JP2736546B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus

Info

Publication number
JP2736546B2
JP2736546B2 JP11327889A JP11327889A JP2736546B2 JP 2736546 B2 JP2736546 B2 JP 2736546B2 JP 11327889 A JP11327889 A JP 11327889A JP 11327889 A JP11327889 A JP 11327889A JP 2736546 B2 JP2736546 B2 JP 2736546B2
Authority
JP
Japan
Prior art keywords
gas
air
column
nitrogen
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11327889A
Other languages
Japanese (ja)
Other versions
JPH02293577A (en
Inventor
秀幸 本田
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP11327889A priority Critical patent/JP2736546B2/en
Publication of JPH02293577A publication Critical patent/JPH02293577A/en
Application granted granted Critical
Publication of JP2736546B2 publication Critical patent/JP2736546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離方法及びその装置に関し、特
に水素,ヘリウム,ネオン等の低沸点成分の含有量の少
ない高純度窒素を採取する方法及びその装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation method and an apparatus therefor, and more particularly to a method for collecting high-purity nitrogen having a low content of low boiling components such as hydrogen, helium, and neon. And its device.

〔従来の技術〕[Conventional technology]

半導体工業等に多く用いられている高純度窒素は、可
能な限り純粋なものが求められており、例えば水素の含
有量も1ppm以下であることが望まれている。そのため、
先に、本出願人は、水素等の低沸点成分の含有量の少な
い高純度窒素を得られる空気液化分離方法を開発した
(特開昭60−142183号公報、同60−142184号公報参
照)。
High-purity nitrogen widely used in the semiconductor industry and the like is required to be as pure as possible. For example, it is desired that the content of hydrogen be 1 ppm or less. for that reason,
First, the present applicant has developed an air liquefaction separation method capable of obtaining high-purity nitrogen having a low content of low-boiling components such as hydrogen (see JP-A-60-142183 and JP-A-60-142184). .

上記空気液化分離方法は、精留塔の精留段を多く設け
たり、主精留塔の他に補助精留塔を配設して、主たる精
留に加えて窒素中に含まれる低沸点成分を除去するため
の精留を行い、これにより窒素中に含まれる低沸点成分
量を分離して排出することにより低減している。
The above-mentioned air liquefaction separation method includes providing many rectification stages of a rectification column, or arranging an auxiliary rectification column in addition to the main rectification column, in addition to the main rectification, low boiling components contained in nitrogen. Is rectified to remove the low boiling components contained in nitrogen, and the amount is reduced by separating and discharging.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、近年の半導体工業の発展に伴い、より
不純物の少ない窒素が求められるとともに、原料空気成
分の僅かな変動による上記低沸点成分量のごく僅かな増
加も問題となってきている。
However, with the development of the semiconductor industry in recent years, nitrogen with less impurities has been required, and a slight increase in the amount of the low-boiling component due to a slight change in the raw air component has also become a problem.

そこで本発明は、製品高純度窒素中の低沸点成分の含
有量を、さらに低減させ、0.1ppm以下乃至1ppm以下とす
ることのできる空気液化分離方法及びその装置を提供す
ることを目的としている。
Accordingly, an object of the present invention is to provide an air liquefaction separation method and apparatus capable of further reducing the content of low-boiling components in high-purity nitrogen product to 0.1 ppm or less and 1 ppm or less.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の空気液化分離方
法の第1の構成は、原料空気を圧縮精製して冷却した後
に複精留塔に導入して液化精留分離を行う空気液化分離
方法において、前記複精留塔の下部塔下部に分離する液
化空気を導出して減圧した後に気液を分離し、分離した
気相部を排出するとともに、液相部を前記複精留塔の上
部塔中段に導入することを特徴とし、第2の構成は、前
記複精留塔の下部塔中段の不純液化窒素を導出して減圧
した後に気液を分離し、分離した気相部を排出するとと
もに、液相部を前記複精留塔の上部塔中段上部に導入す
ることを特徴とし、第3の構成は、前記複精留塔の下部
塔上部の液化窒素、あるいは下部塔上部に分離する窒素
ガスを凝縮蒸発器で凝縮させた液化窒素を導出して減圧
した後に気液を分離し、分離した気相部を排出するとと
もに、液相部を前記複精留塔の上部塔上部に導入するこ
とを特徴とするもので、上記第1乃至第3の構成のいず
れにおいても、上部塔上部を複む上部塔上部より高純度
窒素ガスを導出することを特徴とする方法である。
In order to achieve the above object, a first configuration of the air liquefaction separation method of the present invention is a method for air liquefaction separation in which raw air is compressed and purified, cooled, and then introduced into a double rectification column to perform liquefaction separation. In, the liquefied air to be separated at the lower column lower part of the double rectification tower is decompressed and decompressed and then separated into gas and liquid, and the separated gas phase is discharged, and the liquid phase is separated from the upper part of the double rectification column The second configuration is characterized in that it is introduced into the middle column of the column, the impure liquefied nitrogen in the middle column of the lower column of the double rectification column is led out, decompressed, gas-liquid is separated, and the separated gas phase is discharged. In addition, the liquid phase is introduced into the upper middle part of the upper column of the double rectification column, and the third configuration separates the liquid liquefied nitrogen in the upper portion of the lower column of the double rectification column or in the upper portion of the lower column. Derived liquefied nitrogen by condensing nitrogen gas with a condensation evaporator, decompressed and separated gas and liquid Discharging the separated gas phase, and introducing the liquid phase into the upper portion of the upper column of the double rectification column. In any of the first to third configurations, the upper column This is a method characterized in that high-purity nitrogen gas is led out from the upper part of the upper tower which combines the upper part.

また、本発明の方法の第4の構成は、原料空気を圧縮
して精製,冷却した後に単精留塔に導入して液化精留分
離を行う空気液化分離方法において、前記単精留塔の下
部に凝縮蒸発器を設け、底部に溜出する液化空気を導出
して減圧した後に気液を分離し、分離した気相部を排出
するとともに、液相部を前記単精留塔の中段下部に導入
し、上部より高純度窒素を導出することを特徴としてい
る。
Further, a fourth configuration of the method of the present invention is the air liquefaction separation method in which the raw material air is compressed, purified, cooled, and then introduced into a single rectification column to perform liquefaction rectification separation. A condensing evaporator is provided at the bottom, liquefied air distilled out at the bottom is led out, decompressed, gas-liquid is separated, the separated gas phase is discharged, and the liquid phase is separated into the lower middle stage of the single rectification column. And high-purity nitrogen is led out from the upper part.

そして、本発明の空気液化分離装置は、原料空気を圧
縮して、精製,冷却した後に、複精留塔に導入して液化
精留を行う空気液化分離装置において、複精留塔の下部
塔下部及び/又は下部塔中部及び/又は下部塔上部より
液化ガスを導出する経路と、導出した液化ガスを減圧
し、気液分離する手段と、分離した液相部を上部塔中部
及び/又は上部塔中段上部及び/又は上部塔上部へそれ
ぞれ導入する経路とを設けるとともに、上部塔上部に高
純度窒素を導出する経路を設けたことを特徴とするもの
で、特に、前記液化ガスが酸素富化液化空気及び/又は
窒素富化液化窒素及び/又は液化窒素であることを特徴
としている。
The air liquefaction / separation apparatus of the present invention is an air liquefaction / separation apparatus which compresses, purifies and cools raw air, introduces the compressed air into a double rectification column, and performs liquefaction rectification. A path for leading the liquefied gas from the lower and / or middle part of the lower tower and / or the upper part of the lower tower, a means for decompressing the derived liquefied gas and gas-liquid separation, and separating the separated liquid phase part into the middle and / or upper part of the upper tower And a path for introducing high-purity nitrogen is provided at the upper part of the upper tower. In particular, the liquefied gas is oxygen-enriched. It is characterized by liquefied air and / or nitrogen-enriched liquefied nitrogen and / or liquefied nitrogen.

〔作 用〕(Operation)

上記第1乃至第3の構成のごとき空気液化分離方法及
び空気液化分離装置は、複精留塔の下部塔下部に分離す
る液化空気、下部塔中段の不純液化窒素、もしくは下部
塔上部の液化窒素あるいは凝縮蒸発器で凝縮した液化窒
素の少なくともいずれか一つを減圧して気液分離し、分
離した気相部を排出するとともに、液相部を上部塔のそ
れぞれの所定位置に導入するので、減圧後の気液分離の
際に気相部として分離する水素等の低沸点成分を系外に
排出することができ、上部塔内に導入される低沸点成分
量を低減し、上部塔上部より低沸点成分の含有量の少な
い高純度窒素ガスを採取することができる。
The air liquefaction separation method and the air liquefaction separation device having the above first to third constitutions include liquefied air separated at the lower part of the lower column of the double rectification column, impure liquefied nitrogen in the middle part of the lower column, or liquefied nitrogen Alternatively, at least one of the liquefied nitrogen condensed in the condensation evaporator is decompressed and gas-liquid separated, and the separated gas phase is discharged, and the liquid phase is introduced into each predetermined position of the upper column. Low-boiling components such as hydrogen that are separated as a gas phase during gas-liquid separation after decompression can be discharged out of the system, reducing the amount of low-boiling components introduced into the upper column and reducing High-purity nitrogen gas having a low content of low-boiling components can be collected.

また、単精留塔においては、上記方法の第4の構成で
示すごとく、下部に凝縮蒸発器を設けて、該凝縮蒸発器
から溜出した液化空気をさらに減圧して気液分離した後
に塔中段に導入するので、上記複精留塔と同様に、減圧
後の気液分離の際に気相部として分離する水素等の低沸
点成分を系外に排出することができ、精留に供する液化
空気中の低沸点成分量を低減し、塔上部より低沸点成分
の含有量の少ない高純度窒素ガスを採取することができ
る。
Further, in the single rectification column, as shown in the fourth configuration of the above method, a condensing evaporator is provided at the lower part, and the liquefied air distilled out of the condensing evaporator is further decompressed to perform gas-liquid separation. Since it is introduced in the middle stage, similarly to the double rectification column, low boiling components such as hydrogen separated as a gas phase during gas-liquid separation after decompression can be discharged out of the system, and provided for rectification. The amount of low-boiling components in the liquefied air can be reduced, and high-purity nitrogen gas having a low content of low-boiling components can be collected from the top of the column.

〔実施例〕 以下、本発明を図面に示す実施例に基づいて、さらに
詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples shown in the drawings.

まず第1図は本発明の第1実施例を示すもので、複精
留塔の下部塔から導出して上部塔に導入する液化ガス、
即ち液化空気、不純液化窒素、及び凝縮蒸発器で凝縮し
た液化窒素の全てについて本発明を適用した実施例を示
すものである。
First, FIG. 1 shows a first embodiment of the present invention, in which a liquefied gas derived from a lower column of a double rectification column and introduced into an upper column,
That is, an example in which the present invention is applied to all of liquefied air, impure liquefied nitrogen, and liquefied nitrogen condensed by a condensation evaporator is shown.

これは、従来、前記液化窒素中の低沸点成分のパージ
のみで採取する高純度窒素の充分なる純度が得られてい
たものが、液化空気,不純液化窒素中の低沸点成分のパ
ージを行うことにより、より高純度の製品窒素ガスが得
られることを知見したことに基づくものである。
This is because the purging of low-boiling components in the liquefied air and the impure liquefied nitrogen has been conventionally performed by purifying only the low-boiling components in the liquefied nitrogen. Is based on the finding that a higher purity product nitrogen gas can be obtained.

原料空気GAは、通常の前処理装置により圧縮,精製さ
れ、液化点付近まで冷却された後に管1から複精留塔2
の下部塔下部3cに導入される。この下部塔3内では、約
5kg/cm2Gの圧力で精留操作が行われ、下部塔上部3aに窒
素ガスGNが分離し、下部塔下部3cに酸素富化液化空気
(以下、単に液化空気という。)LAが分離する。
The raw material air GA is compressed and refined by a usual pretreatment device, and cooled to near the liquefaction point.
Of the lower tower 3c. In this lower tower 3,
A rectification operation is performed at a pressure of 5 kg / cm 2 G, and nitrogen gas GN is separated in the lower tower upper part 3a, and oxygen-enriched liquefied air (hereinafter, simply referred to as liquefied air) LA is separated in the lower tower lower part 3c. .

まず上記液化空気LAは、下部塔下部3cから管4で導出
され、気液分離器5に導入される。この気液分離器5
は、下部塔下部3cより高く配置されており、該気液分離
器5に導入する液化空気LAの圧力を、下部塔下部3cの液
化空気LAとのヘッド圧の差により、減圧弁を用いずに減
圧している。この液化空気LAの減圧により、該液化空気
LA中に含まれる水素,ヘリウム,ネオン等の低沸点成分
が気化した気相部Xaと、窒素,酸素,アルゴン等を含む
液相部Yaとに分離する。
First, the liquefied air LA is led out from the lower tower lower part 3c by the pipe 4 and introduced into the gas-liquid separator 5. This gas-liquid separator 5
Is located higher than the lower tower lower part 3c, and the pressure of the liquefied air LA introduced into the gas-liquid separator 5 is increased without using a pressure reducing valve due to the difference in head pressure between the liquefied air LA and the liquefied air LA of the lower tower lower part 3c. To a reduced pressure. The decompression of the liquefied air LA causes the liquefied air
The low-boiling components such as hydrogen, helium, and neon contained in LA are separated into a gaseous phase portion Xa vaporized and a liquid phase portion Ya containing nitrogen, oxygen, argon and the like.

この液化空気LAの減圧度は、該液化空気LA中に含まれ
る水素等の低沸点分を気化させるのに必要十分な値に選
定されるもので、減圧度が少ないと低沸点成分を十分に
気化させることができず、また減圧しすぎると上部塔6
での精留に供する窒素等も多量に気化してしまうため好
ましくない。通常は、約0.4kg/cm2G減圧すれば十分であ
るが、下部塔3や上部塔6の操作圧力あるいは液化空気
LAの導入量等により適宜な減圧度が選定される。
The degree of decompression of the liquefied air LA is selected to be a value necessary and sufficient to vaporize low-boiling components such as hydrogen contained in the liquefied air LA. If the gas cannot be vaporized and the pressure is reduced too much,
And the like provided for rectification in the process are also not preferable because a large amount of them is vaporized. Normally, a pressure reduction of about 0.4 kg / cm 2 G is sufficient, but the operating pressure of the lower tower 3 and the upper tower 6 or liquefied air
An appropriate degree of decompression is selected depending on the amount of LA introduced.

気液分離器5で分離した低沸点成分を多く含む気相部
Xaは、排出弁7を経て導出される。この排出弁7は、排
出する気相部Xaの量を調節するとともに、気液分離器5
内を適当な圧力に保持して液化空気LAの気化量を制御す
る機能を果している。従って、該排出弁7の開度を制御
して気液分離器5から排出する気相部Xaの量を調節する
とともに、該気液分離器5内の圧力、即ち減圧度を調節
して液化空気LAの気化量を制御することが可能である。
Gas phase part rich in low boiling components separated by gas-liquid separator 5
Xa is derived via the discharge valve 7. This discharge valve 7 controls the amount of gas phase part Xa to be discharged, and
It functions to control the amount of vaporized liquefied air LA by keeping the inside at an appropriate pressure. Therefore, while controlling the opening degree of the discharge valve 7 to adjust the amount of the gas phase part Xa discharged from the gas-liquid separator 5, the pressure inside the gas-liquid separator 5, that is, the degree of pressure reduction, is controlled. It is possible to control the amount of vaporization of the air LA.

また、上記気液分離での気化量が多いと、上部塔6の
還流液が減少するので、上記気化量は数%、好ましくは
1〜3%が適当である。この気化量を得るために液ヘッ
ドでの減圧と、弁での減圧のいずれも採用可能であり、
後述の不純液化窒素MNや液化窒素LNも液化空気LAと同様
に過冷器19の前で立上げて液ヘッドによる減圧が可能で
ある。この減圧の度合は、立上り高さ×密度で計算さ
れ、通常は、数m程度となる。但し、不純液化窒素MN,
液化窒素LNは、過冷器19で可成りの程度まで過冷され、
上部塔6の圧力に対応する圧力への減圧における気化量
が数%となるのが一般的であり、減圧弁の重複等を避け
ることができる。また液化空気LAも過冷器19を通した
後、気化量が数%となる中間圧まで減圧し、気液分離し
てもよい。
Further, if the amount of vaporization in the gas-liquid separation is large, the amount of reflux liquid in the upper tower 6 is reduced. Therefore, the amount of vaporization is several percent, preferably 1 to 3%. In order to obtain this amount of vaporization, both pressure reduction at the liquid head and pressure reduction at the valve can be adopted,
The impure liquefied nitrogen MN and liquefied nitrogen LN described later can be started up in front of the supercooler 19 and decompressed by the liquid head, similarly to the liquefied air LA. The degree of the pressure reduction is calculated by a rising height × density and is usually about several meters. However, impure liquefied nitrogen MN,
The liquefied nitrogen LN is supercooled to a considerable extent in the supercooler 19,
In general, the amount of vaporization when the pressure is reduced to a pressure corresponding to the pressure of the upper tower 6 is several percent, and duplication of a pressure reducing valve or the like can be avoided. Also, the liquefied air LA may be passed through the subcooler 19 and then decompressed to an intermediate pressure at which the amount of vaporization becomes several percent, thereby performing gas-liquid separation.

一方気液分離器5の下部に分離した液相部Yaは、その
底部から導出されて減圧弁8で上部塔6の操作圧力に応
じた圧力、例えば0.5kg/cm2Gに降圧して上部塔中段6cに
導入される。尚、前記下部塔下部3cは、下部塔3の塔底
あるいは塔底より1段乃至数段上の精留段の場合も含む
ものである。
On the other hand, the liquid phase part Ya separated at the lower part of the gas-liquid separator 5 is drawn out from the bottom part, and the pressure is reduced to a pressure corresponding to the operating pressure of the upper tower 6 by the pressure reducing valve 8, for example, 0.5 kg / cm 2 G, and the upper part It is introduced into the middle stage 6c of the tower. The lower tower lower portion 3c includes the bottom of the lower tower 3 or a rectification stage one to several stages higher than the bottom.

次に、下部塔中段3bを還流液として流下する不純液化
窒素MNの一部が管9により導出され、必要に応じて過冷
器19を通った後、還流液調節弁10で流量及び圧力を調節
され、略上部塔6の操作圧力、例えば0.5kg/cm2Gまで降
圧した後に気液分離器11に導入される。気液分離器11に
導入された不純液化窒素MNは、上記液化空気LAと同様に
低沸点成分が気化して気相部Xbと液相部Ybとに分離す
る。低沸点成分を多く含む気相部Xbは、後述の排ガス経
路12に排出され、気液分離器11の下部に分離した液相部
Ybは、その底部から導出されて上部塔6の中段上部6bに
導入される。
Next, a part of the impure liquefied nitrogen MN flowing down the lower tower middle stage 3b as a reflux liquid is led out by a pipe 9, and after passing through a subcooler 19 as necessary, the flow rate and pressure are adjusted by a reflux liquid control valve 10. The pressure is adjusted and reduced to approximately the operating pressure of the upper tower 6, for example, 0.5 kg / cm 2 G, and then introduced into the gas-liquid separator 11. The impure liquefied nitrogen MN introduced into the gas-liquid separator 11 vaporizes a low-boiling component similarly to the liquefied air LA, and separates into a gas phase part Xb and a liquid phase part Yb. The gas phase portion Xb containing a large amount of low-boiling components is discharged to an exhaust gas path 12 described later, and is separated at a lower portion of the gas-liquid separator 11.
Yb is led out from its bottom and introduced into the middle upper part 6b of the upper tower 6.

さらに、前記下部塔上部3aに分離した窒素ガスGNは、
管13を経て上部塔下部6dに配設された凝縮蒸発器14に導
入され、後述の液化酸素LOと熱交換を行い凝縮液化して
液化窒素LNとなり管15から導出される。この液化窒素LN
は、大部分が下部塔上部3aに戻されて下部塔3の還流液
となり、その一部が管16を経て必要に応じて過冷器19を
通った後、減圧弁17で上部塔6の圧力に降圧して気液分
離器18に導入される。そして同様に気液分離して低沸点
成分を多く含む気相部Xcが排ガス経路12に排出されると
ともに、液相部Ycが気液分離器18の底部から上部塔上部
6aに導入される。
Further, the nitrogen gas GN separated in the lower tower upper part 3a is:
The liquid is introduced into the condensing evaporator 14 disposed in the lower part 6d of the upper tower via the pipe 13, and exchanges heat with liquefied oxygen LO, which will be described later, to be condensed and liquefied to become liquefied nitrogen LN. This liquefied nitrogen LN
Most of the liquid is returned to the upper part 3a of the lower tower and becomes a reflux liquid of the lower tower 3, a part of which passes through a pipe 16 and passes through a subcooler 19 as necessary. The pressure is reduced to a pressure and introduced into the gas-liquid separator 18. In the same manner, gas-liquid separation is performed, and the gas phase Xc containing a large amount of low-boiling components is discharged to the exhaust gas path 12, and the liquid phase Yc is separated from the bottom of the gas-liquid separator 18 to the upper column.
Introduced in 6a.

尚、上記気液分離器11,18で分離した液相部Yb,Ycは、
液ヘッドの圧力差によりそれぞれ上部塔6に導入される
が、気液分離器11,18内の圧力を還流液調節弁10あるい
は減圧弁17で調節して上部塔6の圧力より高くし、気液
分離器11,18を導出後に減圧弁で減圧して導入すること
もできる。また前記液化空気LAは、液ヘッドによる圧力
差で減圧して気液分離器5に導入しているが、減圧弁を
介して所定の圧力に減圧することもできる。
The liquid-phase portions Yb and Yc separated by the gas-liquid separators 11 and 18 are:
The liquid is introduced into the upper tower 6 by the pressure difference of the liquid head. The pressure in the gas-liquid separators 11 and 18 is adjusted by the reflux liquid control valve 10 or the pressure reducing valve 17 so as to be higher than the pressure in the upper tower 6. After the liquid separators 11 and 18 are led out, they can be introduced under reduced pressure by a pressure reducing valve. The liquefied air LA is introduced into the gas-liquid separator 5 after being decompressed by a pressure difference caused by the liquid head, but may be depressurized to a predetermined pressure via a decompression valve.

上記のごとく、各気液分離器5,11,18で低沸点成分を
分離した液相部Ya,Yb,Yc、即ち液化空気LAや液化窒素LN
等の液化ガスは、上部塔6の所定位置にそれぞれ還流液
として導入され、上部塔6内で精留されて下部6dの液化
酸素LOと上部6aの高純度窒素ガスPNとに分離する。下部
6dの液化酸素LOは、凝縮蒸発器14で前述の窒素ガスGNと
熱交換を行い、蒸発気化して上部塔6の上昇ガスになる
とともに、一部が酸素ガスGOとして導出される。
As described above, the liquid phase parts Ya, Yb, and Yc from which the low-boiling components have been separated by the gas-liquid separators 5, 11, and 18, that is, the liquefied air LA and the liquefied nitrogen LN
The liquefied gas such as is introduced into the predetermined position of the upper tower 6 as a reflux liquid, and is rectified in the upper tower 6 to be separated into liquefied oxygen LO in the lower part 6d and high-purity nitrogen gas PN in the upper part 6a. beneath
The 6d liquefied oxygen LO exchanges heat with the above-mentioned nitrogen gas GN in the condensing evaporator 14, evaporates and evaporates to become ascending gas in the upper tower 6, and a part of the gas is led out as oxygen gas GO.

そして、上部塔上部6aからは高純度窒素ガスPNが導出
され、中段上部6bからは不純窒素ガスWNが排ガス経路12
に導出される。この高純度窒素ガスPNは、前述のごと
く、低沸点成分を分離した後の液化ガスを精留して得ら
れるものであるから、水素等の低沸点成分をほとんど含
まない高純度のものが得られる。さらに、この上部塔6
に前記従来技術で説明たものと同様の補助精留段や補助
精留塔を設けて低沸点成分の分離を行えば、より低沸点
成分を含まない高純度の窒素ガスを得ることができる。
また高純度窒素ガスPNの導出位置を、上部塔頂部ではな
く、頂部から数段下の精留段部分から採取することによ
っても、より高純度の窒素ガスを得ることが可能であ
る。
Then, high-purity nitrogen gas PN is led out from the upper tower upper part 6a, and impure nitrogen gas WN is discharged from the middle upper part 6b in the exhaust gas path 12a.
Is derived. As described above, since the high-purity nitrogen gas PN is obtained by rectifying the liquefied gas after separating the low-boiling components, a high-purity nitrogen gas PN containing almost no low-boiling components such as hydrogen is obtained. Can be Furthermore, this upper tower 6
If a low-boiling component is separated by providing an auxiliary rectification stage or an auxiliary rectification column similar to that described in the prior art, high-purity nitrogen gas containing no low-boiling component can be obtained.
It is also possible to obtain higher purity nitrogen gas by extracting the position of the high-purity nitrogen gas PN from the rectification stage several stages below the top instead of the top of the top tower.

このように、下部塔3から導出して上部塔6に導入す
る液化ガスの全てを、同様に減圧して気液分離し、気化
した低沸点成分を含むガスを系外に排出することによ
り、上部塔6内に導入する液化ガス中の低沸点成分を大
幅に低減させることができる。従って、これらの液化ガ
スを精留して得られる高純度窒素ガスPN中の低沸点成分
を大幅に低減することができる。
In this manner, all of the liquefied gas derived from the lower tower 3 and introduced into the upper tower 6 is similarly decompressed and separated into gas and liquid, and the gas containing the low-boiling component that has been vaporized is discharged out of the system. Low boiling components in the liquefied gas introduced into the upper tower 6 can be greatly reduced. Therefore, low boiling components in the high-purity nitrogen gas PN obtained by rectifying these liquefied gases can be significantly reduced.

第2図は本発明の第2実施例を示すもので、下部塔下
部3cから導出されて上部塔中段6cに導入される液化空気
LA、及び下部塔中段3bから導出されて上部塔中段上部6b
に導入される不純液化窒素MNを、前記第1実施例と同様
に気液分離器5,11に導入して気液分離し、低沸点成分を
低減させるとともに、上部塔上部6aに導入する液化窒素
LNの下部塔3からの導出位置を変えて低沸点成分の低減
を図ったものである。尚、以下の説明において前記第1
図に示した第1実施例と同一要素のものには同一符号を
付して詳細な説明を省略する。
FIG. 2 shows a second embodiment of the present invention, in which liquefied air derived from the lower tower lower part 3c and introduced into the upper tower middle stage 6c.
LA, upper tower middle section upper part 6b derived from lower tower middle section 3b
The liquefied nitrogen introduced into the upper column 6a is introduced into the upper column 6a while the impure liquefied nitrogen MN introduced into the upper column 6a is introduced into the gas-liquid separators 5 and 11 to separate gas and liquid as in the first embodiment. nitrogen
The position where LN is led out from the lower tower 3 is changed to reduce the low boiling point components. In the following description, the first
Components that are the same as those in the first embodiment shown in the figure are given the same reference numerals, and detailed description thereof will be omitted.

下部塔3から導出する液化窒素LNは、下部塔頂部から
数段下方の精留段部分3dから導出されている。この精留
段成分3dの液化窒素LNは、下部塔頂部の窒素ガスGNが凝
縮蒸発器14で凝縮液化し、還流液として下部塔頂部に導
入された液化窒素であり、適数の精留棚で精留されて低
沸点成分が上昇ガス中に同伴されることにより、該液化
窒素LN中に含まれる低沸点成分量が低減している。従っ
て、この液化窒素LNは、気液分離することなく減圧弁17
aで減圧して上部塔上部6aに導入し、低沸点成分の少な
い還流液とすることができる。
The liquefied nitrogen LN derived from the lower tower 3 is derived from a rectification section 3d several stages below the top of the lower tower. The liquefied nitrogen LN of the rectification stage component 3d is liquefied nitrogen that is obtained by condensing and liquefying the nitrogen gas GN at the top of the lower tower in the condensing evaporator 14 and introducing it as reflux into the lower tower. The low-boiling components contained in the liquefied nitrogen LN are reduced by the low-boiling components being entrained in the ascending gas. Therefore, the liquefied nitrogen LN is supplied to the pressure reducing valve 17 without gas-liquid separation.
The pressure is reduced under a and introduced into the upper column upper part 6a to obtain a reflux liquid having a low boiling point component.

本実施例においても、前記実施例と同様に、上部塔6
に導入する各液化ガス中の低沸点成分を低減させている
ので、上部塔6で精留分離して、その上部6aから採取す
る高純度窒素PN中の低沸点成分量を低減させることがで
きる。尚、下部塔頂部に濃縮される低沸点成分は、下部
塔頂部あるいは凝縮蒸発器14に適宜なパージノズル(図
示せず)を設けて排出することができる。
Also in this embodiment, similarly to the above-described embodiment, the upper tower 6
Since the low-boiling components in each liquefied gas introduced into the reactor are reduced, the amount of the low-boiling components in the high-purity nitrogen PN collected from the upper portion 6a can be reduced by rectification and separation in the upper tower 6. . The low-boiling components concentrated at the top of the lower tower can be discharged by providing an appropriate purge nozzle (not shown) at the top of the lower tower or the condensing evaporator 14.

次に第3図は本発明の第3実施例を示すもので、上部
塔6に導入する液化ガスを、下部塔下部3cの液化空気LA
と、凝縮蒸発器14で液化した液化窒素LNの2つとしたも
のである。また本実施例では、低沸点成分を分離排出す
る気液分離を液化空気LAのみに適用している。即ち、下
部塔下部3cから導出する液化空気LAは、前記第1実施例
と同様に気液分離器5に導入し、気化した低沸点成分を
多く含む気相部Xaを排出するとともに、分離した液相部
Yaを減圧弁8で減圧して上部塔中段6cに導入しているの
に対し、液化窒素LNは低沸点成分を分離することなく、
上部塔上部6aに還流液として導入している。従って、上
部塔上部6aには低沸点成分が上記液化窒素LNに同伴され
て導入されることになる。
Next, FIG. 3 shows a third embodiment of the present invention, in which the liquefied gas introduced into the upper column 6 is supplied to the liquefied air LA in the lower column 3c.
And liquefied nitrogen LN liquefied by the condensing evaporator 14. In the present embodiment, gas-liquid separation for separating and discharging low-boiling components is applied only to the liquefied air LA. That is, the liquefied air LA derived from the lower column lower part 3c is introduced into the gas-liquid separator 5 in the same manner as in the first embodiment, and the gas phase Xa containing a large amount of vaporized low-boiling components is discharged and separated. Liquid phase
While Ya is decompressed by the pressure reducing valve 8 and introduced into the upper middle stage 6c, the liquefied nitrogen LN is separated without separating low boiling components.
It is introduced into the upper tower upper part 6a as a reflux liquid. Therefore, a low-boiling component is introduced into the upper tower upper part 6a together with the liquefied nitrogen LN.

そのため、本実施例では、上部塔6からの高純度窒素
ガスPNの導出位置を、頂部から僅かに下方に移動させ、
上記低沸点成分を含む液化窒素LNが導入される頂部より
数段下方の精留段部分6eにしている。この精留段部分6e
は、下部塔下部3cから気液分離器5を経て上部塔6に導
入された低沸点成分の少ない液化空気LAが精留されなが
ら上昇する低沸点成分の少ない上昇ガスGFと、塔頂に導
入されて流下する還流液(液化窒素)LDとの気液平衡に
あるが、この部分の還流液LDは、気液平衡の関係から液
相自体に存在する低沸点成分量が少ない(気相の約1/7
0)ことと、塔頂から数段の精留操作により該還流液LD
に含まれる低沸点成分が上昇ガスGFに同伴されて塔頂に
上昇するため、低沸点成分の含有量が非常に少ない。従
って、この精留段部分6eから高純度窒素ガスPNを採取す
ることにより、低沸点成分をほとんど含まない高純度の
窒素ガスを得ることができる。
Therefore, in the present embodiment, the position at which the high-purity nitrogen gas PN is led out from the upper tower 6 is slightly moved downward from the top,
The rectification stage 6e is several stages below the top where the liquefied nitrogen LN containing the low boiling point component is introduced. This rectification stage part 6e
The liquefied air LA having a low boiling point component introduced from the lower column lower part 3c through the gas-liquid separator 5 into the upper column 6 rises while being rectified and rises while the liquefied air LA containing a small amount of low boiling component gas rises, and is introduced into the top of the column. Is in a gas-liquid equilibrium with the reflux liquid (liquefied nitrogen) LD flowing down, and this part of the reflux liquid LD has a small amount of low-boiling components present in the liquid phase itself due to the gas-liquid equilibrium relationship (gas phase About 1/7
0) and several stages of rectification operations from the top of the column
Since the low-boiling components contained in the water are raised to the top of the column accompanying the ascending gas GF, the content of the low-boiling components is very small. Therefore, by collecting high-purity nitrogen gas PN from the rectification stage 6e, high-purity nitrogen gas containing almost no low-boiling components can be obtained.

そして、上部塔上部6aからは低沸点成分含有窒素ガス
VNが導出されており、中段上部6bからは、前記両実施例
と同様に不純窒素ガスWNが導出されている。また下部塔
上部3aからも、低沸点成分を多く含む窒素ガスGNの一部
が上部塔6の還流液量を調節するために導出されてお
り、必要に応じて上記上部塔上部6aの窒素ガスVNと纏め
て採取される。
Then, nitrogen gas containing low boiling point components is
VN is led out, and from the middle upper part 6b, an impurity nitrogen gas WN is led out in the same manner as in the above-mentioned two embodiments. Also, from the lower tower upper part 3a, a part of the nitrogen gas GN containing a lot of low-boiling components is led out to adjust the amount of reflux liquid in the upper tower 6, and if necessary, the nitrogen gas in the upper tower upper part 6a Collected together with VN.

上記各実施例に示すように、上部塔6に導入する液化
ガス、即ち下部塔下部3cの液化空気LA、下部塔中段3bの
不純液化窒素MN、下部塔上部3aの液化窒素LN(凝縮蒸発
器で凝縮した液化窒素を含む)の少なくともひとつを減
圧して気液を分離し、分離した気相部を排出することに
より、上部塔6に導入される低沸点成分の量を低減する
ことができ、製品として採取する高純度窒素ガスPN中の
低沸点成分量を低減させることができる。
As shown in the above embodiments, the liquefied gas introduced into the upper tower 6, ie, the liquefied air LA in the lower part 3 c of the lower tower, the impure liquefied nitrogen MN in the middle part 3 b of the lower tower, and the liquefied nitrogen LN in the upper part 3 a of the lower tower 3 (condensation evaporator) (Including liquefied nitrogen condensed in the above), the gas-liquid is separated by reducing the pressure, and the separated gas phase is discharged, whereby the amount of the low-boiling components introduced into the upper column 6 can be reduced. In addition, the amount of low-boiling components in the high-purity nitrogen gas PN collected as a product can be reduced.

次表に、上記各実施例における高純度窒素ガスPN中の
低沸点成分の低減効果を確認する計算をコンピューター
シュミレーションにより行った結果を示す。尚、計算に
際しては、低沸点ガスを代表して水素ガスの濃度を測定
するとともに、その低減効果をより明確にするために原
料空気GAの水素量を10ppmに測定した。また、各ガスあ
るいは液の流量[Nm3/h]及び水素濃度[ppm]の測定点
は、第1図乃至第3図に示すように、 A:原料空気GA, B:下部塔下部3cから導出された液化空気LA, C:気液分離器5から排出される気相部Xa, D:上部塔中段6cに導入される液相部Ya, E:下部塔中段3bから導出される不純液化窒素MN, F:気液分離器11から排出される気相部Xb, G:上部塔中段部6bに導入される液相部Yb, H:下部塔上部3aから導出される液化窒素LN, I:気液分離器18から排出される気相部Xc, J:上部塔上部6aに導入される液相部Yc, K:上部塔6から採取される高純度窒素ガスPN, L:上部塔6から導出される不純窒素ガスWN, M:上部塔6から導出される窒素ガスVNである。
The following table shows the results of calculations performed by computer simulation to confirm the effect of reducing the low-boiling components in the high-purity nitrogen gas PN in each of the above Examples. In the calculation, the concentration of hydrogen gas was measured as a representative of the low-boiling gas, and the hydrogen amount of the raw air GA was measured at 10 ppm in order to clarify the reduction effect. As shown in FIGS. 1 to 3, the measurement points of the flow rate [Nm 3 / h] and the hydrogen concentration [ppm] of each gas or liquid are as follows: A: raw air GA, B: lower tower lower part 3c. Derived liquefied air LA, C: Gas phase part Xa, D discharged from gas-liquid separator 5, Liquid phase part Ya introduced into upper tower middle stage 6c, E: Impure liquefaction derived from lower tower middle stage 3b Nitrogen MN, F: Gas phase part Xb discharged from the gas-liquid separator 11, G: Liquid phase part Yb introduced into the middle part 6b of the upper column, H: Liquefied nitrogen LN, I derived from the upper part 3a of the lower column : Gas phase Xc, J discharged from gas-liquid separator 18: Liquid phase Yc introduced into upper part 6 a of upper column, K: High purity nitrogen gas PN, L collected from upper part 6, L: Upper part 6 Nitrogen gas WN, M: nitrogen gas VN derived from the upper tower 6.

上記表に示すごとく、気液分離器18から上部塔上部6a
に導入される液相部Yc(測定点J;液化窒素)には、気液
分離を行ったにもかかわらず、未だ他の液相部Ya,Yb
(測定点D,G)に比べて多量の水素が同伴されている
が、もし上記気液分離器18を設けずに該液化窒素LNをそ
のまま上部塔6に導入した場合には、さらに多量の水素
(測定点H参照)が上部塔6内に導入されるため、採取
する高純度窒素ガスPN(測定点K)中に約18ppmの水素
が混入してしまう。
As shown in the above table, the gas-liquid separator 18
The liquid phase part Yc (measurement point J; liquefied nitrogen) introduced into the liquid phase, despite the gas-liquid separation, still has other liquid phase parts Ya and Yb
Although a larger amount of hydrogen is entrained than (measurement points D and G), if the liquefied nitrogen LN is introduced into the upper column 6 as it is without providing the gas-liquid separator 18, a larger amount of hydrogen Since hydrogen (refer to the measurement point H) is introduced into the upper tower 6, about 18 ppm of hydrogen is mixed in the high-purity nitrogen gas PN (measurement point K) to be collected.

次に、第4図は、本発明の第4実施例を示すもので、
高純度窒素ガスの採取のみを目的とした場合を示すもの
である。
Next, FIG. 4 shows a fourth embodiment of the present invention.
This shows a case where only high-purity nitrogen gas is collected.

圧縮されて精製,冷却された原料空気GAは、液溜20e
を有する単精留塔20に導入され、該塔20の下部に設けら
れた凝縮蒸発器21で液化されて底部20fに溜る。該液溜2
0eには、精留段20gを数段設けておくと、ここで低沸点
成分を分離することができ、分離した水素等の低沸点成
分を、導管22から系外へ導出することができる。この精
留段20gは、原料空気GA中の水素濃度及び製品窒素中の
低沸点成分の要求される濃度に応じて設ければ良い。
The compressed, purified and cooled raw material air GA is stored in the reservoir 20e
And liquefied by a condensing evaporator 21 provided at the lower part of the tower 20, and accumulates in a bottom 20f. The reservoir 2
If several rectification stages 20g are provided in 0e, low-boiling components can be separated here, and the low-boiling components such as hydrogen separated can be led out of the system from the conduit 22. The rectification stage 20g may be provided according to the hydrogen concentration in the raw material air GA and the required concentration of the low boiling component in the product nitrogen.

上記塔底20fの液化空気GLは、導管23より導出され、
弁24を介して減圧した後、気液分離器25へ導入される。
ここで減圧によって生ずる気相部Xdを導管26より系外へ
放出して、液相部Ydを導管27より単精留塔20の下部20d
へ導入する。この液相部Ydの導入部は、前記凝縮蒸発器
21の直上でも良く、また、精留段の数段上方でも良い。
凝縮蒸発器21に溜った酸素富化液化空気LAは、導管28を
経て凝縮蒸発器29に入り気化して導出し、一方精留塔20
の塔上部20aより高純度窒素ガスPNを導出し、一部は製
品とし、残部は凝縮蒸発器29に導入されて液化し、前記
塔頂20aより単精留塔20の還流液として再び導入し、通
常の単精留塔による窒素製造方法と同じ行程を行う。本
実施例の場合も、気液分離器25及び/又は単精留塔20下
部の液溜20eによって低沸点成分をパージし、純度の向
上した高純度窒素を採取することができる。
The liquefied air GL at the bottom 20f is led out from the conduit 23,
After the pressure is reduced through the valve 24, the gas is introduced into the gas-liquid separator 25.
Here, the gas phase part Xd generated by the pressure reduction is discharged out of the system from the conduit 26, and the liquid phase part Yd is discharged from the conduit 27 to the lower part 20d of the single rectification column 20.
Introduce to. The introduction part of the liquid phase part Yd is
It may be directly above 21 or several steps above the rectification stage.
The oxygen-enriched liquefied air LA accumulated in the condensing evaporator 21 enters the condensing evaporator 29 via a conduit 28 and is vaporized and discharged.
The high-purity nitrogen gas PN is led out from the upper part 20a of the column, a part of it is converted into a product, and the remaining part is introduced into the condensing evaporator 29 to be liquefied, and is introduced again as the reflux liquid of the single rectification column 20 from the top 20a. The same process as in a conventional nitrogen production method using a single rectification column is performed. Also in the case of this embodiment, low-boiling components can be purged by the gas-liquid separator 25 and / or the liquid reservoir 20e below the single rectification column 20, and high-purity nitrogen with improved purity can be collected.

尚、上記各実施例の説明においては、本発明の方法を
実施するために必要な部分のみを図示して説明を行った
が、本発明は、通常の各種付帯設備を備えた複精留塔を
用いて実施することが可能であり、他のガス製品や液製
品も同時に採取することができる。また前述のごとく、
この種の複精留塔に適用し得る他の低沸点成分の低減手
段を各種組合せて、より高純度の窒素ガスを得ることも
できる。さらに、気液を分離する手段としては、機器と
しての気液分離器そのものを用いる必要はなく、経路中
の低沸点成分を気化させて液相部から分離可能なものな
らば、その形態や名称に限らず使用することが可能であ
る。また、分離した低沸点成分を主成分とする放出ガス
を回収してネオン等を採取する原料ガスとしても良い。
In the description of each of the above embodiments, only the parts necessary for carrying out the method of the present invention are illustrated and described. However, the present invention is directed to a double rectification column equipped with ordinary various auxiliary facilities. And other gas products and liquid products can be sampled at the same time. Also, as mentioned above,
Higher purity nitrogen gas can also be obtained by variously combining other means for reducing low boiling components applicable to this type of double rectification column. Further, as a means for separating gas and liquid, it is not necessary to use the gas / liquid separator itself as a device, and if it is possible to vaporize the low boiling point component in the path and separate it from the liquid phase, its form and name It is possible to use without being limited to. Further, the source gas for collecting neon or the like by collecting the released gas containing the separated low-boiling component as a main component may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の方法及び装置は、複精
留塔においては、下部塔下部の液化空気もしくは下部塔
中部の不純液化窒素もしくは下部塔上部の液化窒素(凝
縮蒸発器で凝縮した液化窒素を含む)を上部塔の所定位
置に導入するにあたり、下部塔から導出して減圧した後
に気液を分離し、分離した気相部を排出するとともに、
液相部を上部塔の所定位置に導入するから、上部塔内に
導入される低沸点成分を低減でき、製品として採取する
窒素ガス中の低沸点成分量を低減させることができる。
また、単精留塔においては、単精留塔の下部に設けた凝
縮蒸発器から底部に溜出する液化空気を導出して減圧し
た後に気液を分離し、上記同様、分離した気相部を排出
するとともに、液相部を単精留塔の所定位置に導入する
から、精留に供される低沸点成分を低減でき、製品とし
て採取する窒素ガス中の低沸点成分量を低減させること
ができる。
As described above, in the double rectification column, the method and the apparatus of the present invention can be applied to the liquefied air at the lower part of the lower tower, the impure liquefied nitrogen at the lower part of the lower tower, or the liquefied nitrogen at the upper part of the lower tower (liquefaction condensed by the condensation evaporator). When introducing nitrogen (including nitrogen) to a predetermined position in the upper tower, the gas is separated from the lower tower after decompression and decompression, and the separated gas phase is discharged.
Since the liquid phase is introduced into the upper column at a predetermined position, the low-boiling components introduced into the upper column can be reduced, and the amount of low-boiling components in the nitrogen gas collected as a product can be reduced.
Further, in the single rectification column, the liquefied air that distills out at the bottom from the condensing evaporator provided at the lower part of the single rectification column is decompressed and then separated into gas and liquid. And the liquid phase is introduced at a predetermined position in the single rectification column, so that low-boiling components used for rectification can be reduced, and the amount of low-boiling components in nitrogen gas collected as a product can be reduced. Can be.

これにより、原料空気中の低沸点成分含有量が変動し
て大幅に増加した場合でも、高純度窒素ガス中の低沸点
成分の量を基準値以下に容易に押えることが可能とな
り、さらに従来よりも高純度窒素ガスの採取率を向上で
き、同一規模の空気液化分離装置における高純度窒素の
採取量を大幅に増加させることができる。
As a result, even when the content of the low-boiling components in the raw material air fluctuates and increases greatly, the amount of the low-boiling components in the high-purity nitrogen gas can be easily suppressed to a reference value or less, and furthermore, Also, the collection rate of high-purity nitrogen gas can be improved, and the amount of high-purity nitrogen collected in an air liquefaction and separation apparatus of the same scale can be greatly increased.

また通常の複精留塔に、簡単な気液分離手段と弁とを
追加するだけで容易に構成することができるので、装置
コストの上昇も僅かであり、既存設備への対応も可能で
ある。
In addition, since it can be easily configured by simply adding a simple gas-liquid separation means and a valve to a normal double rectification column, the cost of the apparatus is slightly increased and it is possible to cope with existing equipment. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す系統図、第2図は第
2実施例を示す系統図、第3図は第3実施例を示す系統
図、第4図は第4実施例を示す系統図である。 2……複精留塔、3……下部塔、3a……下部塔上部、3b
……下部塔中段、3c……下部塔下部、5,11,18,25……気
液分離器、6……上部塔、6a……上部塔上部、6b……上
部塔中段上部、6c……上部塔中段、7……排出弁、8,1
7,17a……減圧弁、20……単精留塔、21……凝縮蒸発
器、A〜M……流量及び水素濃度の測定点、LA……液化
空気、LN……液化窒素、MN……不純液化窒素、PN……高
純度窒素ガス、Xa,Xb,Xc,Xd……気相部、Ya,Yb,Yc,Yd…
…液相部
1 is a system diagram showing a first embodiment of the present invention, FIG. 2 is a system diagram showing a second embodiment, FIG. 3 is a system diagram showing a third embodiment, and FIG. 4 is a fourth embodiment. FIG. 2 Double rectification tower, 3 Lower tower, 3a Upper tower, 3b
…… Lower tower middle, 3c …… Lower tower lower, 5,11,18,25 …… Gas-liquid separator, 6 …… Upper tower, 6a …… Upper tower upper, 6b …… Upper tower middle upper, 6c… … Middle stage of the upper tower, 7 …… Discharge valve, 8,1
7, 17a: Pressure reducing valve, 20: Single rectification column, 21: Condensation evaporator, A to M: Measurement points of flow rate and hydrogen concentration, LA: Liquefied air, LN: Liquefied nitrogen, MN: … Impure liquefied nitrogen, PN… High-purity nitrogen gas, Xa, Xb, Xc, Xd… Vapor phase, Ya, Yb, Yc, Yd…
… Liquid phase

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を圧縮して精製,冷却した後に複
精留塔に導入して液化精留分離を行う空気液化分離方法
において、前記複精留塔の下部塔下部に分離する液化空
気を導出して減圧した後に気液を分離し、分離した気相
部を排出するとともに、液相部を前記複精留塔の上部塔
中段に導入し、上部塔上部より高純度窒素を導出するこ
とを特徴とする空気液化分離方法。
1. An air liquefaction method for compressing, purifying and cooling raw air, and introducing the compressed air into a double rectification column to perform liquefaction rectification separation. After decompression and decompression, the gas-liquid is separated, the separated gas phase is discharged, and the liquid phase is introduced into the middle stage of the upper column of the double rectification column, and high-purity nitrogen is derived from the upper column. An air liquefaction separation method characterized by the above-mentioned.
【請求項2】原料空気を圧縮して精製,冷却した後に複
精留塔に導入して液化精留分離を行う空気液化分離方法
において、前記複精留塔の下部塔中段の不純液化窒素を
導出して減圧した後に気液を分離し、分離した気相部を
排出するとともに、液相部を前記複精留塔の上部塔中段
上部に導入し、上部塔上部より高純度窒素を導出するこ
とを特徴とする空気液化分離方法。
2. The air liquefaction separation method of compressing, purifying and cooling the raw material air and then introducing it into a double rectification column to perform liquefaction rectification separation, wherein the impure liquefied nitrogen in the middle stage of the lower column of the double rectification column is removed. After derivation and decompression, the gas-liquid is separated, the separated gas phase is discharged, and the liquid phase is introduced into the upper middle part of the upper column of the double rectification column, and high-purity nitrogen is derived from the upper column upper part. An air liquefaction separation method characterized by the above-mentioned.
【請求項3】原料空気を圧縮して精製,冷却した後に複
精留塔に導入して液化精留分離を行う空気液化分離方法
において、前記複精留塔の下部塔上部の液化窒素、ある
いは下部塔上部に分離する窒素ガスを凝縮蒸発器で凝縮
させた液化窒素を導出して減圧した後に気液を分離し、
分離した気相部を排出するとともに、液相部を前記複精
留塔の上部塔上部に導入し、上部塔上部より高純度窒素
を導出することを特徴とする空気液化分離方法。
3. An air liquefaction method for compressing, purifying and cooling a raw material air and then introducing the compressed air into a double rectification column to perform liquefaction rectification separation, wherein liquefied nitrogen in the upper part of the lower column of the double rectification column or The liquid nitrogen that is condensed by the condensing evaporator from the nitrogen gas to be separated at the upper part of the lower tower is led out, and the gas and liquid are separated after decompression.
An air liquefaction separation method comprising discharging a separated gas phase portion, introducing a liquid phase portion into an upper portion of an upper column of the double rectification column, and extracting high-purity nitrogen from an upper portion of the upper column.
【請求項4】原料空気を圧縮して精製,冷却した後に単
精留塔に導入して液化精留分離を行う空気液化分離方法
において、前記単精留塔の下部に凝縮蒸発器を設け、底
部に溜出する液化空気を導出して減圧した後に気液を分
離し、分離した気相部を排出するとともに、液相部を前
記単精留塔の中段下部に導入し、上部より高純度窒素を
導出することを特徴とする空気液化分離方法。
4. An air liquefaction separation method in which raw air is compressed, purified, cooled, and then introduced into a single rectification column to perform liquefaction rectification separation, wherein a condensing evaporator is provided below the single rectification column. The liquefied air that distills out at the bottom is taken out, decompressed, and then separated into gas and liquid.The separated gas phase is discharged, and the liquid phase is introduced into the middle lower part of the single rectification column, and the purity is higher than that of the upper part. An air liquefaction separation method comprising deriving nitrogen.
【請求項5】原料空気を圧縮して、精製,冷却した後
に、複精留塔に導入して液化精留を行う空気液化分離装
置において、複精留塔の下部塔下部及び/又は下部塔中
部及び/又は下部塔上部より液化ガスを導出する経路
と、導出した液化ガスを減圧し、気液分離する手段と、
分離した液相部を上部塔中部及び/又は上部塔中段上部
及び/又は上部塔上部へそれぞれ導入する経路とを設け
るとともに、上部塔上部に高純度窒素を導出する経路を
設けたことを特徴とする空気液化分離装置。
5. An air liquefaction / separation apparatus for compressing, purifying and cooling raw air, and then introducing the compressed air into a double rectification column to perform liquefaction rectification. A path for leading the liquefied gas from the middle part and / or the upper part of the lower tower, a means for decompressing the derived liquefied gas and performing gas-liquid separation,
A path for introducing the separated liquid phase part into the upper part of the upper tower and / or the upper part of the middle part of the upper tower and / or an upper part of the upper part, and a path for leading out high-purity nitrogen at the upper part of the upper part. Air liquefaction separator.
【請求項6】前記液化ガスが、酸素富化液化空気及び/
又は窒素富化液化窒素及び/又は液化窒素であることを
特徴とする請求項5記載の空気液化分離装置。
6. The liquefied gas is oxygen-enriched liquefied air and / or
6. The air liquefaction separation device according to claim 5, wherein the device is nitrogen-enriched liquefied nitrogen and / or liquefied nitrogen.
JP11327889A 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus Expired - Fee Related JP2736546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11327889A JP2736546B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11327889A JP2736546B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH02293577A JPH02293577A (en) 1990-12-04
JP2736546B2 true JP2736546B2 (en) 1998-04-02

Family

ID=14608125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11327889A Expired - Fee Related JP2736546B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2736546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417054B2 (en) * 2009-06-15 2014-02-12 大陽日酸株式会社 Air separation method and apparatus

Also Published As

Publication number Publication date
JPH02293577A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
JP2696705B2 (en) Method and apparatus for air separation by rectification
EP0589646B2 (en) Distillation process for the production of carbon monoxide-free nitrogen
JPH0719727A (en) Separation of air
US5137559A (en) Production of nitrogen free of light impurities
JP2000055542A (en) Production of argon by low temperature air separation
JPH08271141A (en) Separation of air
US5123947A (en) Cryogenic process for the separation of air to produce ultra high purity nitrogen
US6351971B1 (en) System and method for producing high purity argon
JP2886740B2 (en) Multi-column distillation system for producing ultra-high purity nitrogen products
JPH02225994A (en) Method and device of refining nitrogen
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
JPH05212203A (en) Distillation separation method
JPH05312469A (en) Apparatus and method for liquefying and separating air
JP2736546B2 (en) Air liquefaction separation method and apparatus
JPH11118351A (en) Manufacturing device for nitrogen and oxygen having ultra-high purity
JP2781984B2 (en) Air liquefaction separation method and apparatus
JP2781985B2 (en) Air liquefaction separation method and apparatus
JPH0412391B2 (en)
JPH0615947B2 (en) Air liquefaction separation method and device
JP2656403B2 (en) Cryogenic separation of air
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JP3732774B2 (en) Cryogenic liquefaction separator
JPH07270067A (en) Fractionating method for rare gas
JPH0526114B2 (en)
JPH09303957A (en) Air separator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees