JP2735778C - - Google Patents

Info

Publication number
JP2735778C
JP2735778C JP2735778C JP 2735778 C JP2735778 C JP 2735778C JP 2735778 C JP2735778 C JP 2735778C
Authority
JP
Japan
Prior art keywords
amino acid
acid
organic solvent
water
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Publication date

Links

Description

【発明の詳现な説明】 【】 【産業䞊の利甚分野】 本発明は、−アルコキシカルボニルアミノ酞を補造する方法に関する。 【】 【埓来の技術】 アミノ酞のアミノ基を保護した−アルコキシカルボニルアミノ酞は、抗生物
質、ペプチド、ポリペプチド、タンパク質およびアミノ配糖䜓の化孊合成におい
お、ペプチド結合を圢成させる際に、遞択的に目的物を埗るための出発物質たた
は䞭間䜓ずしお重芁な化合物である。 【】 埓来、−アルコキシカルボニルアミノ酞の合成法ずしおは、氎ず−ブチル
アルコヌル等の氎盞溶性有機溶媒ずの混合溶媒系で、アミノ酞を化孊量論以䞊の
氎酞化ナトリりムやトリ゚チルアミン等の塩基性物質ず反応させお氎溶性の塩ず
した埌にゞアルキルゞカヌボネヌトず反応させ、埗られた−アルコキシカルボ
ニルアミノ酞塩を䞭和しお酞に倉換し、その氎溶液たたは氎懞濁液ずしお埗、次
いでゞ゚チル゚ヌテルや酢酞゚チル等の有機溶媒で抜出し、さらにこれを硫酞ナ
トリりムや硫酞マグネシりム等の固䜓脱氎剀を䜿甚しお脱氎する方法が知られお
いるオヌガニツク・シンセシス 
巻、〜項、幎。 【】 【発明が解決しようずする課題】 しかし、䞊蚘の方法においおは、−アルコキシカルボニルアミノ酞の抜出に
甚いる有機溶媒であるゞ゚チル゚ヌテルあるいは酢酞゚チルが、−アルコキシ
カルボニルアミノ酞の氎溶液たたは氎懞濁液ず接觊させたずきに〜重量皋
床の氎を溶解する。このために、−アルコキシカルボニルアミノ酞を倧量に補
造する堎合には、抜出埌の−アルコキシカルボニルアミノ酞を溶解した有機盞
の脱氎のために倧量の固䜓脱氎剀を甚いなければならず、ずおも工業的に有利な
方法ずは蚀えなかった。 【】 通垞、倧量の有機溶媒の脱氎方法ずしおは、共沞脱氎方法が採甚されおいるが
、本発明者らがこの共沞脱氎方法を䞊蚘の方法に適甚しおみたずころ、脱氎操䜜
䞭に−アルコキシカルボニルアミノ酞が分解しお出発原料であるアミノ酞が遊
離しおくるこずが刀明した。 【】 【課題を解決するための手段】 本発明者らは、䞊蚘実状に鑑み、−アルコキシカルボニルアミノ酞を分解さ
せるこずなく補造するため鋭意怜蚎した。その結果、−アルコキシカルボニル
アミノ酞塩を䞭和しお酞の圢に倉換した埌の氎溶液たたは氎懞濁液ず、特定の有
機溶媒ずを接觊させお−アルコキシカルボニルアミノ酞を有機盞に抜出した埌
、該有機盞を共沞脱氎するこずによっお出発原料のアミノ酞を遊離させるこずな
く−アルコキシカルボニルアミノ酞を合成できるこずを芋いだし本発明を完成
するに至った。 【】 即ち、本発明は、アミノ酞塩ずゞアルキルゞカヌボネヌトずを反応させた埌に
䞭和しお埗られた−アルコキシカルボニルアミノ酞の氎溶液たたは氎懞濁液ず
、氎ず共沞混合物を圢成し䞔぀共沞混合組成における氎の含有量が容量以
䞊容量以䞋である有機溶媒ずを接觊させお−アルコキシカルボニルアミ
ノ酞を有機盞䞭に抜出した埌、該有機盞を氎盞から分離し、次いで有機盞を共沞 脱氎するこずを特城ずする−アルコキシカルボニルアミノ酞の補造方法である
。 【】 本発明に甚いられる−アルコキシカルボニルアミノ酞は、アミノ酞塩ずゞア
ルキルゞカヌボネヌトずを反応させた埌に䞭和しお埗るこずができる。その具䜓
的な方法ずしおは公知の方法を䜕等制限なく採甚できる。䟋えば、原料のアミノ
酞は、分子内に少なくずも䞀぀以䞊のアミノ基たたはむミノ基及びカルボキシル
基をも぀化合物であれば特に制限はない。䜆し、䞀分子䞭に個以䞊のアミノ基
たたはむミノ基を有しおいるアミノ酞の堎合には、少なくずも個のアミノ基た
たはむミノ基さえ有しおいれば、他のアミノ基たたはむミノ基はアルキル基等に
より眮換されおいおもよい。たた、䞀分子䞭に個以䞊のカルボキシル基を有し
おいるアミノ酞の堎合は、少なくずも個のカルボキシル基さえ有しおいれば他
のカルボキシル基ぱステル或いはアミドの状態になっおいおもよい。 【】 本発明に斌いお奜適に䜿甚できるアミノ酞を具䜓的に瀺せば、䟋えばグリシン
、アラニン、β−アラニン、バリン、ノルバリン、ロむシン、ノルロむシン、む
゜ロむシン、プニルアラニン、チロシン、ゞペヌドチロシン、トレオノン、セ
リン、ホモセリン、む゜セリン、プロリン、ヒドロキシプロリン、トリプトファ
ン、チロキシン、メチオニン、ホモメチオニン、シスチン、ホモシスチン、シス
テむン、ホモシステむン、α−アミノ酪酞、β−アミノ酪酞、γ−アミノ酪酞、
α−アミノむ゜酪酞、アスパラギン酞、アスパラギン酞−β−シクロヘキシル゚
ステル、アスパラギン酞−β−メチル゚ステル、アスパラギン酞−β−む゜プロ
ピル゚ステル、アスパラギン酞−β−ベンゞル゚ステル、グルタミン酞、グルタ
ミン酞−γ−シクロヘキシル゚ステル、グルタミン酞−γ−メチル゚ステル、グ
ルタミン酞−γ−む゜プロピル゚ステル、グルタミン酞−γ−ベンゞル゚ステル
、リゞン、オルニチン、ヒドロキシリゞン、アルギニン、ヒスチゞン、アンチカ
プシン、5−むミノメチルオルニチン、α−アミノ−β−−むミダゟリゞ
ルプロビオン酞、−メチルグリシン、タりリン、γ−ホルミル−−メチル
ノルバリン、g−トシルアルギニン、g−ベンゞルオキシカルボニルアルギニ ン、−アセトアミドメチルシステむン、−ベンゞルシステむン、im−ベン
ゞルオキシカルボニルオルチニン、6−ベンゞルオキシカルボニルリゞン、5
−ベンゞルオキシカルボニルオルニチン、−ベンゞルセリン、−ベンゞルト
レオニン、in−ホルミルトリプトファン、−−アミノ−−チアゟリル
−−メトキシむミノ酢酞、−−アミノ−−チアゟリル−−ヒド
ロキシむミノ酢酞、−−アミノ−−チアゟリル−−グリオキシ酢酞
、−−アミノ−−チアゟリル−−ペンテン酞、フェニルグリシン、
−ヒドロキシフェニルグリシン等を挙げるこずができる。これらのアミノ酞は
、光孊異性䜓でもラセミ混合物であっおもよい。 【】 これらのアミノ酞を氎溶性の塩ずするには、䞀般的な酞アルカリ䞭和反応操䜜
を䜕ら制限なく甚いるこずができる。䟋えば、アルカリ金属或いはアルカリ土類
金属の氎酞化物たたは炭酞塩などの無機塩基の氎溶液を甚いる方法、或いは有機
塩基によっおアンモニりム塩に倉換する方法等がある。甚いる塩基を具䜓的に䟋
瀺するず、無機塩基ずしおは、氎酞化ナトリりム、氎酞化カリりム、氎酞化リチ
りム、氎酞化カルシりム、氎酞化マグネシりム、炭酞ナトリりム、炭酞カリりム
、炭酞カルシりム、炭酞マグネシりム、炭酞氎玠ナトリりム、炭酞氎玠カリりム
等を挙げるこずができる。たた、有機塩基ずしおは、ピリゞン、−ゞメチルア
ミノピリゞン、トリ゚チルアミン、トリブチルアミン、−メチルピペリゞン、
−メチルピロリゞン等を挙げるこずができる。これらの塩基の䜿甚量は、ゞア
ルキルゞカヌボネヌトずの反応速床を維持し、䞔぀ゞアルキルゞカヌボネヌトず
の反応埌の䞭和に芁する酞の量を少なくするために、アミノ酞圓量に察しお
〜圓量、さらに〜圓量の範囲で遞ぶこずが奜たしい。 【】 次に、䞊蚘したアミノ酞塩ず反応させるゞアルキルゞカヌボネヌトは、䞀般匏
で次のように衚すこずができる。 【】 【化】 【】 䜆し1及び2は、同皮たたは異皮のアルキル基である。 本発明においお奜適に䜿甚できるゞアルキルゞカヌボネヌトを具䜓的に䟋瀺す
ればゞ−−ブチルゞカヌボネヌト、ゞ−−アミルゞカヌボネヌト、ゞむ゜プ
ロピルゞカヌボネヌト、ゞむ゜ブチルゞカヌボネヌト等を挙げるこずができる。 【】 䞊蚘したゞアルキルゞカヌボネヌトのアミノ酞塩に察する量は、−アルコキ
シカルボニルアミノ酞の晶析阻害を防止し、たた、経枈性の䞊から、通垞は保護
したいアミノ酞のアミノ基たたはむミノ基圓量に察しお〜圓量、
さらに〜圓量の範囲で遞ぶこずが奜たしい。 【】 アミノ酞塩ずゞアルキルゞカヌボネヌトずの反応枩床に぀いおは、特に制限さ
れないがゞアルキルゞカヌボネヌトの高枩による分解ず氎ずの反応を防止するた
めに、通垞−℃〜℃の範囲から遞択するこずが奜たしい。 【】 アミノ酞塩ずゞアルキルゞカヌボネヌトの反応における反応溶媒ずしおは、ア
ミノ酞塩が氎溶性で有機溶媒難溶性であり、ゞアルキルゞカヌボネヌトが氎難溶
性で有機溶媒可溶性であるために、氎ず有機溶媒の混合溶媒を䜿甚するこずが奜
たしい。このずきに甚いる有機溶媒は、氎に溶解する有機溶媒であれば特に制限
なく甚いるこずができる。これら有機溶媒を具䜓的に䟋瀺するず、−ブチルア
ルコヌル、−アミルアルコヌル、む゜プロピルアルコヌル、む゜ブチルアルコ
ヌル、゚タノヌル、メタノヌル等のアルコヌル類テトラヒドロフラン、ゞオキ
サン等の゚ヌテル類アセトニトリル等のニトリル類アセトン等のケトン類 −ゞメチルホルムアミド等のアミド類ゞメチルスルフォキサむド等を挙
げるこずができる。 【】 これらの有機溶媒ず氎ずの混合比は、反応に甚いられるアミノ酞の皮類によっ
お倉化するため䞀抂に決めるこずはできないが、アミノ酞およびゞアルキルゞカ
ヌボネヌトの溶解床をずもに倧きくしお高い反応速床を維持するためには、氎
重量郚に察しお有機溶媒を重量郚〜重量郚の範囲で、さらに
重量郚〜重量郚の範囲で遞ぶこずが奜たしい。 【】 䞊蚘の有機溶媒ず氎ずの混合溶媒䞭のアミノ酞塩の濃床ずしおは高い反応速床
を維持し、か぀副生成物である−アルコキシカルボニルアミノ酞゚ステルの生
成を抑制するために、混合溶媒重量郚に察しお〜重量郚、奜たし
くは〜重量郚の範囲から遞択するずよい。 【】 アミノ酞塩ずゞアルキルゞカヌボネヌトずの反応埌、有機溶媒の留去ずアミノ
酞塩の䞭和が行われる。有機溶媒の留去操䜜における枩床は特に制限されないが
、通垞℃〜℃の範囲から遞択される。特に光孊掻性なアミノ酞を原料ず
しお甚いた堎合、留去枩床が高いずラセミ化が生じるおそれがあるために、
℃以䞋で枛圧留去するこずが奜たしい。 【】 アミノ酞塩の䞭和操䜜においおは、通垞の酞塩基䞭和反応の操䜜が䞀般的に採
甚される。甚いる酞の皮類ずしおは、塩酞、硫酞、硝酞、リン酞等の鉱酞類硫
酞氎玠カリりム、硫酞氎玠ナトリりム、リン酞氎玠カリりム、リン酞氎玠ナトリ
りム等のアルカリ金属塩酢酞、蟻酞、蓚酞等の有機酞を挙げるこずができる。 䜿甚する酞の量は、アミノ酞の皮類によっお異なるため䞀抂に芏定はできない
が、通垞、氎溶液のが〜の範囲になるたで加えるこずが奜たしく、最適
な添加量は−アルコキシカルボニルアミノ酞のa倀によっお決めればよい
。䞭和操䜜の枩床は、あたり高くなりすぎるず−アルコキシカルボニル基の脱
離反応が起こるため、通垞℃以䞋、奜たしくは℃以䞋で実斜するこずが 望たしい。 【】 䞊蚘の蒞留および䞭和操䜜は、−アルコキシカルボニルアミノ酞の分解を最
小限に抑えるために、蒞留、䞭和の順に行うこずが奜たしい。 【】 本発明においおは、こうしお埗られた−アルコキシカルボニルアミノ酞の氎
溶液たたは氎懞濁液ず特定の有機溶媒ずの接觊により、−アルコキシカルボニ
ルアミノ酞の有機溶媒ぞの抜出が行われる。この有機溶媒は、氎ず共沞混合物を
圢成し䞔぀共沞混合組成における氎の含有量が容量以䞊容量以䞋で
ある有機溶媒でなければならない。氎の含有量が䞊蚘組成より䜎い有機溶媒を䜿
甚した堎合は有機溶媒の共沞脱氎胜力が匱く、たた氎の含有量が䞊蚘組成より高
い有機溶媒を䜿甚した堎合は有機溶媒自身の沞点が高いため、いずれも共沞脱氎
に芁する時間が長時間ずなり共沞脱氎操䜜䞭に−アルコキシカルボニルアミノ
酞の分解が生じおしたう。 【】 本発明においお奜適に䜿甚し埗る有機溶媒を具䜓的に䟋瀺するず、酢酞プロピ
ル、酢酞ブチル、酢酞む゜ブチル、酪酞゚チル、酪酞む゜ブチル、プロピオン酞
プロピル等の゚ステル類トル゚ン、−キシレン、m−キシレン、−キシレ
ン、クロロベンれン等の芳銙族炭化氎玠類−ペンタノン、−ペンタノン、
−メチル−−ブタノン、メチルむ゜ブチルケトン等のケトン類、炭酞ゞ゚チ
ル等のカヌボネヌト類を挙げるこずができる。これらの有機溶媒の䞭でも、溶媒
留去の容易さおよび−アルコキシカルボニルアミノ酞の溶解床の高さから、゚
ステル類、ケトン類、芳銙族炭化氎玠類が奜適に甚いられる。 【】 これらの有機溶媒ず−アルコキシカルボニルアミノ酞の氎溶液たたは氎懞濁
液を接觊させる際の枩床は、アミノ酞の有機溶媒ぞの溶解床或いは盞分離の際の
メニスカスの発生の有無によっお決たるため䞀抂に芏定するこずはできないが、
−アルコキシカルボニルアミノ酞の分解を最小限に抑えるため、−℃〜
℃の範囲で行うこずが奜たしい。 【】 有機溶媒の量に぀いおも䞊蚘ず同じ理由で特に限定するこずはできないが、お
おむね−アルコキシカルボニルアミノ酞の氎溶液たたは氎懞濁液容量郚
に察しお〜容量郚の有機溶媒で回皋床抜出すれば充分である。 【】 抜出操䜜は、埓来の䞀般的な方法が䜕等制限なく䜿甚できる。䟋えば、該氎溶
液たたは氎懞濁液ず有機溶媒を振ずう或いは攪拌等で激しく混合させた埌、これ
を静眮させお盞に分離させ、有機盞を分液する方法等が䜿甚できる。混合させ
る時間ずしおは、−アルコキシカルボニルアミノ酞は有機溶媒に察しお溶解床
が高いため〜分もあれば充分である。静眮時間に぀いおは、甚いる溶媒の
比重、メニスカスの発生の有無によっおも異なるため䞀抂に決めるこずはできな
いが、分〜分の範囲で界面の様子をみながら決めればよい。 【】 このようにしお−アルコキシカルボニルアミノ酞を抜出した有機盞は、薄局
クロマトグラフィヌ等の分析によっお出発原料であるアミノ酞が怜出されなけれ
ルボニルアミノ酞の分解を抑えるため枛圧䞋、䟋えば、〜Torr、䞔぀−
℃〜℃で行うこずが奜たしい。 【】 なお、薄局クロマトグラフィヌ等の分析によっおアミノ酞が怜出された堎合は
、有機溶媒容量郚に察しお〜容量郚の氎或いは濃床が以䞋
の食塩氎等でアミノ酞が怜出されなくなるたで有機盞を掗浄した埌に、䞊蚘ず同
様な操䜜を行えばよい。 【】 このようにしお共沞脱氎を行った埌、有機溶媒を留去しお濃瞮し、ヘキサン、
ヘプタン等の脂肪族炭化氎玠系溶媒を添加するこずによっお、あるいは有機溶媒
濃瞮埌再結晶操䜜を行うこずによっお−アルコキシカルボニルアミノ酞を晶析
させるこずができる。 【】 【発明の効果】 本発明によれば、−アルコキシカルボニルアミノ酞の氎溶液たたは氎懞濁液
から−アルコキシカルボニルアミノ酞を抜出する有機溶媒ずしお、氎ず共沞混
合物を圢成し䞔぀共沞混合組成における氎の含有量が容量以䞊容量
以䞋である有機溶媒を䜿甚するこずによっお、脱氎操䜜時に−アルコキシカル
ボニルアミノ酞を分解させるこずなく補造するこずができる。 【】 【実斜䟋】 以䞋、実斜䟋を掲げお本発明を説明するが、本発明はこれらの実斜䟋に制限さ
れるものではない。 【】 実斜䟋 攪拌噚、枩床蚈を備え付けた぀口フラスコにグリシン
、氎酞化ナトリりム、氎、−ブチルア
ルコヌルを加え、攪拌䞋℃たで冷华した。冷华埌、ゞ−−ブチ
ルゞカヌボネヌトを、内枩を℃以䞋に保ちなが
ら滎䞋した。宀枩で時間反応させた埌、枛圧䞋で−ブチルアルコヌルを留
去し、埗られた氎溶液を℃以䞋に冷华した。冷华䞋の塩酞を時
間かけお滎䞋したずころ、−−ブトキシカルボニルグリシンの癜色結晶が析
出した。たた、この時の氎懞濁液のは℃であった。 【】 この氎懞濁液を、酢酞ブチル氎ずの共沞混合組成における氎の含有量
を甚いお回抜出した。この時の、酢酞ブチル盞䞭の氎分量は
であった。分離は、℃で酢酞ブチルを添加しお攪拌噚で分間
攪拌した埌、分間静眮し酢酞ブチル盞を分液した酢酞ブチル盞を薄局クロ
マトグラフィヌで分析したずころ、埮量のグリシンが残存しおいたため、これを
完党に陀去する目的で、のむオン亀換氎で回掗浄したずころ、グリ
シンを完党に陀去するこずができたので、酢酞ブチル盞を℃、 で共沞脱氎し、酢酞ブチルを留去した。この時の氎分量はであ
った。埗られた酢酞ブチル溶波を℃たで冷华し時間攪拌するず癜色結晶が析
出したのでこれを濟別した。濟別した癜色結晶を℃で枛圧也燥したずころ、
−−ブトキシカルボニルグリシンが埗られた。
埗られた−−ブトキシカルボニルグリシン䞭のグリシンは、重量
以䞋であった。 【】 実斜䟋〜 衚に瀺した有機溶媒を䜿甚した以倖は、実斜䟋ず同様な操䜜を行った。 【】 その結果を衚に瀺した埗られた−−ブトキシカルボニルグリシン䞭の
グリシンは、いずれも重量以䞋であった。 【】 【衚】 【】 実斜䟋 攪拌噚、枩床蚈を備え付けた぀口フラスコにアラニン
、氎酞化ナトリりム、氎、−ブチルア
ルコヌルを加え、攪拌䞋℃たで冷华した。冷华埌、ゞ−−ブチ
ルゞカヌボネヌトを、内枩を℃以䞋に保ちなが
ら滎䞋した。宀枩で時間反応させた埌、枛圧䞋で−ブチルアルコヌルを留
去し、埗られた氎溶液を℃以䞋に冷华した。冷华䞋塩酞を時
間かけお滎䞋したずころ、−−ブトキシカルボニルアラニンの癜色結晶が析
出した。たた、この時の氎懞濁液のは℃であった。 【】 この氎懞濁液を、酢酞ブチルを甚いお回抜出した。この時の、酢酞
ブチル盞䞭の氎分量はであった。分離は、℃で酢酞ブチル
を添加しお攪拌噚で分間攪拌した埌、分間静眮し酢酞ブチル盞を分液し
た。酢酞ブチル盞を薄局クロマトグラフィヌで分析したずころ、埮量のアラニン
が残存しおいたため、これを完党に陀去する目的で、のむオン亀換氎
で回掗浄したずころ、アラニンを完党に陀去するこずができたので、酢酞ブチ
ル盞を℃、で共沞脱氎し、酢酞ブチルを留去した。こ
の時の氎分量はであった。埗られた酢酞ブチル溶液にヘプタンを
加え、℃たで冷华し時間攪拌するず癜色結晶が析出したのでこれを
濟別した。濟別した癜色結晶を℃で枛圧也燥したずころ、−−ブトキシ
カルボニルアラニンが埗られた。埗られた−−
ブトキシカルボニルアラニン䞭のアラニンは、重量以䞋であった。 【】 実斜䟋〜 衚に瀺したアミノ酞を䜿甚した以倖は、実斜䟋ず同様な操䜜を行った。 【】 その結果を衚に瀺した埗られた−−ブトキシカルボニルアミノ酞䞭の
アミノ酞はいずれも重量以䞋であった。 【】 【衚】 【】 比范䟋 有機溶媒に酢酞゚チル氎ずの共沞混合組成における氎の含有量を䜿甚
した以倖は、実斜䟋ず同様な操䜜を行った。この結果−−ブトキシカルボ
ニルグリシンは、グリシンはであった。
Description: TECHNICAL FIELD The present invention relates to a method for producing an N-alkoxycarbonyl amino acid. [0002] N-alkoxycarbonyl amino acids in which the amino group of an amino acid is protected can be selected when forming a peptide bond in the chemical synthesis of antibiotics, peptides, polypeptides, proteins and aminoglycosides. It is a compound that is important as a starting material or an intermediate for obtaining a target product. Conventionally, as a method for synthesizing N-alkoxycarbonylamino acids, a mixed solvent system of water and a water-miscible organic solvent such as t-butyl alcohol is used. After reacting with a basic substance to form a water-soluble salt, and then reacting with a dialkyl dicarbonate, the obtained N-alkoxycarbonyl amino acid salt is neutralized and converted into an acid to obtain an aqueous solution or suspension thereof, Then, a method of extracting with an organic solvent such as diethyl ether or ethyl acetate and further dehydrating the extract with a solid dehydrating agent such as sodium sulfate or magnesium sulfate (Organic Synthesis) 63 is known.
Vol. 160-170, 1985). [0004] However, in the above method, diethyl ether or ethyl acetate, which is an organic solvent used for extraction of N-alkoxycarbonyl amino acid, is dissolved in an aqueous solution of N-alkoxycarbonyl amino acid or in water. About 3 to 7% by weight of water is dissolved when brought into contact with the suspension. For this reason, when producing a large amount of N-alkoxycarbonyl amino acid, a large amount of solid dehydrating agent must be used for dehydrating the organic phase in which the extracted N-alkoxycarbonyl amino acid is dissolved, which is very industrial. It could not be said to be an advantageous method. [0005] Usually, an azeotropic dehydration method is employed as a method for dehydrating a large amount of an organic solvent. However, when the present inventors applied this azeotropic dehydration method to the above method, it was found that during the dehydration operation, It was found that the N-alkoxycarbonyl amino acid was decomposed to release the starting material amino acid. Means for Solving the Problems In view of the above circumstances, the present inventors have made intensive studies to produce N-alkoxycarbonyl amino acids without decomposing them. As a result, the aqueous solution or aqueous suspension after the N-alkoxycarbonyl amino acid salt was neutralized and converted into the acid form was brought into contact with a specific organic solvent to extract the N-alkoxycarbonyl amino acid into the organic phase. Later, they found that an N-alkoxycarbonyl amino acid could be synthesized by azeotropically dehydrating the organic phase without releasing the starting material amino acid, and completed the present invention. That is, the present invention provides a method comprising reacting an amino acid salt with a dialkyl dicarbonate.
An azeotropic mixture is formed with water and an aqueous solution or aqueous suspension of N-alkoxycarbonylamino acid obtained by neutralization, and the content of water in the azeotropic composition is 10% by volume or more and 60% by volume or less. After extracting the N-alkoxycarbonylamino acid into the organic phase by contacting with an organic solvent, the organic phase is separated from the aqueous phase, and then the azeotropic dehydration of the organic phase is carried out. It is a manufacturing method. [0008] The N-alkoxycarbonyl amino acid used in the present invention can be obtained by reacting an amino acid salt with a dialkyl dicarbonate and then neutralizing it. As a specific method, a known method can be adopted without any limitation. For example, the starting amino acid is not particularly limited as long as it is a compound having at least one amino group or imino group and a carboxyl group in the molecule. However, in the case of an amino acid having two or more amino groups or imino groups in one molecule, as long as it has at least one amino group or imino group, other amino groups or imino groups are It may be substituted by an alkyl group or the like. In the case of an amino acid having two or more carboxyl groups in one molecule, other carboxyl groups may be in an ester or amide state as long as they have at least one carboxyl group. . Specific examples of amino acids that can be suitably used in the present invention include, for example, glycine, alanine, β-alanine, valine, norvaline, leucine, norleucine, isoleucine, phenylalanine, tyrosine, diiodotyrosine, and threonone. , Serine, homoserine, isoserine, proline, hydroxyproline, tryptophan, thyroxine, methionine, homomethionine, cystine, homocystine, cysteine, homocysteine, α-aminobutyric acid, β-aminobutyric acid, γ-aminobutyric acid,
α-aminoisobutyric acid, aspartic acid, aspartic acid-β-cyclohexyl ester, aspartic acid-β-methyl ester, aspartic acid-β-isopropyl ester, aspartic acid-β-benzyl ester, glutamic acid, glutamic acid-γ-cyclohexyl ester, glutamic acid -Γ-methyl ester, glutamic acid-γ-isopropyl ester, glutamic acid-γ-benzyl ester, lysine, ornithine, hydroxylysine, arginine, histidine, anticapsin, N 5 -iminomethylornithine, α-amino-β- (2-imidazolidyl) ) Purobion acid, N- methylglycine, taurine, .gamma.-formyl -N- methyl-nor-valine, N g - tosyl-arginine, N g - benzyloxycarbonyl arginine, S- Asetoamidomechi Cysteine, S- benzyl cysteine, N im - benzyloxycarbonyl ornithine, N 6 - benzyloxycarbonyl-lysine, N 5
-Benzyloxycarbonylornithine, O-benzylserine, O-benzylthreonine, N in -formyltryptophan, 2- (2-amino-4-thiazolyl) -2-methoxyiminoacetic acid, 2- (2-amino-4-thiazolyl ) -2-hydroxyiminoacetic acid, 2- (2-amino-4-thiazolyl) -2-glyoxyacetic acid, 2- (2-amino-4-thiazolyl) -2-pentenoic acid, phenylglycine,
4-hydroxyphenylglycine and the like can be mentioned. These amino acids may be optical isomers or racemic mixtures. In order to convert these amino acids into water-soluble salts, a general acid-alkali neutralization reaction operation can be used without any limitation. For example, there are a method using an aqueous solution of an inorganic base such as a hydroxide or a carbonate of an alkali metal or an alkaline earth metal, and a method of converting an ammonium salt with an organic base. Specific examples of the base used include, as inorganic bases, sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, Potassium hydrogen carbonate and the like can be mentioned. Further, as the organic base, pyridine, 4-dimethylaminopyridine, triethylamine, tributylamine, 1-methylpiperidine,
1-methylpyrrolidine and the like can be mentioned. The amount of the base used is 0 to 1 equivalent of the amino acid in order to maintain the reaction rate with the dialkyl dicarbonate and to reduce the amount of acid required for neutralization after the reaction with the dialkyl dicarbonate.
. It is preferable to select in the range of 2 to 2.0 equivalents, more preferably 0.5 to 1.5 equivalents. Next, the dialkyl dicarbonate to be reacted with the above-described amino acid salt can be represented by the following general formula. Embedded image (However, R 1 and R 2 are the same or different alkyl groups.) Specific examples of dialkyl dicarbonates that can be suitably used in the present invention include di-t-butyl dicarbonate and di-t -Amyl dicarbonate, diisopropyl dicarbonate, diisobutyl dicarbonate and the like. The amount of the dialkyl dicarbonate relative to the amino acid salt prevents the crystallization of the N-alkoxycarbonyl amino acid and, from the viewpoint of economy, is usually equivalent to 1 equivalent of the amino group or imino group of the amino acid to be protected. 0.5 to 2.0 equivalents,
Further, it is preferable to select in the range of 0.8 to 1.2 equivalents. The reaction temperature between the amino acid salt and the dialkyl dicarbonate is not particularly limited, but is usually selected from the range of -20 ° C. to 60 ° C. in order to prevent the decomposition of the dialkyl dicarbonate at a high temperature and the reaction with water. Is preferred. As a reaction solvent in the reaction between the amino acid salt and the dialkyl dicarbonate, the amino acid salt is water-soluble and hardly soluble in an organic solvent, and the dialkyl dicarbonate is hardly water-soluble and soluble in an organic solvent. It is preferable to use a mixed solvent. The organic solvent used at this time can be used without any particular limitation as long as it is an organic solvent soluble in water. Specific examples of these organic solvents include alcohols such as t-butyl alcohol, t-amyl alcohol, isopropyl alcohol, isobutyl alcohol, ethanol, and methanol; ethers such as tetrahydrofuran and dioxane; nitriles such as acetonitrile; Ketones; amides such as N, N-dimethylformamide; dimethyl sulfoxide; The mixing ratio of these organic solvents and water cannot be determined unequivocally because it varies depending on the type of amino acid used in the reaction. However, both the solubility of the amino acid and the solubility of the dialkyl dicarbonate are increased to increase the reaction rate. To maintain the water 1
100 parts by weight of the organic solvent in the range of 10 parts by weight to 900 parts by weight,
It is preferable to select in the range of parts by weight to 400 parts by weight. In order to maintain a high reaction rate as the concentration of the amino acid salt in the mixed solvent of the above organic solvent and water, and to suppress the production of N-alkoxycarbonylamino acid ester as a by-product, the mixed solvent It is good to select from the range of 5 to 100 parts by weight, preferably 10 to 70 parts by weight with respect to 100 parts by weight. After the reaction of the amino acid salt with the dialkyl dicarbonate, the organic solvent is distilled off and the amino acid salt is neutralized. The temperature in the distillation operation of the organic solvent is not particularly limited, but is usually selected from the range of 0 ° C to 100 ° C. Particularly, when an optically active amino acid is used as a raw material, racemization may occur if the distillation temperature is high.
It is preferred that the solvent be distilled off under reduced pressure at a temperature of not more than ° C. In the operation of neutralizing an amino acid salt, an ordinary operation of an acid-base neutralization reaction is generally employed. Examples of the acid used include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; alkali metal salts such as potassium hydrogen sulfate, sodium hydrogen sulfate, potassium hydrogen phosphate, and sodium hydrogen phosphate; and acetic acid, formic acid, and oxalic acid. Organic acids can be mentioned. The amount of the acid used depends on the type of amino acid and cannot be specified unconditionally. However, it is usually preferable to add the acid until the pH of the aqueous solution is in the range of 1 to 4, and the optimal amount is N-alkoxycarbonylamino acid. It may be determined according to the pKa value. If the temperature of the neutralization operation is too high, an elimination reaction of the N-alkoxycarbonyl group occurs. Therefore, the neutralization operation is preferably performed at 40 ° C. or lower, preferably 30 ° C. or lower. The above-mentioned distillation and neutralization operations are preferably performed in the order of distillation and neutralization in order to minimize the decomposition of N-alkoxycarbonyl amino acids. In the present invention, the N-alkoxycarbonyl amino acid is extracted into the organic solvent by contacting the aqueous solution or suspension of the N-alkoxycarbonyl amino acid thus obtained with a specific organic solvent. The organic solvent must be an organic solvent that forms an azeotrope with water and has a water content in the azeotropic composition of 10% by volume or more and 60% by volume or less. The azeotropic dehydration ability of the organic solvent is weak when the water content of the organic solvent is lower than the above composition, and the boiling point of the organic solvent itself is high when the water content of the organic solvent is higher than the above composition. Therefore, in any case, the time required for azeotropic dehydration becomes long and the N-alkoxycarbonylamino acid is decomposed during the azeotropic dehydration operation. Specific examples of organic solvents that can be suitably used in the present invention include esters such as propyl acetate, butyl acetate, isobutyl acetate, ethyl butyrate, isobutyl butyrate, and propyl propionate; toluene, o-xylene, m -Aromatic hydrocarbons such as xylene, p-xylene and chlorobenzene; 2-pentanone, 3-pentanone,
Examples thereof include ketones such as 3-methyl-2-butanone and methyl isobutyl ketone, and carbonates such as diethyl carbonate. Among these organic solvents, esters, ketones, and aromatic hydrocarbons are preferably used because of the ease of solvent distillation and the high solubility of N-alkoxycarbonyl amino acids. The temperature at which these organic solvents are brought into contact with an aqueous solution or suspension of N-alkoxycarbonylamino acids is generally determined by the solubility of the amino acids in the organic solvents or the presence or absence of meniscus during phase separation. Can not be specified in
In order to minimize the decomposition of N-alkoxycarbonyl amino acids, the temperature is -5 ° C to 40 ° C.
It is preferable to carry out in the range of ° C. Although the amount of the organic solvent is not particularly limited for the same reason as described above, the amount of the organic solvent is generally about 20 to 50 parts by volume with respect to 100 parts by volume of the aqueous solution or suspension of N-alkoxycarbonylamino acid. It is enough to extract about three times. For the extraction operation, a conventional general method can be used without any limitation. For example, a method of vigorously mixing the aqueous solution or the aqueous suspension and the organic solvent by shaking or stirring or the like, allowing the mixture to stand, separating into two phases, and separating the organic phase can be used. As the mixing time, 1 to 30 minutes is sufficient because the N-alkoxycarbonylamino acid has high solubility in an organic solvent. The standing time cannot be determined unconditionally because it varies depending on the specific gravity of the solvent used and the presence or absence of meniscus. However, it may be determined while observing the state of the interface in the range of 10 minutes to 100 minutes. The organic phase from which the N-alkoxycarbonyl amino acid has been extracted as described above is subjected to reduced pressure, for example, from 1 to 4 to prevent decomposition of the ruvonyl amino acid unless the amino acid as a starting material is detected by analysis such as thin layer chromatography. 500 Torr, and-
It is preferably performed at 5 ° C to 40 ° C. When an amino acid is detected by analysis such as thin layer chromatography, the amino acid is detected in 10 to 40 parts by volume of water or a saline solution having a concentration of 10% or less based on 100 parts by volume of the organic solvent. After washing the organic phase until it is no longer possible, the same operation as described above may be performed. After performing azeotropic dehydration in this way, the organic solvent is distilled off and concentrated, and hexane,
The N-alkoxycarbonyl amino acid can be crystallized by adding an aliphatic hydrocarbon solvent such as heptane, or by performing a recrystallization operation after concentrating the organic solvent. According to the present invention, as an organic solvent for extracting N-alkoxycarbonylamino acid from an aqueous solution or aqueous suspension of N-alkoxycarbonylamino acid, an azeotropic mixture with water is formed and azeotropic The content of water in the mixed composition is 10% by volume or more and 60% by volume.
By using the following organic solvent, it can be produced without decomposing the N-alkoxycarbonyl amino acid during the dehydration operation. Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. Example 1 A four-necked flask equipped with a stirrer and a thermometer was charged with 75.07 g of glycine (1 mo).
l), 44 g (1.1 mol) of sodium hydroxide, 370 ml of water and 370 ml of t-butyl alcohol were added, and the mixture was cooled to 20 ° C. with stirring. After cooling, 218.25 g (1 mol) of di-t-butyl dicarbonate was added dropwise while maintaining the internal temperature at 25 ° C or lower. After reacting at room temperature for 14 hours, t-butyl alcohol was distilled off under reduced pressure, and the resulting aqueous solution was cooled to 5 ° C or lower. When 2.7 L of 2N hydrochloric acid was added dropwise over 4 hours under cooling, white crystals of Nt-butoxycarbonylglycine were precipitated. The pH of the aqueous suspension at this time was 2.20 (6.5 ° C.). This aqueous suspension is treated with butyl acetate (water content 29% in an azeotropic composition with water).
) Extracted three times with 1.2 L. At this time, the water content in the butyl acetate phase was 320
It was 00 ppm. For separation, butyl acetate was added at 25 ° C., and the mixture was stirred for 10 minutes with a stirrer. When the butyl acetate phase was analyzed by thin-layer chromatography, a trace amount of glycine remained. For the purpose of completely removing this, it was washed twice with 400 ml of ion-exchanged water. The butyl acetate phase was azeotropically dehydrated at 35 ° C. and 40 Torr to remove 1 L of butyl acetate. At this time, the water content was 600 ppm. The obtained butyl acetate solution was cooled to 5 ° C. and stirred for 1 hour, and white crystals were precipitated. When the white crystals separated by filtration were dried under reduced pressure at 20 ° C.,
160.3 g (91.5%) of Nt-butoxycarbonylglycine was obtained.
Glycine in the obtained Nt-butoxycarbonylglycine was 0.005% by weight or less. Examples 2 to 6 The same operation as in Example 1 was performed except that the organic solvents shown in Table 1 were used. Table 1 shows the results. Glycine in the obtained Nt-butoxycarbonylglycine was 0.005% by weight or less. [Table 1] Example 7 89.09 g of alanine (1 mo) was placed in a four-necked flask equipped with a stirrer and a thermometer.
1), 44 g (1.1 mol) of sodium hydroxide, 370 ml of water and 370 ml of t-butyl alcohol were added, and the mixture was cooled to 20 ° C. with stirring. After cooling, 218.25 g (1 mol) of di-t-butyl dicarbonate was added dropwise while maintaining the internal temperature at 25 ° C or lower. After reacting at room temperature for 14 hours, t-butyl alcohol was distilled off under reduced pressure, and the resulting aqueous solution was cooled to 5 ° C or lower. When 1.35 L of 1N hydrochloric acid was added dropwise over 4 hours under cooling, white crystals of Nt-butoxycarbonylalanine were precipitated. The pH of the aqueous suspension at this time was 2.18 (5.5 ° C.). The aqueous suspension was extracted three times with 1.4 L of butyl acetate. At this time, the water content in the butyl acetate phase was 24000 ppm. Separation was performed by adding butyl acetate at 25 ° C. and stirring with a stirrer for 10 minutes, and then allowed to stand for 30 minutes to separate a butyl acetate phase. When the butyl acetate phase was analyzed by thin-layer chromatography, trace amounts of alanine remained. After washing twice with 400 ml of ion-exchanged water for the purpose of completely removing this, alanine was completely removed. The butyl acetate phase was azeotropically dehydrated at 35 ° C. and 40 Torr, and 1.2 L of butyl acetate was distilled off. The water content at this time was 400 ppm. Heptane was added to the obtained butyl acetate solution.
After adding 00 ml, the mixture was cooled to 5 ° C. and stirred for 1 hour, and white crystals were precipitated. The white crystals separated by filtration were dried under reduced pressure at 20 ° C. to obtain 171.6 g (91.0%) of Nt-butoxycarbonylalanine. The obtained Nt-
Alanine in butoxycarbonylalanine was 0.005% by weight or less. Examples 8 to 12 The same operation as in Example 7 was performed except that the amino acids shown in Table 2 were used. Table 2 shows the results. The amino acids in the obtained Nt-butoxycarbonyl amino acids were all 0.005% by weight or less. [Table 2] Comparative Example 1 The same operation as in Example 1 was performed, except that ethyl acetate (water content of 8% in an azeotropic composition with water) was used as the organic solvent. As a result, Nt-butoxycarbonylglycine was 85.0% and glycine was 0.02%.

Claims (1)

【特蚱請求の範囲】 【請求項】 アミノ酞塩ずゞアルキルゞカヌボネヌトずを反応させた埌に䞭
和しお埗られた−アルコキシカルボニルアミノ酞の氎溶液たたは氎懞濁液ず、
氎ず共沞混合物を圢成し䞔぀共沞混合組成における氎の含有量が容量以䞊
容量以䞋である有機溶媒ずを接觊させお−アルコキシカルボニルアミノ
酞を有機盞䞭に抜出した埌、該有機盞を氎盞から分離し、次いで有機盞を共沞脱
氎するこずを特城ずする−アルコキシカルボニルアミノ酞の補造方法。
[Claim 1] After reacting an amino acid salt with a dialkyl dicarbonate,
An aqueous solution or aqueous suspension of the N-alkoxycarbonyl amino acid obtained by the addition ,
After extracting an N-alkoxycarbonyl amino acid into an organic phase by contacting with an organic solvent which forms an azeotrope with water and whose content of water in the azeotropic composition is 10% by volume or more and 60% by volume or less, A method for producing an N-alkoxycarbonyl amino acid, comprising separating the organic phase from the aqueous phase and then subjecting the organic phase to azeotropic dehydration.

Family

ID=

Similar Documents

Publication Publication Date Title
JP2801500B2 (en) Method for producing N-alkoxycarbonyl amino acid
WO2013131978A1 (en) Process for the preparation of intermediates useful in the preparation of a viral protease inhibitor
JP2735778B2 (en) Method for producing N-alkoxycarbonyl amino acid
JPH0689024B2 (en) Method for producing polypeptides
JP2735778C (en)
JP4374978B2 (en) Method for producing Nt-butyloxycarbonylamino acid-containing solution
JP3285398B2 (en) Method for producing urethane compound
JP3996671B2 (en) Method for producing N-alkoxycarbonylated, N-alkenyloxycarbonylated or N-arylalkoxycarbonylated amino acids
JP3204541B2 (en) Method for producing N-alkoxycarbonyl amino acid
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP3107666B2 (en) Method for producing urethane compound
JP3174156B2 (en) Method for producing N-alkoxycarbonyl amino acid
JP3285440B2 (en) Method for producing N-alkoxycarbonyl amino acid ester
JP2001114744A (en) Method for producing n-hydrocarbon oxycarbonylamino acid
JPWO2002085840A1 (en) Process for producing N-formyl amino acid and use thereof
JPH0259828B2 (en)
WO1999036399A1 (en) Process for producing optically active cysteine derivatives
JP2001199951A (en) Method for producing n-alkoxycarbonylamino acid ester
JPH078855B2 (en) Sulfonium compound
JP2953553B2 (en) Method for producing N-alkoxycarbonyl amino acid ester
JPH08157431A (en) Production of n-alkoxycarbonylamino acid ester
Pajpanova A simple and convenient procedure for the preparation of 3, 5-dihalogenated tyrosine derivatives useful in peptide synthesis
JP2007326817A (en) METHOD FOR PRODUCING N-t-BUTYLOXYCARBONYLAMINO ACID
JP3226189B2 (en) Method for purifying N-alkoxycarbonyl amino acid
KR950002834B1 (en) Method for extracting amino acid ester