10μm、殻厚0.5μmのポ
リ塩化ビニリデン系ポリマーの膨張性中空球(平均体積
膨張倍率40倍)を該紫外線硬化型樹脂に対し25体積%添
加し、撹拌分散して粘度5000cpsの被覆用樹脂組成物を
作製した。該被覆用樹脂組成物を外径150μmの銀メッ
キ銅線の外周に25μmの厚みに塗布した後、メタルハラ
イド系紫外線−赤外線照射炉(炉内200℃温度雰囲気)
にて照射して膨張性中空球の膨張と樹脂の硬化を同時に
行って、らせん状形態に厚肉部を有して被覆された最大
外径290μmφの被覆電線を製造し、オンラインにて4
μm厚のPETテープを重ね巻きして、内部絶縁層と外部
絶縁層からなる外径約310μmφの本発明の絶縁電線を
得た。当該絶縁電線の内部絶縁層のみかけの誘電率を周
波数f=1M Hzで測定したところ1.29あり、みかけの空
隙率は80%であった。
Example 1 A polyvinylidene chloride resin having an average particle size of 1 to 10 μm and a shell thickness of 0.5 μm containing an isobutane gas foaming agent was added to an ultraviolet curing resin (dielectric constant after curing of 2.90) made of a silicone resin having a viscosity of 700 cps. A polymer expandable hollow sphere (average volume expansion ratio: 40 times) was added to the ultraviolet curable resin at 25% by volume, and the mixture was stirred and dispersed to prepare a coating resin composition having a viscosity of 5000 cps. The coating resin composition is applied to the outer periphery of a silver-plated copper wire having an outer diameter of 150 μm to a thickness of 25 μm, and then a metal halide ultraviolet-infrared irradiation furnace (200 ° C. temperature atmosphere in the furnace).
The inflatable hollow sphere is expanded at the same time and the resin is cured simultaneously to produce a coated wire having a maximum outer diameter of 290 μmφ which is coated with a thick portion in a helical form.
A PET tape having a thickness of μm was superposed and wound to obtain an insulated wire of the present invention having an outer diameter of about 310 μmφ and comprising an inner insulating layer and an outer insulating layer. The apparent dielectric constant of the inner insulating layer of the insulated wire was 1.29 when measured at a frequency f = 1 MHz, and the apparent porosity was 80%.

実施例2 粘度100cpsのフッ化アクリレートを主成分とする紫外
線硬化型樹脂(硬化後の誘電率3.10)に、イソブタンガ
ス発泡性の発泡剤を含んだ平均粒径1〜10μm、殻厚0.
5μmのポリ塩化ビニリデン系ポリマーの膨張性中空球
(平均体積膨張倍率40倍)を該紫外線硬化型樹脂に対し
35体積%添加し、撹拌分散して粘度2000cpsの被覆用樹
脂組成物を作製した。この被覆用樹脂組成物を外径130
μmの銀メッキ銅線の外周に35μmの厚みに塗布した
後、赤外線カット石英パイプと赤外線透過型ミラー及び
水銀ランプからなる紫外線照射炉にて照射して被覆用樹
脂組成物の紫外線硬化型樹脂を硬化させた後、200℃の
赤外線炉を通して膨張性中空球を膨張させて、らせん状
形態に厚肉部を有して被覆された最大外径350μmφの
被覆電線を製造し、オンラインにて4μm厚のPETテー
プを重ね巻きして、内部絶縁層と外部絶縁層を有する外
径約310μmφの本発明の絶縁電線を作製した。当該絶
縁電線の外周に更に30μmの錫メッキ銅線を縒り巻きし
た後、4μm厚のPETテープを重ね巻きして最外被を形
成し、外径約390μmφの本発明の同軸絶縁電線を得
た。当該同軸絶縁電線の静電容量Cを測定したところ、
C=85pF/mと低静電容量であり、また内部絶縁層のみか
けの誘電率を周波数f=1M Hzで測定したところ1.24で
あり、みかけの空隙率は95%であった。
Example 2 An ultraviolet-curable resin (dielectric constant after curing is 3.10) containing fluorinated acrylate having a viscosity of 100 cps as a main component, containing an isobutane gas foaming agent and having an average particle diameter of 1 to 10 μm and a shell thickness of 0.1 μm.
A 5 μm polyvinylidene chloride polymer expandable hollow sphere (average volume expansion ratio of 40) is applied to the ultraviolet curable resin.
35% by volume was added, and the mixture was stirred and dispersed to prepare a coating resin composition having a viscosity of 2000 cps. The resin composition for coating was coated with an outer diameter of 130.
After coating to a thickness of 35 μm on the outer circumference of a silver-plated copper wire of μm, the ultraviolet curable resin of the coating resin composition is irradiated by an ultraviolet irradiation furnace including an infrared cut quartz pipe, an infrared transmission mirror, and a mercury lamp to apply the ultraviolet curable resin. After curing, the expandable hollow sphere is expanded through an infrared furnace at 200 ° C to produce a coated wire with a maximum outer diameter of 350 µmφ, which is coated with a thick part in a helical form, and is 4 µm thick online. Was wound in an overlapping manner to produce an insulated wire of the present invention having an outer diameter of about 310 μm and having an inner insulating layer and an outer insulating layer. After further twisting a 30 μm tin-plated copper wire around the outer periphery of the insulated wire, a 4 μm-thick PET tape was overlapped and wound to form an outermost jacket, thereby obtaining a coaxial insulated wire of the present invention having an outer diameter of about 390 μmφ. . When the capacitance C of the coaxial insulated wire was measured,
The capacitance was as low as C = 85 pF / m, and the apparent dielectric constant of the internal insulating layer measured at a frequency f = 1 MHz was 1.24 and the apparent porosity was 95%.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は内部絶縁層と外部絶縁層
を有する絶縁電線或いは同軸電線において、内部絶縁層
が膨張性中空球と紫外線硬化型樹脂により形成された高
空隙率を有する被覆であるばかりでなく、長手方向に連
続するらせん状又はリブ状の周期的厚肉部を有すること
により、みかけの内部絶縁層の空隙率は80〜95%という
極限に近い値が実現できる。このため内部絶縁層の誘電
率は1.20〜1.30といった低誘電率でも実現できる。従っ
て本発明の絶縁電線及び同軸の絶縁電線は低静電容量の
電線であるため、医療用計測器、コンピューター計測器
などの高密度信号伝送線として要望されている高速伝送
用絶縁電線としての用途を広く開く画期的なものであ
る。
As described above, the present invention relates to an insulated wire or a coaxial wire having an inner insulating layer and an outer insulating layer, wherein the inner insulating layer is a coating having a high porosity formed of an expandable hollow sphere and an ultraviolet curable resin. Instead, by having a spiral or rib-shaped periodic thick portion continuous in the longitudinal direction, the apparent porosity of the internal insulating layer can be realized to a value close to the limit of 80 to 95%. Therefore, the dielectric constant of the internal insulating layer can be realized even as low as 1.20 to 1.30. Therefore, since the insulated wire and the coaxial insulated wire of the present invention are wires having low capacitance, they are used as high-speed transmission insulated wires required as high-density signal transmission lines for medical measuring instruments, computer measuring instruments, and the like. Is an epoch-making thing that opens widely.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第3図(a)は本発明の絶縁電線の内部絶縁
層の形状及び外部絶縁層の形成法を説明する斜視図であ
り、第1図は導体の円周方向の厚肉部を長さ方向に周期
的に有する例、第2図は導体の長さ方向に連続した厚肉
部を有する例、第3図(a)は導体の長さ方向及び円周
方向につまりらせん状に厚肉部を有する内部絶縁層の外
周にテープ巻きにより外部絶縁層を形成する方法をを示
し、第3図(b)は内部絶縁層の断面を部分的に拡大し
た図である。第4図は本発明に係る同軸電線の断面図、
第5図は本発明の絶縁電線の製法の一例のライン図であ
る。 図中1は導体、2は内部絶縁層、21は気泡部、22は中空
球の殻、23は紫外線硬化型樹脂、3は外部絶縁層、4は
外部導体、5は外被、6はサプライ装置、7は樹脂塗布
装置、8は樹脂硬化装置、9は加熱炉、10はテープ巻き
装置、11は巻取機、Aは空隙を表す。
FIGS. 1 to 3A are perspective views illustrating the shape of the inner insulating layer and the method of forming the outer insulating layer of the insulated wire according to the present invention. FIG. FIG. 2 shows an example having a thick portion continuous in the length direction of the conductor, and FIG. 3 (a) shows a spiral shape in the length direction and the circumferential direction of the conductor. FIG. 3B shows a method of forming an outer insulating layer by winding a tape around the inner insulating layer having a thick portion, and FIG. 3B is a partially enlarged view of a cross section of the inner insulating layer. FIG. 4 is a sectional view of the coaxial electric wire according to the present invention,
FIG. 5 is a line diagram of an example of the method for producing an insulated wire of the present invention. In the figure, 1 is a conductor, 2 is an inner insulating layer, 21 is a bubble portion, 22 is a hollow sphere shell, 23 is an ultraviolet curing resin, 3 is an outer insulating layer, 4 is an outer conductor, 5 is a jacket, and 6 is a supply. Apparatus, 7 is a resin coating apparatus, 8 is a resin curing apparatus, 9 is a heating furnace, 10 is a tape winding apparatus, 11 is a winding machine, and A represents a gap.

フロントページの続き (56)参考文献 特開 昭59−227933(JP,A) 特開 昭63−211515(JP,A) 特開 平2−242536(JP,A) 特開 平2−226616(JP,A) 特公 昭53−35265(JP,B2)Continuation of the front page (56) References JP-A-59-227933 (JP, A) JP-A-63-121515 (JP, A) JP-A-2-242536 (JP, A) JP-A-2-226616 (JP) , A) Tokiko Sho 53-35265 (JP, B2)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導体外周に内部絶縁層と外部絶縁層を有し
てなる絶縁電線において、上記内部絶縁層は膨張性中空
球を内包した紫外線硬化型樹脂組成物からなり、該膨張
性中空球は内部に低沸点の液体,化学発泡剤又は気体を
内包し、外殻部分が熱可塑性樹脂から構成されるもので
あり、かつ該導体の長さ方向断面において厚肉部を周期
的に又は非周期的に有し、該厚肉部に接して円筒状の外
部絶縁層を形成してなることを特徴とする絶縁電線。
1. An insulated wire having an inner insulating layer and an outer insulating layer on the outer periphery of a conductor, wherein the inner insulating layer is made of an ultraviolet-curable resin composition containing expandable hollow spheres. Has a low-boiling liquid, a chemical foaming agent or a gas inside, and has an outer shell made of a thermoplastic resin. An insulated electric wire having a periodic outer shape, wherein a cylindrical outer insulating layer is formed in contact with the thick portion.
【請求項2】導体外周に内部絶縁層と外部絶縁層を有し
てなる絶縁電線において、上記内部絶縁層は膨張性中空
球を内包した紫外線硬化型樹脂組成物からなり、該膨張
性中空球は内部に低沸点の液体,化学発泡剤又は気体を
内包し、外殻部分が熱可塑性樹脂から構成されるもので
あり、かつ該導体の円周方向断面における厚肉部を長さ
方向に連続し又は周期的に有し、該厚肉部に接して円筒
状の外部絶縁層を形成してなることを特徴とする絶縁電
線。
2. An insulated wire having an inner insulating layer and an outer insulating layer on the outer periphery of a conductor, wherein the inner insulating layer is made of a UV-curable resin composition containing expandable hollow spheres. Has a low-boiling liquid, a chemical blowing agent or a gas inside, and the outer shell is made of a thermoplastic resin, and the thick part in the circumferential cross section of the conductor is continuous in the length direction. An insulated electric wire having a cylindrical outer insulating layer formed in contact with said thick portion and having a cylindrical shape.
【請求項3】導体外周に内部絶縁層と外部絶縁層を有し
てなる絶縁電線において、上記内部絶縁層は膨張性中空
球を内包した紫外線硬化型樹脂組成物からなり、該膨張
性中空球は内部に低沸点の液体,化学発泡剤又は気体を
内包し、外殻部分が熱可塑性樹脂から構成されるもので
あり、かつ該内部絶縁層はらせん状に厚肉部を有し、該
厚肉部に接して円筒状の外部絶縁層を形成してなること
を特徴とする絶縁電線。
3. An insulated wire having an inner insulating layer and an outer insulating layer on the outer periphery of a conductor, wherein the inner insulating layer is made of an ultraviolet-curable resin composition containing expandable hollow spheres. Has a low-boiling liquid, a chemical foaming agent or a gas inside, and has an outer shell made of a thermoplastic resin, and the inner insulating layer has a helically thick part, An insulated wire comprising a cylindrical outer insulating layer formed in contact with a flesh portion.
【請求項4】導体外周に樹脂組成物を塗布した後硬化さ
せて内部絶縁層を形成し、次いで外部絶縁層を形成する
絶縁電線の製造方法において、膨張性中空球を混合した
紫外線硬化型樹脂組成物を導体外周に塗布し、該膨張性
中空球は内部に低沸点の液体,化学発泡剤又は気体を内
包し、外殻部分が熱可塑性樹脂から構成されるものであ
り、該紫外線硬化型樹脂層に紫外線を照射して硬化させ
た後もしくは硬化と同時に該紫外線硬化型樹脂を加熱す
ることにより、該導体の長さ方向断面において厚肉部を
周期的に又は非周期的に有する内部絶縁層を形成し、次
いで該厚肉部に接して円筒状に外部絶縁層を形成するこ
とを特徴とする絶縁電線の製造方法。
4. A method of manufacturing an insulated wire, comprising coating an outer periphery of a conductor with a resin composition, curing the resin composition to form an inner insulating layer, and then forming an outer insulating layer. The composition is applied to the outer periphery of a conductor, and the expandable hollow spheres contain a low-boiling liquid, a chemical foaming agent or a gas inside, and the outer shell is made of a thermoplastic resin. By heating the UV-curable resin after or simultaneously with curing the resin layer by irradiating the resin layer with UV, an internal insulation having a thick portion periodically or aperiodically in a longitudinal cross section of the conductor. Forming an outer insulating layer in a cylindrical shape in contact with the thick portion.
【請求項5】導体外周に樹脂組成物を塗布した後硬化さ
せて内部絶縁層を形成し、次いで外部絶縁層を形成する
絶縁電線の製造方法において、膨張性中空球を混合した
紫外線硬化型樹脂組成物を導体外周に塗布し、該膨張性
中空球は内部に低沸点の液体,化学発泡剤又は気体を内
包し、外殻部分が熱可塑性樹脂から構成されるものであ
り、該紫外線硬化型樹脂層に紫外線を照射して硬化させ
た後もしくは硬化と同時に該紫外線硬化型樹脂を加熱す
ることにより、該導体の円周方向断面における厚肉部を
長さ方向に連続し又は周期的に有する内部絶縁層を形成
し、次いで該厚肉部に接して円筒状に外部絶縁層を形成
することを特徴とする絶縁電線の製造方法。
5. A method of manufacturing an insulated wire, comprising applying a resin composition to the outer periphery of a conductor and curing the resin composition to form an inner insulating layer, and then forming an outer insulating layer. The composition is applied to the outer periphery of a conductor, and the expandable hollow spheres contain a low-boiling liquid, a chemical foaming agent or a gas inside, and the outer shell is made of a thermoplastic resin. By heating the UV-curable resin after or simultaneously with the curing of the resin layer by irradiating ultraviolet rays, the conductor has a thick portion in the circumferential cross section in the circumferential direction continuously or periodically. A method for manufacturing an insulated wire, comprising: forming an inner insulating layer; and forming an outer insulating layer in a cylindrical shape in contact with the thick portion.
【請求項6】導体外周に樹脂組成物を塗布した後硬化さ
せて内部絶縁層を形成し、次いで外部絶縁層を形成する
絶縁電線の製造方法において、膨張性中空球を混合した
紫外線硬化型樹脂組成物を導体外周に塗布し、該膨張性
中空球は内部に低沸点の液体,化学発泡剤又は気体を内
包し、外殻部分が熱可塑性樹脂から構成されるものであ
り、該紫外線硬化型樹脂層に紫外線を照射して硬化させ
た後もしくは硬化と同時に該紫外線硬化型樹脂を加熱す
ることにより、らせん状に厚肉部を有する内部絶縁層を
形成し、次いで該厚肉部に接して円筒状に外部絶縁層を
形成することを特徴とする絶縁電線の製造方法。
6. A method of manufacturing an insulated wire in which an inner insulating layer is formed by applying a resin composition to the outer periphery of a conductor and then curing the applied resin composition. The composition is applied to the outer periphery of a conductor, and the expandable hollow spheres contain a low-boiling liquid, a chemical foaming agent or a gas inside, and the outer shell is made of a thermoplastic resin. By heating the UV-curable resin after or simultaneously with the curing by irradiating the resin layer with ultraviolet light, an internal insulating layer having a helically thick portion is formed, and then, in contact with the thick portion, A method for manufacturing an insulated wire, comprising forming an outer insulating layer in a cylindrical shape.
【請求項7】導体外周に内部絶縁層及び外部導体を有し
てなる絶縁電線において、上記内部絶縁層は膨張性中空
球を内包した紫外線硬化型樹脂組成物からなり、該膨張
性中空球は内部に低沸点の液体,化学発泡剤又は気体を
内包し、外殻部分が熱可塑性樹脂から構成されるもので
あり、かつ該導体の長さ方向断面において厚肉部を周期
的に又は非周期的に有し、該内部絶縁層の外周に円筒状
の外部導体を形成してなることを特徴とする同軸の絶縁
電線。
7. An insulated wire having an inner insulating layer and an outer conductor on the outer periphery of a conductor, wherein the inner insulating layer is made of an ultraviolet-curable resin composition containing expandable hollow spheres, and the expandable hollow spheres are A liquid, a chemical foaming agent or a gas having a low boiling point is contained therein, and the outer shell portion is made of a thermoplastic resin. A coaxial insulated wire, characterized in that a cylindrical outer conductor is formed around the inner insulating layer.
【請求項8】導体外周に内部絶縁層と外部導体を有して
なる絶縁電線において、上記内部絶縁層は膨張性中空球
を内包した紫外線硬化型樹脂組成物からなり、該膨張性
中空球は内部に低沸点の液体,化学発泡剤又は気体を内
包し、外殻部分が熱可塑性樹脂から構成されるものであ
り、かつ該導体の円周方向断面における厚肉部を長さ方
向に連続し又は周期的に有し、該内部絶縁層の外周に円
筒状の外部導体を形成してなることを特徴とする同軸の
絶縁電線。
8. An insulated wire having an inner insulating layer and an outer conductor on the outer periphery of a conductor, wherein the inner insulating layer is made of an ultraviolet-curable resin composition containing inflatable hollow spheres. A liquid, a chemical foaming agent or a gas having a low boiling point is contained therein, the outer shell portion is made of a thermoplastic resin, and the thick portion in the circumferential cross section of the conductor is continuous in the length direction. Alternatively, the coaxial insulated wire has a periodic shape, wherein a cylindrical outer conductor is formed on the outer periphery of the inner insulating layer.
【請求項9】導体外周に内部絶縁層と外部導体を有して
なる絶縁電線において、上記内部絶縁層は膨張性中空球
を内包した紫外線硬化型樹脂組成物からなり、該膨張性
中空球は内部に低沸点の液体,化学発泡剤又は気体を内
包し、外殻部分が熱可塑性樹脂から構成されるものであ
り、かつ該内部絶縁層はらせん状に厚肉部を有し、該内
部絶縁層の外周に円筒状の外部導体を形成してなること
を特徴とする同軸の絶縁電線。
9. An insulated wire having an inner insulating layer and an outer conductor on the outer periphery of a conductor, wherein the inner insulating layer is made of an ultraviolet-curable resin composition containing inflatable hollow spheres. A liquid, a chemical foaming agent or a gas having a low boiling point is contained in the inside, the outer shell portion is made of a thermoplastic resin, and the inner insulating layer has a helically thick portion, and the inner insulating layer has a thicker portion. A coaxial insulated wire comprising a cylindrical outer conductor formed on the outer periphery of a layer.
JP1109141A 1989-03-15 1989-05-01 Insulated wire, its manufacturing method and coaxial insulated wire Expired - Fee Related JP2620370B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1109141A JP2620370B2 (en) 1989-05-01 1989-05-01 Insulated wire, its manufacturing method and coaxial insulated wire
TW079101530A TW297798B (en) 1989-03-15 1990-02-27
DE69022085T DE69022085T2 (en) 1989-03-15 1990-03-13 Insulated electrical wire and process for its manufacture.
US07/492,794 US5128175A (en) 1989-03-15 1990-03-13 Insulated electric wire and process for producing the same
EP90104732A EP0387796B1 (en) 1989-03-15 1990-03-13 Insulated electric wire and process for producing the same
FI901266A FI111669B (en) 1989-03-15 1990-03-14 Insulated electric cable and its manufacturing method
CA002012282A CA2012282C (en) 1989-03-15 1990-03-15 Insulated electric wire and process for producing the same
KR1019900003488A KR960008356B1 (en) 1989-03-15 1990-03-15 Insulated wire
US07/803,954 US5192834A (en) 1989-03-15 1991-12-09 Insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109141A JP2620370B2 (en) 1989-05-01 1989-05-01 Insulated wire, its manufacturing method and coaxial insulated wire

Publications (2)

Publication Number Publication Date
JPH02291609A JPH02291609A (en) 1990-12-03
JP2620370B2 true JP2620370B2 (en) 1997-06-11

Family

ID=14502641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109141A Expired - Fee Related JP2620370B2 (en) 1989-03-15 1989-05-01 Insulated wire, its manufacturing method and coaxial insulated wire

Country Status (1)

Country Link
JP (1) JP2620370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255364A1 (en) * 2008-03-17 2010-12-01 E. I. du Pont de Nemours and Company Crush resistant conductor insulation
US20090233052A1 (en) * 2008-03-17 2009-09-17 E.I. Du Pont De Nemours And Company Conductors Having Polymer Insulation On Irregular Surface

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962021A (en) * 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
DE2404821A1 (en) * 1974-02-01 1975-08-07 Kabel Metallwerke Ghh Cable with plastics foam insulation - is produced by applying plastics powder preheated wire(s) with subsequent sizing and plastics foaming
JPS525987U (en) * 1975-06-27 1977-01-17
JPS5335265A (en) * 1976-09-14 1978-04-01 Kobe Steel Ltd Waste water treating method and its device
AU521225B2 (en) * 1977-04-19 1982-03-25 Delalande S.A. Alkylenedioxy phenyl derivatives
JPS549384U (en) * 1977-06-22 1979-01-22
JPS5643564A (en) * 1979-09-19 1981-04-22 Hitachi Ltd Automatic electric resistance inspection device
JPS5739006A (en) * 1980-08-21 1982-03-04 Ishikawajima Harima Heavy Ind Co Ltd Four-stage mill
EP0102899A1 (en) * 1982-09-02 1984-03-14 Schlumberger Limited Method for making a solid flotation cable
DE3409369C2 (en) * 1984-03-12 1986-03-13 Siemens AG, 1000 Berlin und 8000 München Cable jacket for a communications cable
JPS6132911A (en) * 1984-07-25 1986-02-15 日本電信電話株式会社 Ultraviolet curable resin filling cable and method of producing same
JP2651006B2 (en) * 1989-03-15 1997-09-10 住友電気工業株式会社 Manufacturing method of insulated wire
JP2737234B2 (en) * 1989-04-17 1998-04-08 住友電気工業株式会社 Insulated wire and its manufacturing method

Also Published As

Publication number Publication date
JPH02291609A (en) 1990-12-03

Similar Documents

Publication Publication Date Title
KR960008356B1 (en) Insulated wire
US5192834A (en) Insulated electric wire
US5115103A (en) Insulated conductor and method of producing the same
US4826725A (en) Manufacture of low density, sintered polytetrafluorethylene articles
JPH09506733A (en) Electric cable with improved insulation and method of making the same
JP2620370B2 (en) Insulated wire, its manufacturing method and coaxial insulated wire
JP2737234B2 (en) Insulated wire and its manufacturing method
JP2514705B2 (en) Insulated wire and its manufacturing method
JP2737285B2 (en) Method and apparatus for manufacturing insulated wire
JP2651006B2 (en) Manufacturing method of insulated wire
JP2789645B2 (en) Insulated wire and its manufacturing method
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
EP0271990A2 (en) An insulated wire comprising a polytetrafluoroethylene coating
JP4275946B2 (en) Method for manufacturing coaxial wire with foam insulation
JPH09180546A (en) Insulated wire and manufacture thereof
JP2577117B2 (en) Coaxial multi-core cable
JPH0997523A (en) Insulated electric wire and its manufacture
JPH0422014A (en) Manufacture of multi-core cable
JPS5811047B2 (en) Manufacturing method of highly foamed polyolefin insulated wire
JPH07249327A (en) Manufacture of highly foamed polyethylene coaxial cable
KR820002000B1 (en) Manufacturing method of high foamable polyolefin insulating-wire
JPH05258615A (en) Insulated electric cable and its manufacture
JPH06267353A (en) Manufacture of foaming insulated wire
JPH0448508A (en) Foamed plastic insulated wire
JPH0448509A (en) Foaming plastic insulated wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees