JP2735632B2 - Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method - Google Patents

Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method

Info

Publication number
JP2735632B2
JP2735632B2 JP1181689A JP18168989A JP2735632B2 JP 2735632 B2 JP2735632 B2 JP 2735632B2 JP 1181689 A JP1181689 A JP 1181689A JP 18168989 A JP18168989 A JP 18168989A JP 2735632 B2 JP2735632 B2 JP 2735632B2
Authority
JP
Japan
Prior art keywords
exposure
pattern
substrate
mark
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1181689A
Other languages
Japanese (ja)
Other versions
JPH0346218A (en
Inventor
靖 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1181689A priority Critical patent/JP2735632B2/en
Publication of JPH0346218A publication Critical patent/JPH0346218A/en
Application granted granted Critical
Publication of JP2735632B2 publication Critical patent/JP2735632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体リソグラフィーにおける露光・描画
パタン形成、評価のための露光パタン検出、パタン位置
検出およびパタン重ね合わせ露光方法に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure / drawing pattern formation in semiconductor lithography, an exposure pattern detection for evaluation, a pattern position detection, and a pattern overlay exposure method.

〔従来技術〕(Prior art)

半導体集積回路の超高集積化、量子デバイス等を実現
するためには、微細パタン形成とともにナノメータオー
ダのパタン重ね合わせ精度が必要不可欠である。パタン
位置合わせ精度は、露光・描画装置の合わせマーク位置
の検出測定の方式とその精度、および位置誤差を補正す
る装置の機械制御システムに依存する。
In order to realize ultra-high integration of semiconductor integrated circuits, quantum devices, and the like, it is essential to form a fine pattern and to superimpose patterns in the order of nanometers. The pattern alignment accuracy depends on the method of detecting and measuring the alignment mark position of the exposure / drawing apparatus, the accuracy thereof, and the machine control system of the apparatus for correcting the position error.

現在、後者は電磁力駆動による板バネ制御機構、電歪
素子等で数十オングストロームの位置制御が可能になっ
ている半面、前者はその精度まで至っておらず、これが
高精度位置合わせパタン露光の実現を阻害している。
At present, the latter is capable of controlling several tens of angstroms of position using a leaf spring control mechanism driven by electromagnetic force, an electrostrictive element, etc.On the other hand, the former has not reached the accuracy, this is the realization of high-precision alignment pattern exposure Has been hindered.

従来、半導体リソグラフィーにおけるマーク位置検出
は、光学技術、電子ビーム技術に専ら負っている。光学
的位置合わせマーク検出方式は、被加工基板上マークの
光学拡大像のTV画像処理及びスリット走査方式、マーク
からの回折、散乱光を利用する方式に分離される。これ
らは被加工基板上の1つのマークのエッジ部をCRT上に
明暗画像として捉えたり、前記エッジ位置を走査光ビー
ムの反射光で検出したり、あるいは格子状マークからの
散乱光あるいは回折光の最大強度位置を捉えるものであ
る。
2. Description of the Related Art Conventionally, mark position detection in semiconductor lithography is exclusively based on optical technology and electron beam technology. The optical alignment mark detection method is divided into a TV image processing of an optically enlarged image of the mark on the substrate to be processed, a slit scanning method, and a method utilizing diffraction and scattered light from the mark. These capture the edge of one mark on the substrate to be processed as a bright and dark image on a CRT, detect the edge position by reflected light of a scanning light beam, or detect scattered light or diffracted light from a grid-like mark. It captures the maximum intensity position.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前記従来の半導体リソグラフィーにお
けるマーク位置検出では、被加工基板上の1つのマーク
のエッジ部をCRT上に明暗画像として捉えたり、前記エ
ッジ位置を走査光ビームの反射光で検出したり、あるい
は格子状マークからの散乱光あるいは回折光の最大強度
位置を捉えるものであるため、明暗画像での合わせ精度
は、0.3〜0.5μmに留まる光学的分解能であり、光ビー
ム走査では光ビーム径で殆ど決定されてしまうという問
題があった。
However, in the mark position detection in the conventional semiconductor lithography, the edge of one mark on the substrate to be processed is captured as a bright and dark image on a CRT, or the edge position is detected by reflected light of a scanning light beam, or Since it captures the maximum intensity position of the scattered light or diffracted light from the lattice mark, the alignment accuracy for bright and dark images has an optical resolution of only 0.3 to 0.5 μm. There was a problem that it was decided.

また、電気的処理で光学的信号のS/N比(信号/雑音
強度比)を改善しても、一桁以上の分解能改善を計るの
は困難であった。
Even if the S / N ratio (signal / noise intensity ratio) of the optical signal is improved by electrical processing, it is difficult to improve the resolution by one digit or more.

また、干渉波形を利用する2重回折格子法では、回折
格子ピッチで決まる干渉波形周期分だけ位置合わせ誤差
が生じ易い。電子ビームを用いた位置検出技術において
も、鏡筒の汚染でのチャージアップ、熱歪み、電子銃の
フリッカー雑音、ショット雑音などによるビーム揺らぎ
でパタン位置検出誤差が生じる。
In the double diffraction grating method using an interference waveform, a positioning error is likely to occur for an interference waveform period determined by a diffraction grating pitch. Also in the position detection technology using an electron beam, a pattern position detection error occurs due to beam fluctuation due to charge-up due to contamination of a lens barrel, thermal distortion, flicker noise of an electron gun, shot noise, and the like.

また、光学技術、電子ビーム技術でのいずれの合わせ
技術でも、基板上マーク部の凹凸を直接検出するのでな
く、反射信号レベルからマークエッジ位置を判定するた
め、誤差が生じ易いという問題があった。
In addition, in any of the alignment techniques of the optical technique and the electron beam technique, since the mark edge position is determined from the reflection signal level instead of directly detecting the unevenness of the mark portion on the substrate, an error easily occurs. .

さらに、装置自体の問題点に加えて、多くの集積回路
製造工程で生ずる基板上位置合わせの断面が矩形状マー
クの変形、即ち凸凹高さの低下、エッジ部傾斜の緩みも
従来技術での位置検出精度を劣化させる。凹凸エッジ部
での急激な反射信号強度変化でマーク位置を決定する従
来の光学および電子ビーム技術での位置検出では、位置
検出誤差が生じてしまうという問題があった。
Further, in addition to the problems of the device itself, the cross-section of the alignment on the substrate caused in many integrated circuit manufacturing processes is a deformation of a rectangular mark, that is, a reduction in the height of the unevenness, and a loosening of the edge portion. Degrades detection accuracy. Conventional position detection using optical and electron beam techniques for determining a mark position based on a sudden change in reflected signal intensity at an uneven edge portion has a problem that a position detection error occurs.

また、従来の光学技術、電子ビーム技術いずれにおい
ても、合わせ後の露光パタン自体の重ね合わせ精度が果
して幾らであるかを直接その場で知る手だではなかっ
た。重ね合わせ露光パタンのオングストローム・オーダ
の精度の位置検出は、現像処理後の走査型電子顕微鏡観
察でなければ判明しない。さらに、不十分なパタン合わ
せ精度であったことが判明した場合にはレジスト剥離、
再塗布、再露光せねばならないという問題があった。
Further, in both the conventional optical technique and the electron beam technique, it is not a hand to directly know on the spot how much the overlay accuracy of the exposure pattern itself after the alignment is achieved. The detection of the position of the overlay exposure pattern with an accuracy of the order of Angstroms cannot be determined unless it is observed by a scanning electron microscope after the development processing. Furthermore, if it was found that the pattern alignment accuracy was insufficient, the resist was stripped,
There was a problem that re-coating and re-exposure had to be performed.

以上説明したように、光学技術および電子ビーム技術
に依拠した従来のパタン位置検出技術では、ナノメータ
オーダの精度の高いパタン位置検出は困難であり、所定
のマーク形状が変形したマークでは位置検出ができな
く、しかも露光あるいは描画パタンの位置精度の露光あ
るいは描画装置内でのその場確認ができず、現像工程後
はじめて合わせ誤差が判明するという問題があった。
As described above, with the conventional pattern position detection technology that relies on the optical technology and the electron beam technology, it is difficult to detect a pattern position with high accuracy on the order of nanometers. In addition, there is a problem that the position accuracy of the exposure or drawing pattern cannot be confirmed in-situ in the exposure apparatus or the drawing apparatus, and an alignment error is found only after the development process.

本発明は、前記問題点を解決するためになされたもの
である。
The present invention has been made to solve the above problems.

本発明の目的は、光,X線,粒子線のうち少なくとも一
つを露光源とするパタン露光処理において、露光パタン
を容易に検出することができる技術を提供することにあ
る。
An object of the present invention is to provide a technique capable of easily detecting an exposure pattern in a pattern exposure process using at least one of light, X-rays, and particle beams as an exposure source.

本発明の他の目的は、光,X線,粒子線のうち少なくと
も一つを露光源とするパタン露光段階において、露光パ
タンの値を高精度で容易に検出することができる技術を
提供することにある。
Another object of the present invention is to provide a technique capable of easily detecting the value of an exposure pattern with high accuracy in a pattern exposure step using at least one of light, X-rays, and particle beams as an exposure source. It is in.

本発明の他の目的は、光,X線,粒子線のうち少なくと
も一つを露光源とするパタン露光段階において、精度が
数十オングストロームの位置検出をパタン露光時に実行
して合わせ誤差を判定し、パタン合わせ誤差を補正し、
高精度重ね合わせパタン露光を達成する方法を提供する
ことにある。
Another object of the present invention is to determine an alignment error by executing position detection with an accuracy of several tens angstroms at the time of pattern exposure in a pattern exposure step using at least one of light, X-rays, and particle beams as an exposure source. , Correct the pattern alignment error,
An object of the present invention is to provide a method for achieving high-accuracy overlay pattern exposure.

本発明の前記ならびにその他の目的と新規な特徴は、
本明細書の記述及び添付図面によって明らかになるであ
ろう。
The above and other objects and novel features of the present invention are as follows.
It will become apparent from the description of the present specification and the accompanying drawings.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、本発明は、光,X線,粒子
線のうち少なくとも一つを露光源とするパタン露光段階
において、膜表面が露光パタンに応じた凹凸形状変化す
る膜を、基板に被覆して露光し、該被覆膜と金属針間に
トンネル電流を流してその位置を走査し、前記トンネル
電流量から凹凸形状を検出することを最も主要な特徴と
する。
In order to achieve the above object, the present invention provides a method in which, during a pattern exposure step in which at least one of light, X-rays, and particle beams is used as an exposure source, a film whose film surface changes in uneven shape according to the exposure pattern is formed on a substrate. The most important feature of the present invention is that the substrate is exposed to light, and a tunnel current is passed between the coating film and the metal needle to scan the position of the metal film and detect the uneven shape from the amount of the tunnel current.

また、露光パタン位置検出方法において、凹凸マーク
を有する基板に、非晶質カルコゲナイド膜と、銀,銅の
うちの少なくとも一種からなる膜、あるいは銀,銅のう
ちの少なくとも一種を含む化合物膜との複合膜を、前記
基板の全部あるいは少なくとも前記凹凸マーク上部に被
覆する段階と、光,X線,粒子線のうち少なくとも一つを
露光源とするパタン露光を行い前記凹凸マーク上部の被
覆膜に凹凸形状のマークを形成する段階と、走査型トン
ネル顕微鏡で前記基板上凹凸マーク箇所を含む領域の前
記被覆膜表面凹凸形状を検出し、前記基板上の凹凸マー
ク位置と被覆膜上の露光パタン凹凸位置を比較する段階
を備えたことを特徴とする。
In the method for detecting an exposure pattern position, an amorphous chalcogenide film and a film made of at least one of silver and copper, or a compound film containing at least one of silver and copper may be formed on a substrate having an uneven mark. Coating the composite film over the entire substrate or at least the top of the concave and convex marks, and performing pattern exposure using at least one of light, X-rays, and particle beams as an exposure source to form a coating film over the concave and convex marks. Forming an uneven mark, detecting the uneven surface shape of the coating film in a region including the uneven mark portion on the substrate with a scanning tunneling microscope, and detecting the uneven mark position on the substrate and the exposure on the coating film. A step of comparing the pattern unevenness positions is provided.

また、パタン重ね合わせ露光方法において、前記露光
パタン位置検出方法によって判明する露光パタン位置誤
差分を、基板,露光マスクおよび露光ビーム位置のうち
少なくとも一つを移動して補正し、基板と露光マスクと
を高精度に重ね合わせて露光・描画することを特徴とす
る。
In the pattern overlay exposure method, an exposure pattern position error determined by the exposure pattern position detection method is corrected by moving at least one of a substrate, an exposure mask, and an exposure beam position. Are exposed and drawn by superimposing them with high precision.

〔作用〕[Action]

前述の手段によれば、膜表面が露光パタンに応じた凹
凸形状変化する膜を、基板に被覆して露光し、該被覆膜
と金属針間にトンネル電流の流してその位置を走査し、
前記トンネル電流量から凹凸形状を検出するので、露光
パタンを容易に検出することができる。
According to the above-described means, a film whose film surface changes in uneven shape according to the exposure pattern is coated on the substrate and exposed, and a position is scanned by flowing a tunnel current between the coated film and the metal needle,
Since the uneven shape is detected from the tunnel current amount, the exposure pattern can be easily detected.

また、凹凸マークを有する基板に、非晶質カルコゲナ
イド膜と、銀,銅のうちの少なくとも一種からなる膜、
あるいは銀,銅のうちの少なくとも一種を含む化合物膜
との複合膜を、前記基板の全部あるいは少なくとも前記
凹凸マーク上部に被覆し、光,X線,粒子線のうち少なく
とも一つを露光源とするパタン露光を行い、前記凹凸マ
ーク上部の被覆膜に凹凸形状のマークを形成し、走査型
トンネル顕微鏡で前記基板上凹凸マーク箇所を含む領域
の前記被覆膜表面凹凸形状を検出し、前記基板上の凹凸
マーク位置と被覆膜上の露光パタン凹凸位置を比較する
ので、露光パタンの位置を高精度で容易に検出すること
ができる。
Further, an amorphous chalcogenide film, a film made of at least one of silver and copper,
Alternatively, a composite film with a compound film containing at least one of silver and copper is coated on the entire surface of the substrate or at least on the concave / convex mark, and at least one of light, X-rays, and particle beams is used as an exposure source. Performing pattern exposure, forming an uneven mark on the coating film above the uneven mark, detecting the uneven surface shape of the coating film in a region including the uneven mark portion on the substrate with a scanning tunneling microscope, Since the position of the upper and lower mark is compared with the position of the exposure pattern unevenness on the coating film, the position of the exposure pattern can be easily detected with high accuracy.

また、前記露光パタン位置検出方法によって判明する
露光パタン位置誤差分を、基板,露光マスクおよび露光
ビーム位置のうち少なくとも一つを移動して補正し、基
板と露光マスクとを高精度に重ね合わせて露光・描画す
る(露光・描画装置内で走査型トンネル顕微鏡を使用す
るため、露光・描画直後に露光パタンの合わせ誤差をオ
ングストローム・オーダで評価ができ、これを基に被覆
光基板位置を移動し、該誤差を補正して本露光する)の
で、高精度の合わせパタン露光・描画ができる。
Further, the exposure pattern position error determined by the exposure pattern position detection method is corrected by moving at least one of the substrate, the exposure mask, and the exposure beam position, and the substrate and the exposure mask are overlapped with high accuracy. Exposure / drawing (Because the scanning tunneling microscope is used in the exposure / drawing device, the alignment error of the exposure pattern can be evaluated in Angstrom order immediately after exposure / drawing, and based on this, the position of the coated optical substrate can be moved. , The error is corrected and the main exposure is performed), so that a high-precision alignment pattern exposure / drawing can be performed.

〔発明の実施例〕(Example of the invention)

以下、本発明の一実施例を図面を用いて具体的に説明
する。
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.

なお、実施例を説明するための全図において、同一機
能を有するものは同一符号を付け、その繰り返しの説明
は省略する。
In all the drawings for describing the embodiments, components having the same function are denoted by the same reference numerals, and their repeated description will be omitted.

〔実施例1〕 表面を光学研磨したシリコン基板上に非晶質カルコゲ
ナイド膜と銀化合物膜の複合膜を設けた。
Example 1 A composite film of an amorphous chalcogenide film and a silver compound film was provided on a silicon substrate whose surface was optically polished.

前記複合膜は、Ge20原子%とSe80原子%かなる膜厚10
00オングストローム(Å)の非晶質カルコゲナイド膜を
水素イオン濃度(pH)12のシアン系銀メッキ液(Ag含有
量:32g/1)に2分間浸漬したものである。オージェ分析
によれば表面組成は、銀セレナイド化合物であった。
The composite film has a film thickness of 10 atomic% of Ge and 80 atomic% of Se.
An amorphous chalcogenide film of 00 Å (オ ン) was immersed in a cyan silver plating solution (Ag content: 32 g / 1) having a hydrogen ion concentration (pH) of 12 for 2 minutes. According to Auger analysis, the surface composition was a silver selenide compound.

次に、波長が436nmの光を用いる1/10縮小投影露光装
置で8μm幅ラインと4μm幅スペースのライン・アン
ド・スペースパタンを有するレチクルを通して該複合膜
表面を露光した。この時の露光量は2J/cm2であった。続
いて、露光装置から取り出した前記複合膜の表面形状を
走査型トンネル顕微鏡で調べた。
Next, the surface of the composite film was exposed through a reticle having a line and space pattern of 8 μm width line and 4 μm width space using a 1/10 reduction projection exposure apparatus using light having a wavelength of 436 nm. The exposure amount at this time was 2 J / cm 2 . Subsequently, the surface shape of the composite film taken out of the exposure apparatus was examined with a scanning tunneling microscope.

設定測定モードは、トンネル電流制御方式をとり、設
定電流を1ナノアンペア(nA)、設定電圧を1ボルト
(V)とした条件で白金製探針をピエゾ素子で駆動し、
前記膜表面を走査した。この時、設定トンネル電流値の
揺らぎは、0.01nA以下の安定性を示し、前記複合膜表面
の走査型トンネル顕微鏡観察が可能であることが判明し
た。
The setting measurement mode employs a tunnel current control method, and drives a platinum probe with a piezo element under the conditions that the setting current is 1 nanoampere (nA) and the setting voltage is 1 volt (V).
The film surface was scanned. At this time, the fluctuation of the set tunnel current value showed a stability of 0.01 nA or less, and it was found that the surface of the composite film could be observed by a scanning tunneling microscope.

また、本実施例1の測定方法で前記膜表面の損傷が無
いことは、多数回の前記顕微鏡観察でも観察像を十分に
再現することで確認された。その結果、第1図に示す複
合膜断面の凸凹パタンを得た。露光部10は0.8μm幅の
高さが約300オングストロームの凸形状を示し、二つの
凸形状に挟まれた非露光部11は0.4μm幅を示してい
る。これから光露光パタン幅及び位置の評価が現像工程
を経ずに、走査型トンネル顕微鏡で容易にできることが
判明した。
Further, the absence of damage on the film surface in the measurement method of Example 1 was confirmed by sufficiently reproducing the observed image even by the microscope observation many times. As a result, an uneven pattern having a cross section of the composite film shown in FIG. 1 was obtained. The exposed portion 10 has a convex shape having a width of 0.8 μm and a height of about 300 Å, and the non-exposed portion 11 sandwiched between the two convex shapes has a width of 0.4 μm. From this, it was found that the width and the position of the light exposure pattern could be easily evaluated by a scanning tunneling microscope without going through a developing step.

〔実施例2〕 前記実施例1の複合膜形成において、銀メッキ液に代
えてシアン系銅メッキ液(pH:12、銅含有量:32g/1)に
2分間浸漬して表面組成が銅セレナイド化合物である複
合膜を形成した。
[Example 2] In forming the composite film of Example 1, the surface composition was changed to copper selenide by immersing in a cyan copper plating solution (pH: 12, copper content: 32 g / 1) for 2 minutes instead of the silver plating solution. A composite film as a compound was formed.

次に、実施例1と同じ条件で露光、評価を行ったとこ
ろ、実施例1と同じく0.4μmのスペースを挟んで並ん
だ0.8μm幅の凸形状群を観察した。但し、この場合、
凸形状の高さは200オングストロームであった。
Next, when exposure and evaluation were performed under the same conditions as in Example 1, a group of 0.8 μm-wide convex shapes arranged side by side with a 0.4 μm space as in Example 1 was observed. However, in this case,
The height of the convex shape was 200 angstroms.

〔実施例3〕 前記実施例1に示した複合膜をシリコン基板上に形成
した。次に、電子ビーム描画装置内に前記基板を装填
し、加速電圧を20kV、露光ビーム電流を4nA、ドーズ量
を10-3C/cm2で0.5μm幅のラインを描いた後、0.3μm
幅だけ露光ビームをずらして再度0.5μm幅のラインを
描いた、これを繰り返し、1000組のライン・アンド・ス
ペースパタンを得た。前記電子ビーム描画装置からとり
だした複合膜の変色箇所の表面形状を走査型トンネル顕
微鏡を用いて実施例1と同一条件で調べた結果、凸部が
電子ビーム描画部に、凹部が非描画部に相当する格子状
パタンを得た。
Example 3 The composite film shown in Example 1 was formed on a silicon substrate. Next, the substrate was loaded into an electron beam lithography apparatus, a line having a width of 0.5 μm was drawn at an acceleration voltage of 20 kV, an exposure beam current of 4 nA, and a dose of 10 −3 C / cm 2.
A line with a width of 0.5 μm was drawn again by shifting the exposure beam by the width, and this was repeated to obtain 1000 sets of line and space patterns. As a result of examining the surface shape of the discolored portion of the composite film taken out from the electron beam writing apparatus by using a scanning tunneling microscope under the same conditions as in Example 1, the convex portion was in the electron beam writing portion and the concave portion was in the non-drawing portion. A corresponding lattice pattern was obtained.

凸部幅は0.55μmで、一方、凹部幅は0.25μmであっ
て、実際のライン幅は設定値より0.05μm広いことがわ
かった。
The width of the convex portion was 0.55 μm, while the width of the concave portion was 0.25 μm, indicating that the actual line width was 0.05 μm wider than the set value.

〔実施例4〕 まず、前記実施例1に示した複合膜をシリコン基板上
に形成した。次に、X線露光装置内に前記基板を装填
し、前記複合膜表面にパタン露光した。照射X線は、波
長範囲が2〜9オングストロームの軟X線で、0.2μm
幅と0.2μm幅のライン・アンド・スペースパタンを含
む金製吸収体(厚み:0.97μm)パタンが形成されたX
線マスクを通して(前記複合膜と吸収体とのギャップ:2
0μm)照射した。この時の前記複合膜表面での露光量
は112J/cm2である。続いて露光装置からとりだした該基
板のX線露光箇所の表面形状を実施例1と同一条件で走
査型トンネル顕微鏡観察をおこなった。その結果、0.22
μm幅の凸形状を有し、ピッチが0.40μmの回折格子を
観測した。
Example 4 First, the composite film shown in Example 1 was formed on a silicon substrate. Next, the substrate was loaded into an X-ray exposure apparatus, and the surface of the composite film was subjected to pattern exposure. The irradiated X-rays are soft X-rays having a wavelength range of 2 to 9 angstroms and 0.2 μm
X with gold absorber (0.97 μm thick) pattern including line and space pattern with width and 0.2 μm width
Through a line mask (gap between the composite membrane and the absorber: 2
0 μm). At this time, the exposure amount on the surface of the composite film is 112 J / cm 2 . Subsequently, the surface shape of the X-ray exposed portion of the substrate taken out from the exposure apparatus was observed under a scanning tunneling microscope under the same conditions as in Example 1. As a result, 0.22
A diffraction grating having a convex shape with a width of μm and a pitch of 0.40 μm was observed.

〔実施例5〕 露光装置内で高精度パタン位置検出を行う実施例5を
第2図、第3図、第4図に沿って説明する。
Fifth Embodiment A fifth embodiment for performing high-accuracy pattern position detection in an exposure apparatus will be described with reference to FIGS. 2, 3, and 4. FIG.

第2図において、110は露光光源、120は照明レンズ、
130は絞り、140はレチクル、150は投影レンズ、160はス
テージ、200は基板、300は走査型トンネル顕微鏡ヘッ
ド、310、320はそれぞれ前記走査型トンネル顕微鏡ヘッ
ド300の制御・駆動装置、画像表示装置である。
In FIG. 2, 110 is an exposure light source, 120 is an illumination lens,
Reference numeral 130 denotes an aperture, 140 denotes a reticle, 150 denotes a projection lens, 160 denotes a stage, 200 denotes a substrate, 300 denotes a scanning tunneling microscope head, 310 and 320 denote control / drive units of the scanning tunneling microscope head 300, and an image display device. It is.

前記露光光源110〜ステージ160が波長436nmの光(g
線光)を用いた1/10縮小投影露光装置(光強度:基板上
で400mw/cm2)を構成し、前記走査型トンネル顕微鏡ヘ
ッド300〜画像表示装置320が走査型トンネル顕微鏡を構
成している。
The exposure light source 110 to the stage 160 emit light (g
1/10 reduction projection exposure apparatus (light intensity: 400 mw / cm 2 on the substrate) using the scanning tunneling microscope head 300 to the image display apparatus 320 to form a scanning tunneling microscope. I have.

この実施例5では、制御・駆動装置310により駆動ス
トロークを30mm(平面方向:xおよびy方向)、位置決め
精度を1μmの性能を有する手段マイクロメータヘッド
に装着した走査型トンネル顕微鏡ヘッド300を光軸上あ
るいは光軸外に、自由に移動し、位置設定できるように
している。この場合、投影レンズ150と基板200との距離
は約90mmで、走査型トンネル顕微鏡ヘッド300の大きさ
は、横(x方向)に約25mm、奥行き(y方向)に約25m
m、高さ(z方向)に約25mmである。前記走査型トンネ
ル顕微鏡の解像度は、平面(xおよびy)方向が20オン
グストローム、高さ(z)方向が5オングストロームで
あり、最大(x,y方向)走査長は30μmである。
In the fifth embodiment, the scanning / tuning microscope head 300 mounted on a micrometer head having a driving stroke of 30 mm (planar direction: x and y directions) and a positioning accuracy of 1 μm by the control / drive device 310 is moved along the optical axis. It can be freely moved up and out of the optical axis to set its position. In this case, the distance between the projection lens 150 and the substrate 200 is about 90 mm, and the size of the scanning tunneling microscope head 300 is about 25 mm in the horizontal (x direction) and about 25 m in the depth (y direction).
m, about 25 mm in height (z direction). The resolution of the scanning tunneling microscope is 20 angstroms in the plane (x and y) directions, 5 angstroms in the height (z) direction, and the maximum scanning length (x, y directions) is 30 μm.

第3A図は、被露光基板表面のパタン重ね合わせ評価マ
ークを示す図であり、第3B図は、レチクルの露光パタン
重ね合わせ評価マークを示す図である。
FIG. 3A is a view showing a pattern overlay evaluation mark on the surface of the substrate to be exposed, and FIG. 3B is a view showing an exposure pattern overlay evaluation mark of the reticle.

第4図は、本発明による重ね合わせ評価結果を示す図
であり、第3B図に示すレチクルパタンを第3A図の基板上
マーク部箇所に露光した基板表面凹凸形状を示す図であ
る。
FIG. 4 is a view showing the results of the overlay evaluation according to the present invention, and is a view showing the unevenness of the substrate surface obtained by exposing the reticle pattern shown in FIG. 3B to a mark portion on the substrate in FIG. 3A.

前記基板200には、集積回路パタン、従来の使用露光
装置専用の重ね合わせマークの他、この従来マーク近傍
に、本発明に係わる重ね合わせ評価用I字型(長さ:10
μm、幅:1μm、深さ:400オングストローム)凹マーク
(第3A図におけるマーク1010)が表面に食刻してあるシ
リコン基板200の全面に実施例1における複合膜を被覆
したものである。前記複合膜表面にステンレス製金具を
密着して前記基板200全体を固定したうえでアースをと
った。
On the substrate 200, in addition to an integrated circuit pattern and a conventional overlay mark dedicated to an exposure apparatus to be used, an I-shape (length: 10) for overlay evaluation according to the present invention is provided near the conventional mark.
μm, width: 1 μm, depth: 400 Å) A composite film in Example 1 is coated on the entire surface of a silicon substrate 200 having a concave mark (mark 1010 in FIG. 3A) etched on the surface. The entire surface of the substrate 200 was fixed by attaching a stainless steel fitting to the surface of the composite film, and then grounded.

また、レチクル140には、金属(Cr)膜で半導体集積
回路パタンおよび使用露光装置用重ね合わせマークが形
成され、前記基板200のパタン合わせ評価用マーク位置
に相当する位置には、露光パタン重ね合わせ位置評価用
I字型(長さ:10μm、幅:2μm)マーク(第3B図にお
けるマーク1020)が形成されている。
On the reticle 140, a metal (Cr) film is used to form a semiconductor integrated circuit pattern and a registration mark for an exposure apparatus to be used. An I-shaped mark (length: 10 μm, width: 2 μm) for position evaluation (mark 1020 in FIG. 3B) is formed.

前記レチクル140のパタン重ね合わせ評価用I字型マ
ーク1020は、金属(Cr)膜面となり、これを中心に含む
領域1030(面積:20μm×20μm)は抜きパタン(金属
膜Crのない面)となっている。設計では基板200上のパ
タン合わせ評価マーク1010が、レチクル140上パタン合
わせ評価マーク1020に相当する基板200上の位置の中心
に位置するようになっている。
The I-shaped mark 1020 for pattern overlay evaluation of the reticle 140 is a metal (Cr) film surface, and a region 1030 (area: 20 μm × 20 μm) including the center is formed as a punched pattern (a surface without a metal film Cr). Has become. In the design, the pattern alignment evaluation mark 1010 on the substrate 200 is located at the center of the position on the substrate 200 corresponding to the pattern alignment evaluation mark 1020 on the reticle 140.

まず、露光装置の従来のパタン重ね合わせ手順にした
がってレチクル140と基板200からの反射光像をCRTで表
示してパタン重ね合わせを行った後、パタン露光用の波
長が436nmの光(強度:基板上で400mw/cm2)でパタン重
ね合わせ評価用I字型マークを含む箇所1030に露光を5
秒間行った。続いて、レチクル140および基板200を静止
させたまま、制御・駆動装置310で走査型トンネル顕微
鏡ヘッドを光軸位置に挿入して、パタン重ね合わせ評価
マーク1010付近の複合膜表面形状を走査型トンネル顕微
鏡で観察し、画像表示装置320に表示した。その結果、
第4図に示す1次元(x方向)表示の表面凸凹形状を得
た。中心の凹部がもともとの基板200上の合わせ評価用
凹型マーク部、その両側の凹部が前記レチクル140上の
I字型マークの非露光部に相当し、外側の凸部が前記レ
チクル140の領域1030の露光部に当たる。中央段差位置
間距離(2020と2030との距離)は0.58μm、右段差位置
間距離(2030と2040との距離)は0.42μmと非対称であ
ることから、従来の光学的パタン重ね合わせをして露光
したものでは、x方向に関しての露光パタン重ね合わせ
誤差が正(+)方向に0.08μmであることが判った。
First, the reflected light image from the reticle 140 and the substrate 200 is displayed on the CRT according to the conventional pattern superposition procedure of the exposure apparatus, and then the pattern superposition is performed. Then, light having a wavelength of 436 nm for pattern exposure (intensity: substrate Expose 5m at 400mw / cm 2 ) to the area 1030 including the I-shaped mark for pattern overlay evaluation.
Seconds. Subsequently, while the reticle 140 and the substrate 200 are kept still, the scanning tunneling microscope head is inserted into the optical axis position by the control / drive unit 310, and the surface shape of the composite film near the pattern overlay evaluation mark 1010 is scanned. The image was observed with a microscope and displayed on the image display device 320. as a result,
A one-dimensional (x-direction) display surface uneven shape shown in FIG. 4 was obtained. The center concave portion is the alignment evaluation concave mark portion on the original substrate 200, the concave portions on both sides thereof correspond to the non-exposed portion of the I-shaped mark on the reticle 140, and the outer convex portion is the area 1030 of the reticle 140. In the exposure section. The distance between the center steps (the distance between 2020 and 2030) is 0.58 µm, and the distance between the right steps (the distance between 2030 and 2040) is 0.42 µm, which is asymmetric. It was found that the exposed pattern had an exposure pattern overlay error of 0.08 μm in the positive (+) direction in the x direction.

〔実施例6〕 前記実施例5において、露光パタン重ね合わせ誤差評
価をしたのに続き、前記走査型トンネル顕微鏡ヘッド30
0を制御・駆動装置310で光軸外に移動させ、また、基板
200を搭載したステージ160をDCモータによる多段階定速
駆動させて基板を一方向に0.08μmずらして、レチクル
140上の集積回路パタンを含めたパタンの本発明の露光
(露光量:約1.2J/cm2)を行った。続いて、前記基板を
露光装置から取り出し、前記複合膜の形成を行った。現
像はまず希釈王水で表面の銀セレナイド層をエッチング
して未露光部の非晶質Ge−Se膜を露出させ、次に、ジメ
チルアミン水溶液処理で前記未露光部の非晶質Ge−Se膜
をエッチングし、再び希釈王水処理で残留銀セレナイド
層を除去する方法で行った。肉眼でシリコン基板200の
表面に食刻された集積回路パタンと新たに形成された非
晶質Ge−Se膜の集積回路パタンが認められた。次に、集
積回路パタンの全面に白金薄層(厚み:200オングストロ
ーム)を付着させて走査型電子顕微鏡で測長を行ったと
ころ、両パタンの重ね合わせ誤差は200オングストロー
ム以下なっていることが判った。
Embodiment 6 In the embodiment 5, following the evaluation of the exposure pattern overlay error, the scanning tunneling microscope head 30 was used.
0 is moved out of the optical axis by the control / drive device 310, and
The reticle is shifted by 0.08 μm in one direction by driving the stage 160 with
The pattern including the integrated circuit pattern on No. 140 was exposed according to the present invention (exposure amount: about 1.2 J / cm 2 ). Subsequently, the substrate was taken out of the exposure apparatus, and the composite film was formed. In the development, the silver selenide layer on the surface is first etched with diluted aqua regia to expose the unexposed portion of the amorphous Ge-Se film, and then the unexposed portion of the amorphous Ge-Se film is exposed by a dimethylamine aqueous solution treatment. The film was etched, and the remaining silver selenide layer was removed again by a diluted aqua regia treatment. An integrated circuit pattern etched on the surface of the silicon substrate 200 and an integrated circuit pattern of a newly formed amorphous Ge—Se film were recognized with the naked eye. Next, a platinum thin layer (thickness: 200 angstroms) was attached to the entire surface of the integrated circuit pattern, and the length was measured with a scanning electron microscope. As a result, it was found that the overlay error between the two patterns was less than 200 angstroms. Was.

以上の説明からわかるように、本実施例1〜6によれ
ば、前記作用の項で述べた通りの作用効果を奏する。
As can be seen from the above description, according to the first to sixth embodiments, the operation and effect as described in the section of the operation can be obtained.

以上、本発明を実施例にもとづき具体的に説明した
が、本発明は、前記実施例に限定されるものではなく、
その要旨を逸脱しない範囲において種々変更可能である
ことは言うまでもない。
As mentioned above, although the present invention was explained concretely based on an example, the present invention is not limited to the above-mentioned example.
It goes without saying that various changes can be made without departing from the scope of the invention.

〔発明の効果〕〔The invention's effect〕

以上、説明したように、本発明によれば、露光パタン
を容易に検出することができる。
As described above, according to the present invention, an exposure pattern can be easily detected.

また、露光パタンの位置を高精度で容易に検出するこ
とができる。
Further, the position of the exposure pattern can be easily detected with high accuracy.

また、高精度の合わせパタン露光・描画を行うことが
できる。
In addition, high-precision alignment pattern exposure / drawing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例で検出した露光パタンに応
じた凹凸形状を示す図、 第2図は、本発明の一実施例による縮小投影露光装置と
走査型トンネル顕微鏡の概略構成を示す図、 第3A図は、基板上設けられた重ね合わせ評価用マークを
示す図、 第3B図は、レチクル上重ね合わせ評価の基板表面凹凸形
状を示す図、 第4図は、本発明による重ね合わせ評価結果を示す図で
ある。 図中、10……露光部、11……非露光部、110……露光光
源、120……照明レンズ、130……絞り、140……レチク
ル、150……投影レンズ、160……ステージ、200……基
板、300……走査型トンネル顕微鏡ヘッド、310……制御
・駆動装置、320……画像表示装置、1010……基板上堀
り込みマーク、1020……金属(Cr)膜のパタン、1030…
…金属(Cr)膜無しのパタン、2010、2020、2030、2040
……段差位置。
FIG. 1 is a diagram showing an uneven shape according to an exposure pattern detected in one embodiment of the present invention, and FIG. 2 is a schematic configuration of a reduction projection exposure apparatus and a scanning tunnel microscope according to one embodiment of the present invention. FIG. 3A is a view showing an overlay evaluation mark provided on the substrate, FIG. 3B is a view showing the substrate surface unevenness shape of the overlay evaluation on the reticle, and FIG. 4 is an overlay according to the present invention. It is a figure showing an alignment evaluation result. In the drawing, 10: exposure part, 11: non-exposure part, 110: exposure light source, 120: illumination lens, 130: stop, 140: reticle, 150: projection lens, 160: stage, 200 ……………………………………………………………………………………………………………………………………………………………………………………. …
… Pattern without metal (Cr) film, 2010, 2020, 2030, 2040
.... Step position.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光,X線,粒子線のうち少なくとも一つを露
光源とするパタン露光段階において、膜表面が露光パタ
ンに応じた凹凸形状変化する膜を、基板に被覆して露光
し、前記被覆膜と金属針間にトンネル電流を流してその
位置を走査し、前記トンネル電流量から凹凸形状を検出
することを特徴とする露光パタン検出方法。
In a pattern exposure step in which at least one of light, X-rays and particle beams is used as an exposure source, a film whose surface changes in unevenness according to the exposure pattern is coated on a substrate and exposed. An exposure pattern detection method, wherein a tunnel current is caused to flow between the coating film and the metal needle to scan a position thereof, and an uneven shape is detected from the tunnel current amount.
【請求項2】凹凸マークを有する基板に、非晶質カルコ
ゲナイド膜と、銀,銅のうちの少なくとも一種からなる
膜、あるいは銀,銅のうちの少なくとも一種を含む化合
物膜との複合膜を、前記基板の全部あるいは少なくとも
前記凹凸マーク上部に被覆する段階と、光,X線,粒子線
のうち少なくとも一つを露光源とするパタン露光を行い
前記凹凸マーク上部の被覆膜に凹凸形状のマークを形成
する段階と、走査型トンネル顕微鏡で前記基板上凹凸マ
ーク箇所を含む領域の前記被覆膜表面凹凸形状を検出
し、前記基板上の凹凸マーク位置と被覆膜上の露光パタ
ン凹凸位置を比較する段階を備えたことを特徴とする露
光パタン位置検出方法。
2. A composite film of an amorphous chalcogenide film and a film made of at least one of silver and copper, or a compound film containing at least one of silver and copper, is provided on a substrate having an uneven mark. Covering the whole of the substrate or at least the top of the concave / convex mark, and performing pattern exposure using at least one of light, X-rays, and particle beams as an exposure source to form a concave / convex mark on the coating film above the concave / convex mark. Forming, detecting the uneven surface shape of the coating film in a region including the uneven mark location on the substrate with a scanning tunneling microscope, the uneven mark position on the substrate and the exposure pattern uneven position on the coating film A method for detecting an exposure pattern position, comprising a step of comparing.
【請求項3】請求項第2項に記載のパタン位置検出方法
によって判明した露光パタン位置誤差分を、基板,露光
マスクおよび露光ビーム位置のうち少なくとも一つを移
動して補正し、基板と露光マスクとを高精度に重ね合わ
せて露光・描画することを特徴とするパタン重ね合わせ
露光方法。
3. An exposure pattern position error determined by the pattern position detection method according to claim 2 is corrected by moving at least one of a substrate, an exposure mask and an exposure beam position. A pattern overlay exposure method, which comprises exposing and drawing a mask with high accuracy.
JP1181689A 1989-07-14 1989-07-14 Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method Expired - Fee Related JP2735632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181689A JP2735632B2 (en) 1989-07-14 1989-07-14 Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181689A JP2735632B2 (en) 1989-07-14 1989-07-14 Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method

Publications (2)

Publication Number Publication Date
JPH0346218A JPH0346218A (en) 1991-02-27
JP2735632B2 true JP2735632B2 (en) 1998-04-02

Family

ID=16105152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181689A Expired - Fee Related JP2735632B2 (en) 1989-07-14 1989-07-14 Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method

Country Status (1)

Country Link
JP (1) JP2735632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636311B1 (en) 1998-12-01 2003-10-21 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
US6950179B2 (en) 2001-05-30 2005-09-27 Canon Kabushiki Kaisha Shape measuring apparatus, shape measuring method, and aligning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636311B1 (en) 1998-12-01 2003-10-21 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
US6950179B2 (en) 2001-05-30 2005-09-27 Canon Kabushiki Kaisha Shape measuring apparatus, shape measuring method, and aligning method
US7271882B2 (en) 2001-05-30 2007-09-18 Canon Kabushiki Kaisha Shape measuring apparatus, shape measuring method, and aligning method

Also Published As

Publication number Publication date
JPH0346218A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JP2773147B2 (en) Exposure apparatus positioning apparatus and method
US5408083A (en) Method of measuring the best focus position having a plurality of measuring mark images and a plurality of focus positions
DE112016004904B4 (en) Verification method and verification device
US4586822A (en) Inspecting method for mask for producing semiconductor device
US6706456B2 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
US9797846B2 (en) Inspection method and template
JP2002190444A (en) Pattern projection aligner, pattern preparation method, and device prepared by the pattern projection aligner and the preparation method
JP3211491B2 (en) Projection exposure apparatus and semiconductor manufacturing method and apparatus using the same
JPS61201427A (en) Detection of positional shift
TWI620009B (en) Evaluation method of defect size of photomask blank, selection method, and manufacturing method
JP3412898B2 (en) Method and apparatus for manufacturing reflective mask, exposure apparatus and device manufacturing method using the reflective mask
JP4307482B2 (en) Position measuring apparatus, exposure apparatus, and device manufacturing method
US20010042838A1 (en) Position detection device, apparatus using the same, exposure apparatus, and device manufacturing method using the same
JPH09129691A (en) Method of exposing exposure device and measuring photoresist structure
JPH11191529A (en) Charge beam exposure
JP3488428B2 (en) Method for measuring position of pattern structure on mask surface
KR100379285B1 (en) Electron Beam Lithographing Method and Apparatus Thereof
JPH118194A (en) Exposure condition measuring method, and evaluation method and lithography system for projection optical system
JP2735632B2 (en) Exposure pattern detection method, exposure pattern position detection method, and pattern overlay exposure method
JPS6275442A (en) Deciding method for exposure amount of photosensitive lacquer layer
JP2696962B2 (en) Line width measurement method and exposure apparatus inspection method using the method
JP3427113B2 (en) Stage accuracy evaluation method
WO1998057363A1 (en) Exposure system, process for manufacturing the exposure system, and process for fabricating devices
JPH0547649A (en) Pattern formation method by charged particle beam exposure and charged particle beam exposure apparatus
JP2994306B2 (en) High-precision manufacturing method of X-ray mask using optical lithography and electron beam lithography

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees