JP2735739B2 - Oilless compressor and start-up method thereof - Google Patents

Oilless compressor and start-up method thereof

Info

Publication number
JP2735739B2
JP2735739B2 JP12460792A JP12460792A JP2735739B2 JP 2735739 B2 JP2735739 B2 JP 2735739B2 JP 12460792 A JP12460792 A JP 12460792A JP 12460792 A JP12460792 A JP 12460792A JP 2735739 B2 JP2735739 B2 JP 2735739B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
flow path
gas
rotor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12460792A
Other languages
Japanese (ja)
Other versions
JPH05321860A (en
Inventor
秀明 東後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12460792A priority Critical patent/JP2735739B2/en
Publication of JPH05321860A publication Critical patent/JPH05321860A/en
Application granted granted Critical
Publication of JP2735739B2 publication Critical patent/JP2735739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、沸点が常温より高いガ
スを圧縮する無給油式圧縮機、およびその起動方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oilless compressor for compressing a gas having a boiling point higher than room temperature, and a method of starting the compressor.

【0002】[0002]

【従来の技術】従来、沸点が常温より高い、即ち常温で
液化状態となるガスを圧縮する無給油式圧縮機として、
図6に示す圧縮機が公知である。この圧縮機は、一方に
吸込流路1が、他方に吐出流路2が接続した圧縮機本体
3内の図示しないロータ室の周囲にロータ室冷却用の冷
却水ジャケットを備え、この冷却水ジャケット用に給水
流路4、および排水流路5が設けてある。また、吐出流
路2からバイパス弁6を介して直接吸込流路1に至るバ
イパス流路7が設けてある。無給油式圧縮機は、ロータ
室内への冷却用油の注入による被圧縮ガスの冷却はしな
いタイプのものであって、圧縮ガスの高熱による圧縮機
本体3のケーシングの熱膨張を抑制するために、通常、
ロータ室の外周部に上記冷却水ジャケットを備えてい
る。
2. Description of the Related Art Conventionally, as an oilless compressor which compresses a gas having a boiling point higher than room temperature, that is, a gas which is in a liquefied state at room temperature,
The compressor shown in FIG. 6 is known. The compressor is provided with a cooling water jacket for cooling the rotor chamber around a rotor chamber (not shown) in the compressor main body 3 connected to the suction flow path 1 on one side and the discharge flow path 2 on the other side. A water supply channel 4 and a drain channel 5 are provided for use. Further, a bypass flow path 7 is provided from the discharge flow path 2 to the suction flow path 1 directly via the bypass valve 6. The oilless compressor is of a type that does not cool the gas to be compressed by injecting cooling oil into the rotor chamber, and in order to suppress the thermal expansion of the casing of the compressor body 3 due to the high heat of the compressed gas. ,Normal,
The cooling water jacket is provided on the outer periphery of the rotor chamber.

【0003】また、沸点が常温より高いガスを圧縮する
圧縮機の場合、液圧縮を回避するうえで、起動前に圧縮
機のケーシング、ロータ室の温度を常温以上、より正確
には被圧縮ガスが液化する温度以上に加熱して、吸込ガ
スが液化するのを防止する必要がある。このため、圧縮
機の起動時には、沸点が常温より低い空気、或はN2
スを使用して圧縮機の運転を行い、バイパス弁6を開い
て、高温の吐出ガスを徐々に、吸込流路1に戻すことに
より、吸込ガス温度を上昇させ、上記ロータ室を含め
て、ケーシング内のガス流路全体の温度を上昇させてい
る。そして、昇温後、系内のガスの実ガス、即ち沸点が
常温より高い被圧縮ガスへの置換が徐々に行われる。ま
た、圧縮機の起動時には、上記冷却水ジャケットに通水
せずに、系内に高温ガスを導入して、上記ガス流路全体
の温度を上昇させた後に、実ガスを使用する運転に入る
ことも行われている。
In the case of a compressor for compressing a gas having a boiling point higher than room temperature, in order to avoid liquid compression, the temperature of the casing and the rotor chamber of the compressor must be higher than room temperature before starting, more precisely, the gas to be compressed. It is necessary to prevent the suction gas from being liquefied by heating to a temperature higher than the temperature at which the gas is liquefied. For this reason, when the compressor is started, the compressor is operated using air or N 2 gas whose boiling point is lower than room temperature, and the bypass valve 6 is opened to gradually discharge the high-temperature discharge gas into the suction passage. By returning to 1, the suction gas temperature is raised, and the temperature of the entire gas flow path in the casing including the rotor chamber is raised. After the temperature rise, the gas in the system is gradually replaced with a real gas, that is, a gas to be compressed having a boiling point higher than room temperature. Also, at the time of starting the compressor, a high-temperature gas is introduced into the system without flowing water through the cooling water jacket, and after the temperature of the entire gas flow path is increased, an operation using actual gas is started. Things have also been done.

【0004】[0004]

【発明が解決しようとする課題】上記従来の装置では、
圧縮機を起動して、上記ガス流路全体を昇温させた後、
実ガスへの置換が行われるが、このガス置換に要する時
間が長く、また置換中、吐出ガスをフレア等に放出する
必要がある。通常、この実ガスは高価なものであり、こ
の実ガスの放出により、大きなロスが生じるという問題
がある。また、冷却水ジャケットに通水せずに、高温ガ
スにより上記ガス流路全体を昇温させると、圧縮機起動
後に冷却水を流したときに、冷却水ジャケットが急冷さ
れて、ケーシングが割れる等の問題が生じる。本発明
は、斯る従来の問題点を課題としてなされたもので、圧
縮機起動時におけるガス放出によるロスを低減させ、液
圧縮,圧縮機本体のケーシングの急激な熱変形による割
れの防止を可能とした無給油式圧縮機、およびその起動
方法を提供しようとするものである。
In the above-mentioned conventional apparatus,
After starting the compressor and raising the temperature of the entire gas flow path,
The replacement with the actual gas is performed, but the time required for the replacement of the gas is long, and it is necessary to discharge the discharge gas to a flare or the like during the replacement. Usually, this actual gas is expensive, and there is a problem that a large loss occurs due to the release of the actual gas. In addition, if the entire gas flow path is heated by the high-temperature gas without passing through the cooling water jacket, when the cooling water flows after the compressor is started, the cooling water jacket is rapidly cooled, and the casing is cracked. Problem arises. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and can reduce loss due to gas discharge at the time of starting a compressor, and can prevent liquid compression and cracks due to rapid thermal deformation of a casing of a compressor body. And a method of starting the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、第1発明は、圧縮機本体のケーシング内のロータ室
の周囲にロータ室冷却用の冷却水ジャケットを備え、沸
点が常温より高いガスを圧縮する無給油式圧縮機におい
て、上記冷却水ジャケットに冷却水を供給する給水流路
に合流させて冷却水加熱可能に設けた高温流体流路と、
この高温流体流路から上記冷却水に与える熱量を調節す
る熱量調節手段と、上記冷却水ジャケットを含め、上記
高温流体流路により加熱された水の流動する流路のうち
のいずれかの箇所における水、およびこの流路の壁部の
うちの少なくともいずれか一方の温度を検出して、この
検出温度に基づいて、この検出温度の時間に対する変化
率が許容値を超えるのを回避しつつ、上記熱量調節手段
を操作して、圧縮機起動前に上記熱量を増大させて上記
ガスが通過する流路を昇温させ、昇温後で、かつ圧縮機
起動後、上記熱量を減少させる温度調節器とを設けて形
成した。
According to a first aspect of the present invention, a cooling water jacket for cooling a rotor chamber is provided around a rotor chamber in a casing of a compressor body, and a boiling point is higher than room temperature. In an oilless compressor that compresses gas, a high-temperature fluid flow path that is provided to be capable of cooling water heating by being joined to a water supply path that supplies cooling water to the cooling water jacket,
A calorie adjusting means for adjusting the amount of heat given to the cooling water from the high-temperature fluid flow path, including the cooling water jacket, at any point in the flow path of the water heated by the high-temperature fluid flow path The temperature of the water and at least one of the walls of the flow path is detected, and based on the detected temperature, while preventing the rate of change of the detected temperature with respect to time from exceeding an allowable value, A temperature controller that operates the calorie control means to increase the calorie before the compressor is started to increase the temperature of the flow path through which the gas passes, and to reduce the calorie after the temperature rise and after the compressor is started. And formed.

【0006】また、第2発明は、圧縮機本体のケーシン
グ内のロータ室の周囲にロータ室冷却用の冷却水ジャケ
ットを備え、沸点が常温より高いガスを圧縮する無給油
式圧縮機において、上記冷却水ジャケットに冷却水を供
給する給水流路に設けた熱交換器を介して冷却水加熱可
能に設けた高温流体流路と、この高温流体流路に流体流
量調節可能に設けた流量調節弁と、上記冷却水ジャケッ
トを含め、上記高温流体流路により加熱された水の流動
する流路のうちのいずれかの箇所における水、およびこ
の流路の壁部のうちの少なくともいずれか一方の温度を
検出して、この検出温度に基づいて、この検出温度の時
間に対する変化率が許容値を超えるのを回避しつつ、上
記流量調節弁を操作して、圧縮機起動前に上記流体流量
を増大させて上記ガスが通過する流路を昇温させ、昇温
後で、かつ圧縮機起動後、上記流体流量を減少させる温
度調節器とを設けて形成した。
According to a second aspect of the present invention, there is provided an oilless compressor comprising a cooling water jacket for cooling a rotor chamber around a rotor chamber in a casing of a compressor body and compressing a gas having a boiling point higher than room temperature. A high-temperature fluid channel provided to be capable of heating the cooling water via a heat exchanger provided in a water supply channel for supplying the cooling water to the cooling water jacket; and a flow control valve provided to be capable of adjusting the fluid flow rate in the high-temperature fluid channel. And, including the cooling water jacket, the water at any point in the flow path of the water heated by the high-temperature fluid flow path, and the temperature of at least one of the walls of the flow path. Based on the detected temperature, operate the flow rate control valve to increase the fluid flow rate before starting the compressor while preventing the rate of change of the detected temperature with respect to time from exceeding an allowable value. Let me above Scan thereby is the temperature of the flow path through, after heating, and after the compressor starts, is formed by providing a temperature controller for reducing the fluid flow rate.

【0007】さらに、第3発明は、圧縮機本体のケーシ
ング内のロータ室の周囲にロータ室冷却用の冷却水ジャ
ケットを備え、沸点が常温より高いガスを圧縮する無給
油式圧縮機において、上記ロータ室を含めて上記ガスが
流動する少なくとも上記ケーシング内のガス流路の壁部
を昇温させる加熱手段と、この加熱手段より上記壁部に
与える熱量を増減させる熱量調節手段と、上記壁部の温
度を検出して、この検出温度に基づいて上記熱量調節手
段を操作して、上記検出温度の時間に対する変化率が許
容値を超えるのを回避しつつ、圧縮機起動前に上記熱量
を増大させ、上記ロータ室の昇温後で、かつ圧縮機起動
後、上記熱量を減少させる温度調節器とを設けて形成し
た。
Further, a third aspect of the present invention is directed to an oilless compressor including a cooling water jacket for cooling a rotor chamber around a rotor chamber in a casing of a compressor body and compressing a gas having a boiling point higher than room temperature. Heating means for increasing the temperature of at least the wall of the gas flow path in the casing, including the rotor chamber, through which the gas flows; heat quantity adjusting means for increasing or decreasing the amount of heat applied to the wall by the heating means; And operating the calorific value adjusting means based on the detected temperature to increase the caloric value before starting the compressor while preventing the rate of change of the detected temperature with respect to time from exceeding an allowable value. After the temperature of the rotor chamber was raised and after the compressor was started, a temperature controller for reducing the amount of heat was provided.

【0008】さらに、第4発明は、上記加熱手段が、上
記ガス流路の壁部に設けた加熱管で、上記熱量調節手段
が、この加熱管に高温流体を供給する高温流体流路に流
量調節可能に設けた流量調節弁である構成とした。
In a fourth aspect of the present invention, the heating means is a heating pipe provided on a wall of the gas flow path, and the calorific value adjusting means is a flow pipe for supplying a high-temperature fluid to the heating pipe. The flow control valve was provided so as to be adjustable.

【0009】さらに、第5発明は、上記加熱手段が、上
記ガス流路の壁部外周面上に設けたヒータで、上記熱量
調節手段が、上記ヒータに供給する電力を調節する電力
調節手段である構成とした。
In a fifth aspect of the present invention, the heating means is a heater provided on an outer peripheral surface of a wall of the gas flow path, and the heat amount adjusting means adjusts electric power supplied to the heater. There was a certain configuration.

【0010】さらに、第6発明は、圧縮機本体のケーシ
ング内のロータ室の周囲にロータ室冷却用の冷却水ジャ
ケットを備え、沸点が常温より高いガスを圧縮する無給
油式圧縮機の起動前に、圧縮機本体内に沸点が常温より
も低いガスを充満させ、上記ケーシング各部の温度差が
許容範囲を超えないように、上記ロータ室を含めて、上
記ガスが流動する少なくとも上記ケーシング内の流路を
加熱手段により徐々に昇温させ、昇温後、上記圧縮機本
体内のガスを沸点が常温より高い上記ガスに置換し、圧
縮機起動後、上記ケーシングの各部の温度差が許容範囲
を超えないように、上記加熱手段からの熱量を低減させ
るようにした。
[0010] In a sixth aspect of the present invention, a cooling water jacket for cooling the rotor chamber is provided around the rotor chamber in the casing of the compressor body, and before the oilless compressor starts to compress gas having a boiling point higher than room temperature. In the compressor body is filled with a gas having a boiling point lower than room temperature, so that the temperature difference between the casings does not exceed an allowable range, including the rotor chamber, at least in the casing where the gas flows, including the rotor chamber. The temperature of the flow path is gradually raised by a heating means, and after the temperature is raised, the gas in the compressor body is replaced with the gas having a boiling point higher than room temperature. After the compressor is started, the temperature difference of each part of the casing is within an allowable range. , The amount of heat from the heating means is reduced.

【0011】[0011]

【作用】第1発明〜第5発明のように構成することによ
り、圧縮機起動前に、上記ロータ室を含めて、上記ガス
が流動する少なくとも上記ケーシング内のガス流路内に
沸点が常温よりも高いガスを充満させても、上記高温流
体流路からの流体,加熱手段による昇温後、上記圧縮機
本体内のガスが気化するため、液圧縮を回避して、圧縮
機を起動させ得るようになるとともに、昇温、降温時に
上記ケーシング全体の温度の不均一さを許容範囲内に保
てるようになる。
According to the first to fifth aspects of the present invention, before starting the compressor, the boiling point of the gas flow path in the casing, including the rotor chamber, including at least the rotor chamber is lower than the normal temperature. Even if a high gas is filled, the gas in the compressor main body is vaporized after the temperature of the fluid from the high temperature fluid flow path and the heating means is increased, so that the compressor can be started while avoiding liquid compression. At the same time, when the temperature rises and falls, the non-uniformity of the temperature of the entire casing can be maintained within an allowable range.

【0012】また、第6発明のように構成することによ
り、圧縮機起動時に、実ガスを殆ど放出する必要がなく
なるとともに、昇温、降温時に上記ケーシング全体の温
度の不均一さを許容範囲内に保てるようになる。
Further, according to the sixth aspect of the present invention, almost no actual gas needs to be discharged when the compressor is started, and the temperature of the entire casing is made non-uniform when the temperature rises and falls. Will be able to keep

【0013】[0013]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1,2は、第6発明に係る起動方法が適用
される第1発明に係る無給油式スクリュ圧縮機を示し、
図6に示す無給油式圧縮機と同様の吸込流路1,吐出流
路2,圧縮機本体3,給水流路4,排水流路5,バイパ
ス弁6およびバイパス流路7が設けてある。圧縮機本体
3のケーシング11には、一方が図示しない吸込ポート
に、他方が吐出ポート12に開口したロータ室13が形
成してあり、このロータ室13内に互いに噛合う雌雄一
対のスクリュロータ14,15が回転可能に収納してあ
る。また、ロータ室13の周囲には、ロータ室冷却用の
冷却水ジャケット16が設けてあり、給水流路4からこ
の冷却水ジャケット16に水を供給して、排水流路5に
水を排出するようになっている。
Next, an embodiment of the present invention will be described with reference to the drawings. FIGS. 1 and 2 show an oilless screw compressor according to a first invention to which a starting method according to a sixth invention is applied,
A suction passage 1, a discharge passage 2, a compressor main body 3, a water supply passage 4, a drain passage 5, a bypass valve 6, and a bypass passage 7 similar to those of the oilless compressor shown in FIG. 6 are provided. The casing 11 of the compressor body 3 has a rotor chamber 13 having one opening at a suction port (not shown) and the other opening at a discharge port 12, and a pair of male and female screw rotors 14 meshing with each other in the rotor chamber 13. , 15 are rotatably housed. A cooling water jacket 16 for cooling the rotor chamber is provided around the rotor chamber 13. Water is supplied from the water supply passage 4 to the cooling water jacket 16 and discharged to the drain passage 5. It has become.

【0014】さらに、本実施例では、流量調節弁17を
設けた高温流体流路18を設けて、高温水、或は水蒸気
を流すようにするとともに、この高温流体流路18を給
水流路4に合流させてある。また、この合流部と圧縮機
本体3の間の給水流路4には、給水流路4中の水の温度
を検出して、この検出温度に基づいて、この検出温度の
時間に対する変化率が許容値を超えるのを回避しつつ、
流量調節弁17を操作して、圧縮機起動前に高温流体流
路18中の流体流量を増大させて沸点が常温より高い被
圧縮ガスが通過する流路を昇温させ、昇温後で、かつ圧
縮機起動後、上記流体流量を減少させる温度調節器19
を設けて形成してある。
Further, in the present embodiment, a high-temperature fluid flow path 18 provided with a flow rate control valve 17 is provided so that high-temperature water or steam flows. Has been joined to. In the water supply channel 4 between the junction and the compressor body 3, the temperature of water in the water supply channel 4 is detected, and based on the detected temperature, the rate of change of the detected temperature with respect to time is determined. While avoiding exceeding the tolerance,
Before starting the compressor, the flow rate control valve 17 is operated to increase the fluid flow rate in the high-temperature fluid flow path 18 to raise the temperature of the flow path through which the compressed gas having a boiling point higher than room temperature passes. And a temperature controller 19 for reducing the fluid flow rate after the compressor is started.
Is formed.

【0015】次に、第6発明に係る起動方法を、上記構
成からなる無給油式圧縮機に適用して説明する。圧縮機
の起動前に、圧縮機本体3内に沸点が常温よりも低いガ
ス、例えば空気,N2を充満させ、さらに流量調節弁1
7を徐々に開いて、給水流路4中の冷却水に高温水、好
ましくは水蒸気を混合させ、温度調節器19により給水
流路4中の水温を検出して、ケーシング11の各部の温
度差が許容範囲を超えないように、流量調節弁17の開
度を増大させていく。このように、ケーシング11の各
部の温度差が許容範囲を超えないようにすることは、例
えば以下のようにすることにより可能となる。即ち、予
め流量調節弁17の開度の変化速度とケーシング11の
各部の温度分布のばらつきとの関係を調べておき、この
ばらつきの大きさを許容範囲内に、即ち上記各部の温度
差によりケーシング11の割れ等の不具合を生じない範
囲に入るようにするには、流量調節弁17の開度の変化
速度を最大いくらにできるかを調べておけばよい。
Next, the starting method according to the sixth aspect of the invention will be described by applying to the oilless compressor having the above-described configuration. Before the compressor is started, the compressor body 3 is filled with a gas having a boiling point lower than room temperature, for example, air or N 2 , and the flow control valve 1 is further filled.
7 is gradually opened, high-temperature water, preferably steam, is mixed with the cooling water in the water supply flow path 4, and the temperature of the water in the water supply flow path 4 is detected by the temperature controller 19, and the temperature difference of each part of the casing 11 is detected. Is increased so as not to exceed the allowable range. As described above, it is possible to prevent the temperature difference of each part of the casing 11 from exceeding the allowable range by, for example, the following. That is, the relationship between the rate of change of the opening degree of the flow control valve 17 and the variation in the temperature distribution of each part of the casing 11 is checked in advance, and the magnitude of this variation is within an allowable range, that is, the casing is determined by the temperature difference of each part. In order to fall within a range in which a trouble such as a crack of 11 does not occur, it is sufficient to check how much the rate of change of the opening degree of the flow control valve 17 can be maximized.

【0016】そして、上述のようにして被圧縮ガスが流
動する流路を昇温させた後、圧縮機起動前に充満させた
ガスを被圧縮ガスに置換して、圧縮機を起動させる。さ
らに、圧縮機起動後、昇温時と同様に、温度調節器19
により徐々に、流量調節弁17の開度を小さくしてゆ
く。このように、被圧縮ガスの流路を昇温させた後、充
満ガスを被圧縮ガスに置換して、その後圧縮機を起動さ
せるようにすることにより、被圧縮ガスは液化せず、か
つ被圧縮ガスのロスも少なくなる。また、ガス流路の温
度を上述のように徐々に変化させることにより、ケーシ
ング11の各部の温度差が小さくなり、ケーシング11
の割れ、上記各部の温度の異常なばらつきによるケーシ
ング11の不均一な熱膨張、およびそれに伴うスクリュ
ロータ14,15とロータ室13の内周面との接触等の
不具合の発生も防止でき、安定した運転ができるように
なっている。
After the temperature of the flow path through which the gas to be compressed flows is raised as described above, the gas filled before the compressor is started is replaced with the gas to be compressed, and the compressor is started. Further, after starting the compressor, the temperature controller 19
Accordingly, the opening of the flow control valve 17 is gradually reduced. As described above, after the temperature of the flow path of the gas to be compressed is increased, the filled gas is replaced with the gas to be compressed, and then the compressor is started. Compressed gas loss is also reduced. In addition, by gradually changing the temperature of the gas flow path as described above, the temperature difference between each part of the casing 11 is reduced, and
The occurrence of problems such as cracks in the casing, non-uniform thermal expansion of the casing 11 due to abnormal variations in the temperatures of the above-described portions, and contact with the screw rotors 14, 15 and the inner peripheral surface of the rotor chamber 13 can be prevented. Driving can be done.

【0017】なお、本実施例では、バイパス流路7は圧
縮機起動時の負荷低減と吐出圧力の調節のために使用さ
れる。即ち、吐出ガスの使用量が減少して、吐出圧力が
異常上昇する傾向を呈する場合には、バイパス弁6を開
いて、吐出ガスの全部または一部を吸込流路1に戻す。
また、給水流路4中の冷却水と混合させる高温流体流路
18からの高温流体の流量を調節するのに、流量調節弁
17に代えて、図1中2点鎖線にて示すように、給水流
路4と高温流体流路18との合流部に、冷却水の流量と
高温流体の流量の比率を適宜調節する公知の切換弁20
を設けてもよい。さらに、温度調節器19を配置する位
置は、上記実施例における位置に限定するものでなく、
ロータ室13を含め、高温流体流路18の高温流体によ
り加熱された水の流動する流路のうちのいずれかの箇所
における水を検出できる位置か、この流路の壁部であれ
ばよい。例えば、図2に示すようにロータ室13の壁部
内周面に温度調節器19を設けて、この壁部の内周部の
検出温度に基づく操作信号Xを流量調節弁17、或は切
換弁20に入力して上記同様の弁開度調節等を行うよう
にしてもよい。なお、流量調節弁17、切換弁20は、
給水流路4中の冷却水に与える熱量を調節する働きをし
ている故、熱量調節手段でもある。
In this embodiment, the bypass passage 7 is used for reducing the load at the time of starting the compressor and adjusting the discharge pressure. That is, when the usage amount of the discharge gas decreases and the discharge pressure tends to abnormally increase, the bypass valve 6 is opened to return all or a part of the discharge gas to the suction passage 1.
Further, in order to adjust the flow rate of the high-temperature fluid from the high-temperature fluid flow path 18 to be mixed with the cooling water in the water supply flow path 4, instead of the flow rate control valve 17, as shown by a two-dot chain line in FIG. A well-known switching valve 20 for appropriately adjusting the ratio of the flow rate of the cooling water to the flow rate of the high-temperature fluid at the junction of the water supply flow path 4 and the high-temperature fluid flow path 18.
May be provided. Further, the position where the temperature controller 19 is arranged is not limited to the position in the above embodiment,
It may be a position where water can be detected in any part of the flow path of the water heated by the high-temperature fluid in the high-temperature fluid flow path 18 including the rotor chamber 13 or a wall of this flow path. For example, as shown in FIG. 2, a temperature controller 19 is provided on the inner peripheral surface of the wall of the rotor chamber 13, and an operation signal X based on the detected temperature of the inner peripheral portion of the wall is supplied to the flow control valve 17 or the switching valve. 20 and the same valve opening adjustment as described above may be performed. The flow control valve 17 and the switching valve 20 are
Since it has the function of adjusting the amount of heat given to the cooling water in the water supply passage 4, it is also a heat amount adjusting means.

【0018】図3は、第6発明の別の実施例に係る起動
方法が適用される第2発明に係る無給油式スクリュ圧縮
機を示し、図1,2に示す無給油式圧縮機と共通する箇
所については、同一番号を付して説明を省略する。本実
施例では、給水流路4に熱交換器21を設けるととも
に、この熱交換器21を介して給水流路4中の冷却水に
対して昇温可能に高温流体流路22が設けてある。そし
て、熱交換器21の出側の給水流路4に設けた温度調節
器19により、図1,2に示す圧縮機の場合と同様に、
流量調節弁17の開度を調節して、上記同様の作用を生
じるようになっている。なお、図3に示す圧縮機におい
ても、温度調節器19の配置位置を熱交換器21の出側
の給水流路4に限定するものでないことは上記同様であ
る。また、高温流体流路18に流す流体は、高温流体で
あればよく高温水、水蒸気の他に、例えば圧縮機本体3
からの吐出ガスであってもよい。
FIG. 3 shows an oilless screw compressor according to a second invention to which a starting method according to another embodiment of the sixth invention is applied, which is common to the oilless compressor shown in FIGS. The same reference numerals are given to the same parts and the description is omitted. In the present embodiment, the heat exchanger 21 is provided in the water supply flow path 4, and the high-temperature fluid flow path 22 is provided through the heat exchanger 21 so that the temperature of the cooling water in the water supply flow path 4 can be raised. . Then, by the temperature controller 19 provided in the water supply flow path 4 on the outlet side of the heat exchanger 21, as in the case of the compressor shown in FIGS.
By adjusting the opening of the flow control valve 17, the same operation as described above is produced. Note that, also in the compressor shown in FIG. 3, the position of the temperature controller 19 is not limited to the water supply flow path 4 on the outlet side of the heat exchanger 21, as described above. The fluid flowing through the high-temperature fluid flow path 18 may be a high-temperature fluid, in addition to high-temperature water and steam, for example, the compressor body 3.
May be discharged gas.

【0019】図4は、第6発明の別の実施例を適用した
第3,第4発明に係る無給油式スクリュ圧縮機を示し、
図1,2に示す圧縮機と共通する箇所については、同一
番号を付して説明を省略する。本実施例では、ロータ室
13の壁部に加熱管31を埋設するとともに、温度調節
器19をロータ室13の壁部内周面に設けて、この壁部
の内周部の温度を検出するように形成してある。また、
加熱管31には高温流体を供給し、排出させる図示しな
い流路が接続しており、高温流体供給側には、この高温
流体の流量を調節する図示しない流量調節弁が設けてあ
り、図1,2に示す圧縮機の場合と同様に温度調節器1
9からの操作信号Xによりこの流量調節弁の開度を調節
するように形成してある。
FIG. 4 shows an oilless screw compressor according to the third and fourth inventions to which another embodiment of the sixth invention is applied.
The same parts as those in the compressor shown in FIGS. In the present embodiment, the heating tube 31 is embedded in the wall of the rotor chamber 13 and the temperature controller 19 is provided on the inner peripheral surface of the wall of the rotor chamber 13 to detect the temperature of the inner peripheral part of the wall. It is formed in. Also,
A flow path (not shown) for supplying and discharging the high-temperature fluid is connected to the heating pipe 31, and a flow rate control valve (not shown) for adjusting the flow rate of the high-temperature fluid is provided on the high-temperature fluid supply side. , 2 as in the case of the compressor shown in FIG.
It is formed so that the opening degree of this flow control valve is adjusted by the operation signal X from the control signal 9.

【0020】そして、温度調節器19による検出温度の
時間に対する変化率が許容値を超えるのを回避しつつ、
圧縮機起動前には、操作信号Xにより上記流量調節弁の
開度を徐々に増大させて、上記壁部に与える熱量を増大
させる。一方、ロータ室の昇温後で、かつ圧縮機の起動
後、操作信号Xにより、上記同様温度調節器19による
検出温度の変化が緩やかになるようにして、上記流量調
節弁の開度を徐々に小さくすることにより、上記熱量を
減少させ、図1,2の示す圧縮機の場合と同様の作用を
生じるようになっている。なお、上記構成にさらに、上
述した冷却水を昇温させる構成を付加してもよい。例え
ば、図4中2点鎖線で示すように、高温流体流路18,
流量調節弁17、および温度調節器19を設けてもよ
い。
Then, while preventing the rate of change of the temperature detected by the temperature controller 19 with respect to time from exceeding an allowable value,
Before the compressor is started, the opening of the flow control valve is gradually increased by the operation signal X to increase the amount of heat applied to the wall. On the other hand, after the temperature of the rotor chamber is raised and after the compressor is started, the opening of the flow control valve is gradually increased by the operation signal X so that the change in the temperature detected by the temperature controller 19 becomes gentle as described above. , The amount of heat is reduced, and the same operation as that of the compressor shown in FIGS. It should be noted that a configuration for raising the temperature of the cooling water described above may be added to the above configuration. For example, as shown by a two-dot chain line in FIG.
A flow control valve 17 and a temperature controller 19 may be provided.

【0021】また、加熱管31に供給する高温流体の流
量を調節する流量調節弁を給水流路4に設けた温度調節
器19により操作させるようにしてもよい。さらに、加
熱管31に流す流体は、高温流体であればよく高温水、
水蒸気の他に、例えば圧縮機本体3からの吐出ガスであ
ってもよい。図5は、第6発明の別の実施例を適用した
第3,第5発明に係る無給油式スクリュ圧縮機を示し、
図1,2に示す圧縮機と共通する箇所については、同一
番号を付して説明を省略する。本実施例では、ロータ室
13の壁部外周面上にヒータ41を貼り着けるととも
に、温度調節器19をロータ室13の壁部内周面に設け
て、この壁部の内周部の温度を検出するように形成して
ある。また、ヒータ41は図示しない電力調節手段を介
して、同じく図示しない電源に接続している。そして、
温度調節器19からの操作信号Xにより、上記電力調節
手段を操作することによりヒータ41に供給する電力を
調節して、図4に示す圧縮機の場合と同様に、圧縮機の
起動前は、ヒータ41より上記壁部に与える熱量を徐々
に増大させる一方、ロータ室13の昇温後で、かつ圧縮
機起動後に、上記熱量を徐々に減少させ、図1,2に示
す圧縮機の場合と同様の作用を生じるようになってい
る。
A flow control valve for controlling the flow rate of the high-temperature fluid supplied to the heating pipe 31 may be operated by the temperature controller 19 provided in the water supply flow path 4. Further, the fluid flowing through the heating pipe 31 may be a high-temperature fluid, such as high-temperature water,
In addition to the steam, for example, the gas discharged from the compressor body 3 may be used. FIG. 5 shows an oilless screw compressor according to third and fifth inventions to which another embodiment of the sixth invention is applied,
The same parts as those in the compressor shown in FIGS. In the present embodiment, the heater 41 is attached to the outer peripheral surface of the wall of the rotor chamber 13 and the temperature controller 19 is provided on the inner peripheral surface of the wall of the rotor chamber 13 to detect the temperature of the inner peripheral portion of the wall. It is formed so that. The heater 41 is also connected to a power source (not shown) via a power adjusting means (not shown). And
The power supplied to the heater 41 is adjusted by operating the power adjusting means according to the operation signal X from the temperature controller 19, and before the compressor is started, as in the case of the compressor shown in FIG. While the amount of heat given to the wall portion by the heater 41 is gradually increased, the amount of heat is gradually reduced after the temperature of the rotor chamber 13 is increased and after the compressor is started. A similar effect is produced.

【0022】なお、上記構成にさらに、上述した冷却水
を昇温させる構成を付加してもよい。例えば、図5中2
点鎖線で示すように、高温流体流路18,流量調節弁1
7,温度調節器19、および熱交換器21を設けてもよ
い。また、ヒータ41に供給する電力を調節する電力調
節手段を給水流路4に設けた温度調節器19により操作
させるようにしてもよい。ここで、上記電力調節手段は
上記壁部に与える熱量を調節する働きをしている故、流
量調節手段17と同様に熱量調節手段でもある。なお、
上記実施例では、いずれもスクリュ圧縮機について説明
したが、上記各発明はスクリュ式の圧縮機に限定するも
のではない。
Incidentally, a configuration for raising the temperature of the cooling water described above may be added to the above configuration. For example, in FIG.
As shown by the dashed line, the high-temperature fluid flow path 18 and the flow control valve 1
7, a temperature controller 19 and a heat exchanger 21 may be provided. Further, a power adjusting means for adjusting the electric power supplied to the heater 41 may be operated by the temperature adjuster 19 provided in the water supply flow path 4. Here, since the power adjusting means functions to adjust the amount of heat applied to the wall, it is also a heat amount adjusting means like the flow rate adjusting means 17. In addition,
In each of the above embodiments, the screw compressor has been described, but each of the above inventions is not limited to the screw compressor.

【0023】[0023]

【発明の効果】以上の説明より明らかなように、第1発
明によれば、圧縮機本体のケーシング内のロータ室の周
囲にロータ室冷却用の冷却水ジャケットを備え、沸点が
常温より高いガスを圧縮する無給油式圧縮機において、
上記冷却水ジャケットに冷却水を供給する給水流路に合
流させて冷却水加熱可能に設けた高温流体流路と、この
高温流体流路から上記冷却水に与える熱量を調節する熱
量調節手段と、上記冷却水ジャケットを含め、上記高温
流体流路により加熱された水の流動する流路のうちのい
ずれかの箇所における水、およびこの流路の壁部のうち
の少なくともいずれか一方の温度を検出して、この検出
温度に基づいて、この検出温度の時間に対する変化率が
許容値を超えるのを回避しつつ、上記熱量調節手段を操
作して、圧縮機起動前に上記熱量を増大させて上記ガス
が通過する流路を昇温させ、昇温後で、かつ圧縮機起動
後、上記熱量を減少させる温度調節器とを設けて形成し
てある。
As is apparent from the above description, according to the first invention, a cooling water jacket for cooling the rotor chamber is provided around the rotor chamber in the casing of the compressor body, and the gas having a boiling point higher than room temperature is provided. Oilless compressor that compresses
A high-temperature fluid flow path that is provided so as to be capable of heating the cooling water by being joined to a supply water flow path that supplies cooling water to the cooling water jacket; Including the cooling water jacket, the temperature of water at any point in the flow path of the water heated by the high-temperature fluid flow path and the temperature of at least one of the walls of the flow path are detected. Then, based on the detected temperature, while preventing the rate of change of the detected temperature with respect to time from exceeding an allowable value, operating the calorific value adjusting means to increase the caloric value before starting the compressor, and The temperature is increased by increasing the temperature of the flow path through which the gas passes, and a temperature controller is provided to reduce the heat amount after the temperature is increased and after the compressor is started.

【0024】また、第2発明によれば、圧縮機本体のケ
ーシング内のロータ室の周囲にロータ室冷却用の冷却水
ジャケットを備え、沸点が常温より高いガスを圧縮する
無給油式圧縮機において、上記冷却水ジャケットに冷却
水を供給する給水流路に設けた熱交換器を介して冷却水
加熱可能に設けた高温流体流路と、この高温流体流路に
流体流量調節可能に設けた流量調節弁と、上記冷却水ジ
ャケットを含め、上記高温流体流路により加熱された水
の流動する流路のうちのいずれかの箇所における水、お
よびこの流路の壁部のうちの少なくともいずれか一方の
温度を検出して、この検出温度に基づいて、この検出温
度の時間に対する変化率が許容値を超えるのを回避しつ
つ、上記流量調節弁を操作して、圧縮機起動前に上記流
体流量を増大させて上記ガスが通過する流路を昇温さ
せ、昇温後で、かつ圧縮機起動後、上記流体流量を減少
させる温度調節器とを設けて形成してある。
According to the second aspect of the present invention, there is provided an oilless compressor having a cooling water jacket for cooling a rotor chamber around a rotor chamber in a casing of a compressor body and compressing a gas having a boiling point higher than room temperature. A high-temperature fluid channel provided to be capable of heating the cooling water via a heat exchanger provided in a water supply channel for supplying the cooling water to the cooling water jacket, and a flow rate provided to be capable of adjusting the fluid flow rate in the high-temperature fluid channel. A control valve, including the cooling water jacket, water in any location of the flow path of the water heated by the high temperature fluid flow path, and / or at least one of a wall portion of the flow path; Operating the flow rate control valve based on the detected temperature to prevent the rate of change of the detected temperature with respect to time from exceeding an allowable value, and operating the fluid flow rate before starting the compressor. Increase It raised a channel the gas passes, after heating, and after the compressor starts, is formed by providing a temperature controller for reducing the fluid flow rate.

【0025】さらに、第3発明によれば、圧縮機本体の
ケーシング内のロータ室の周囲にロータ室冷却用の冷却
水ジャケットを備え、沸点が常温より高いガスを圧縮す
る無給油式圧縮機において、上記ロータ室を含めて上記
ガスが流動する少なくとも上記ケーシング内のガス流路
の壁部を昇温させる加熱手段と、この加熱手段より上記
壁部に与える熱量を増減させる熱量調節手段と、上記壁
部の温度を検出して、この検出温度に基づいて上記熱量
調節手段を操作して、上記検出温度の時間に対する変化
率が許容値を超えるのを回避しつつ、圧縮機起動前に上
記熱量を増大させ、上記ロータ室の昇温後で、かつ圧縮
機起動後、上記熱量を減少させる温度調節器とを設けて
形成してある。
Further, according to the third aspect of the present invention, there is provided an oilless compressor having a cooling water jacket for cooling the rotor chamber around the rotor chamber in a casing of the compressor body and compressing a gas having a boiling point higher than room temperature. A heating means for raising the temperature of at least the wall of the gas flow path in the casing through which the gas flows, including the rotor chamber; a heat quantity adjusting means for increasing or decreasing the amount of heat given to the wall by the heating means; The temperature of the wall is detected, and the calorie adjusting means is operated based on the detected temperature to prevent the rate of change of the detected temperature with respect to time from exceeding an allowable value. And a temperature controller for reducing the amount of heat after the temperature of the rotor chamber is increased and after the compressor is started.

【0026】さらに、第4発明によれば、上記加熱手段
が、上記ガス流路の壁部に設けた加熱管で、上記熱量調
節手段が、この加熱管に高温流体を供給する高温流体流
路に流量調節可能に設けた流量調節弁である構成として
ある。
Further, according to the fourth invention, the heating means is a heating pipe provided on a wall of the gas flow path, and the heat quantity adjusting means is a high-temperature fluid flow path for supplying a high-temperature fluid to the heating pipe. The flow control valve is provided so as to be capable of adjusting the flow rate.

【0027】さらに、第5発明によれば、上記加熱手段
が、上記ガス流路の壁部外周面上に設けたヒータで、上
記熱量調節手段が、上記ヒータに供給する電力を調節す
る電力調節手段である構成としてある。
Further, according to the fifth invention, the heating means is a heater provided on the outer peripheral surface of the wall of the gas flow path, and the heat amount adjusting means adjusts electric power supplied to the heater. It is a configuration that is a means.

【0028】このため、圧縮機起動前に、上記ロータ室
を含めて、上記ガスが流動する少なくとも上記ケーシン
グ内のガス流路内に沸点が常温よりも高いガスを充満さ
せても、上記加熱手段による昇温後、上記圧縮機本体内
のガスは気化するので、液圧縮なしに、圧縮機を起動さ
せ得るようになり、圧縮機起動後のガス置換に要する時
間を短縮させることができるとともに、被圧縮ガスの放
出によるロスを大幅に減少させることができる。また、
昇温、降温時における上記ケーシング各部の温度差が小
さくなり、ケーシングの不均一な熱膨張、ケーシングの
割れ等の不具合が防止できるとともに、安定した運転が
可能になるという効果を奏する。
Therefore, even before the compressor is started, even if the gas including the rotor chamber is filled with a gas having a boiling point higher than room temperature at least in a gas flow path in the casing through which the gas flows, the heating means After the temperature rise, the gas in the compressor body is vaporized, so that the compressor can be started without liquid compression, and the time required for gas replacement after starting the compressor can be shortened. The loss due to the discharge of the compressed gas can be greatly reduced. Also,
The difference in temperature between the above-mentioned portions of the casing at the time of raising and lowering the temperature is reduced, so that problems such as uneven thermal expansion of the casing and cracking of the casing can be prevented, and stable operation can be achieved.

【0029】さらに、第6発明によれば、圧縮機本体の
ケーシング内のロータ室の周囲にロータ室冷却用の冷却
水ジャケットを備え、沸点が常温より高いガスを圧縮す
る無給油式圧縮機の起動前に、圧縮機本体内に沸点が常
温よりも低いガスを充満させ、上記ケーシング各部の温
度差が許容範囲を超えないように、上記ロータ室を含め
て、上記ガスが流動する少なくとも上記ケーシング内の
流路を加熱手段により徐々に昇温させ、昇温後、上記圧
縮機本体内のガスを沸点が常温より高い上記ガスに置換
し、圧縮機起動後、上記ケーシングの各部の温度差が許
容範囲を超えないように、上記加熱手段からの熱量を低
減させるようにした。
Further, according to the sixth aspect of the present invention, there is provided an oilless compressor having a cooling water jacket for cooling the rotor chamber around the rotor chamber in a casing of the compressor body, and compressing a gas having a boiling point higher than room temperature. Before starting, at least the casing through which the gas flows, including the rotor chamber, is filled with a gas having a boiling point lower than room temperature in the compressor body so that the temperature difference between the casings does not exceed an allowable range. The temperature inside the compressor body is gradually increased by a heating means, and after the temperature is increased, the gas in the compressor body is replaced with the gas having a boiling point higher than room temperature. The amount of heat from the heating means was reduced so as not to exceed the allowable range.

【0030】このため、圧縮機起動時における、上記ガ
ス流路のガス置換に要する時間を短縮させることができ
るとともに、被圧縮ガスの液化は無くなり、かつ被圧縮
ガスの放出によるロスを大幅に減少させることができ
る。また、昇温、降温時における上記ケーシング各部の
温度差が小さくなり、ケーシングの不均一な熱膨張、ケ
ーシングの割れ等の不具合が防止できるとともに、安定
した運転が可能になるという効果を奏する。
Therefore, the time required for gas replacement in the gas flow path at the time of starting the compressor can be shortened, liquefaction of the gas to be compressed is eliminated, and loss due to discharge of the gas to be compressed is greatly reduced. Can be done. In addition, the temperature difference between the above-described portions of the casing at the time of raising and lowering the temperature is reduced, so that problems such as uneven thermal expansion of the casing and cracking of the casing can be prevented, and stable operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第6発明の係る起動方法が適用される第1発
明に係る無給油式スクリュ圧縮機の全体構成図である。
FIG. 1 is an overall configuration diagram of an oilless screw compressor according to a first invention to which a starting method according to a sixth invention is applied.

【図2】 図1に示す圧縮機の圧縮機本体の断面図であ
る。
FIG. 2 is a sectional view of a compressor body of the compressor shown in FIG.

【図3】 第6発明の別の実施例が適用される第2発明
に係る無給油式スクリュ圧縮機の全体構成図である。
FIG. 3 is an overall configuration diagram of an oilless screw compressor according to a second invention to which another embodiment of the sixth invention is applied.

【図4】 第6発明の別の実施例が適用される第3,第
4発明に係る無給油式スクリュ圧縮機の圧縮機本体の断
面図である。
FIG. 4 is a sectional view of a compressor body of an oilless screw compressor according to a third and a fourth invention to which another embodiment of the sixth invention is applied.

【図5】 第6発明の別の実施例が適用される第3,第
5発明に係る無給油式スクリュ圧縮機の圧縮機本体の断
面図である。
FIG. 5 is a cross-sectional view of a compressor body of an oilless screw compressor according to third and fifth inventions to which another embodiment of the sixth invention is applied.

【図6】 従来の無給油式圧縮機の全体構成図である。FIG. 6 is an overall configuration diagram of a conventional oilless compressor.

【符号の説明】[Explanation of symbols]

3 圧縮機本体 4 給水流路 11 ケーシング 13 ロータ室 16 冷却水ジャケット 17 流量調節弁 18 高温流体流路 19 温度調節器 20 切換弁 21 熱交換器 31 加熱管 41 ヒータ DESCRIPTION OF SYMBOLS 3 Compressor main body 4 Water supply flow path 11 Casing 13 Rotor room 16 Cooling water jacket 17 Flow control valve 18 High temperature fluid flow path 19 Temperature controller 20 Switching valve 21 Heat exchanger 31 Heating pipe 41 Heater

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機本体(3)のケーシング(11)
内のロータ室(13)の周囲にロータ室(13)冷却用
の冷却水ジャケット(16)を備え、沸点が常温より高
いガスを圧縮する無給油式圧縮機において、上記冷却水
ジャケット(16)に冷却水を供給する給水流路(4)
に合流させて冷却水加熱可能に設けた高温流体流路(1
8)と、この高温流体流路(18)から上記冷却水に与
える熱量を調節する熱量調節手段(17,20)と、上
記冷却水ジャケット(16)を含め、上記高温流体流路
(18)により加熱された水の流動する流路のうちのい
ずれかの箇所における水、およびこの流路の壁部のうち
の少なくともいずれか一方の温度を検出して、この検出
温度に基づいて、この検出温度の時間に対する変化率が
許容値を超えるのを回避しつつ、上記熱量調節手段(1
7,20)を操作して、圧縮機起動前に上記熱量を増大
させて上記ガスが通過する流路(13を含む)を昇温さ
せ、昇温後で、かつ圧縮機起動後、上記熱量を減少させ
る温度調節器(19)とを設けて形成したことを特徴と
する無給油式圧縮機。
1. A casing (11) of a compressor body (3).
A cooling water jacket (16) for cooling the rotor chamber (13) around the rotor chamber (13) inside the oil-free compressor for compressing a gas having a boiling point higher than room temperature; Water supply channel for supplying cooling water to the water (4)
High-temperature fluid flow path (1
8), heat amount adjusting means (17, 20) for adjusting the amount of heat given from the high temperature fluid flow path (18) to the cooling water, and the high temperature fluid flow path (18) including the cooling water jacket (16). Detecting the temperature of the water at any point in the flow path through which the heated water flows, and the temperature of at least one of the walls of the flow path, and performing the detection based on the detected temperature. While preventing the rate of change of the temperature with respect to time from exceeding an allowable value, the heat amount adjusting means (1)
7, 20) to increase the amount of heat and increase the temperature of the flow path (including 13) through which the gas passes before starting the compressor. After the temperature is increased and after starting the compressor, the amount of heat is increased. And a temperature controller (19) for reducing oil pressure.
【請求項2】 圧縮機本体(3)のケーシング(11)
内のロータ室(13)の周囲にロータ室(13)冷却用
の冷却水ジャケット(16)を備え、沸点が常温より高
いガスを圧縮する無給油式圧縮機において、上記冷却水
ジャケット(16)に冷却水を供給する給水流路(4)
に設けた熱交換器(21)を介して冷却水加熱可能に設
けた高温流体流路(18)と、この高温流体流路(1
8)に流体流量調節可能に設けた流量調節弁(17)
と、上記冷却水ジャケット(16)を含め、上記高温流
体流路(18)により加熱された水の流動する流路のう
ちのいずれかの箇所における水、およびこの流路の壁部
のうちの少なくともいずれか一方の温度を検出して、こ
の検出温度に基づいて、この検出温度の時間に対する変
化率が許容値を超えるのを回避しつつ、上記流量調節弁
(17)を操作して、圧縮機起動前に上記流体流量を増
大させて上記ガスが通過する流路(13を含む)を昇温
させ、昇温後で、かつ圧縮機起動後、上記流体流量を減
少させる温度調節器(19)とを設けて形成したことを
特徴とする無給油式圧縮機。
2. A casing (11) of a compressor body (3).
A cooling water jacket (16) for cooling the rotor chamber (13) around the rotor chamber (13) inside the oil-free compressor for compressing a gas having a boiling point higher than room temperature; Water supply channel for supplying cooling water to the water (4)
A high-temperature fluid flow path (18) provided so as to be able to heat the cooling water via a heat exchanger (21) provided in the high-temperature fluid flow path (1).
8) A flow control valve (17) provided so as to be capable of adjusting a fluid flow rate
And water in any part of the flow path of the water heated by the high-temperature fluid flow path (18), including the cooling water jacket (16), and the wall of the flow path. At least one of the temperatures is detected, and the flow rate control valve (17) is operated based on the detected temperature to prevent the rate of change of the detected temperature with respect to time from exceeding an allowable value. A temperature controller (19) that increases the fluid flow rate before starting the machine and raises the temperature of the flow path (including 13) through which the gas passes, and decreases the fluid flow rate after the temperature rise and after the compressor starts. ), Wherein the oil-free compressor is formed.
【請求項3】 圧縮機本体のケーシング(3)内のロー
タ室(13)の周囲にロータ室(13)冷却用の冷却水
ジャケット(16)を備え、沸点が常温より高いガスを
圧縮する無給油式圧縮機において、上記ロータ室(1
3)を含めて上記ガスが流動する少なくとも上記ケーシ
ング内のガス流路(13を含む)の壁部を昇温させる加
熱手段と、この加熱手段より上記壁部に与える熱量を増
減させる熱量調節手段と、上記壁部の温度を検出して、
この検出温度に基づいて上記熱量調節手段を操作して、
上記検出温度の時間に対する変化率が許容値を超えるの
を回避しつつ、圧縮機起動前に上記熱量を増大させ、上
記ロータ室(13)の昇温後で、かつ圧縮機起動後、上
記熱量を減少させる温度調節器(19)とを設けて形成
したことを特徴とする無給油式圧縮機。
3. A cooling water jacket (16) for cooling the rotor chamber (13) is provided around the rotor chamber (13) in the casing (3) of the compressor body, and a compressor for compressing gas having a boiling point higher than room temperature is provided. In the refueling compressor, the rotor chamber (1
A heating means for increasing the temperature of at least the wall of the gas flow path (including 13) in the casing through which the gas flows, including 3), and a calorie adjusting means for increasing or decreasing the amount of heat given to the wall by the heating means And detecting the temperature of the wall,
By operating the calorie adjusting means based on the detected temperature,
The heat quantity is increased before starting the compressor while avoiding the rate of change of the detected temperature with respect to time exceeding an allowable value, and the heat quantity is increased after the temperature of the rotor chamber (13) is increased and after the compressor is started. And a temperature controller (19) for reducing oil pressure.
【請求項4】 上記加熱手段が、上記ガス流路(13)
の壁部に設けた加熱管(31)で、上記熱量調節手段
が、この加熱管(31)に高温流体を供給する高温流体
流路(18)に流量調節可能に設けた流量調節弁(1
7)であることを特徴とする請求項4に記載の無給油式
圧縮機。
4. The gas flow path (13), wherein the heating means comprises:
In the heating pipe (31) provided on the wall of (1), the heat amount adjusting means is provided with a flow control valve (1) provided so as to be capable of adjusting a flow rate in a high temperature fluid flow path (18) for supplying a high temperature fluid to the heating pipe (31).
The oilless compressor according to claim 4, wherein the compressor is (7).
【請求項5】 上記加熱手段が、上記ガス流路(13)
の壁部外周面上に設けたヒータ(41)で、上記熱量調
節手段が、上記ヒータ(41)に供給する電力を調節す
る電力調節手段であることを特徴とする請求項4に記載
の無給油式圧縮機。
5. The gas passage (13), wherein the heating means comprises:
The heater (41) provided on the outer peripheral surface of the wall portion, wherein the heat amount adjusting means is an electric power adjusting means for adjusting electric power supplied to the heater (41). Oiled compressor.
【請求項6】 圧縮機本体(3)のケーシング(11)
内のロータ室(13)の周囲にロータ室(13)冷却用
の冷却水ジャケット(16)を備え、沸点が常温より高
いガスを圧縮する無給油式圧縮機の起動前に、圧縮機本
体(3)内に沸点が常温よりも低いガスを充満させ、上
記ケーシング(11)の各部の温度差が許容範囲を超え
ないように、上記ロータ室(13)を含めて、上記ガス
が流動する少なくとも上記ケーシング(11)内の流路
を加熱手段(18,21,31,41)により徐々に昇
温させ、昇温後、上記圧縮機本体(3)内のガスを沸点
が常温より高い上記ガスに置換し、圧縮機起動後、上記
ケーシング(11)の各部の温度差が許容範囲を超えな
いように、上記加熱手段(18,21,31,41)か
らの熱量を低減させることを特徴とする無給油式圧縮機
の起動方法。
6. A casing (11) of a compressor body (3).
A cooling water jacket (16) for cooling the rotor chamber (13) is provided around the rotor chamber (13) therein, and before the start of the oilless compressor for compressing gas having a boiling point higher than room temperature, the compressor body ( 3) Fill the inside of the casing with a gas having a boiling point lower than room temperature, and at least allow the gas to flow, including the rotor chamber (13), so that the temperature difference of each part of the casing (11) does not exceed an allowable range. The flow path in the casing (11) is gradually heated by heating means (18, 21, 31, 41), and after the temperature is raised, the gas in the compressor body (3) is heated to a temperature higher than the normal temperature. After the compressor is started, the amount of heat from the heating means (18, 21, 31, 41) is reduced so that the temperature difference between the respective parts of the casing (11) does not exceed an allowable range. To start an oilless compressor.
JP12460792A 1992-05-18 1992-05-18 Oilless compressor and start-up method thereof Expired - Lifetime JP2735739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12460792A JP2735739B2 (en) 1992-05-18 1992-05-18 Oilless compressor and start-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12460792A JP2735739B2 (en) 1992-05-18 1992-05-18 Oilless compressor and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH05321860A JPH05321860A (en) 1993-12-07
JP2735739B2 true JP2735739B2 (en) 1998-04-02

Family

ID=14889624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12460792A Expired - Lifetime JP2735739B2 (en) 1992-05-18 1992-05-18 Oilless compressor and start-up method thereof

Country Status (1)

Country Link
JP (1) JP2735739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048718A (en) * 2013-08-30 2015-03-16 株式会社アンレット Apparatus of reusing low pressure steam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220720A1 (en) * 2017-05-30 2018-12-06 春日電機株式会社 Surface modification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048718A (en) * 2013-08-30 2015-03-16 株式会社アンレット Apparatus of reusing low pressure steam

Also Published As

Publication number Publication date
JPH05321860A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US5606853A (en) Gaseous fuel compression and control system for gas turbine engine
JP3150117B2 (en) Constant temperature refrigerant liquid circulation device
JP6767568B2 (en) Gas compressor
US5082427A (en) Screw compressing apparatus, rotor temperature control apparatus for screw compressing apparatus and operating control apparatus for screw compressing apparatus
JP3326141B2 (en) Constant temperature refrigerant liquid circulation device
US20050132732A1 (en) Vapor compression system startup method
JP2735739B2 (en) Oilless compressor and start-up method thereof
JP4767133B2 (en) Refrigeration cycle equipment
JP2557909B2 (en) Refrigerant heating type air conditioner
JP4237969B2 (en) Fluctuation setting of high pressure bypass for steam cooled high performance machine
JP2601991B2 (en) Cooling system
JPH10141831A (en) Circulation apparatus for constant temperature refrigerant fluid
US11300339B2 (en) Method for optimizing pressure equalization in refrigeration equipment
US11333073B2 (en) Gas turbine and the method of controlling bleed air volume for gas turbine
JPH05248646A (en) Protective device for boiler circulation pump
JP2002276552A (en) Oil injection type compressor
JPH07294073A (en) Refrigeration device
US4056079A (en) Apparatus and process for preheating main boiler superheater headers
JP7027498B2 (en) Flow furnace and its cooling method
WO2021125320A1 (en) Compressed air supply system and method for activating compressed air supply system
JP2001280259A (en) Refrigerant compressor
JPH07151394A (en) Refrigerator
JP2000320467A (en) Air compressor
JPS6151659B2 (en)
JPH11349955A (en) Pressure control method and device for carbonizing chamber of coke oven