JP2729731B2 - Manufacturing method of ceramic multilayer substrate - Google Patents

Manufacturing method of ceramic multilayer substrate

Info

Publication number
JP2729731B2
JP2729731B2 JP4269577A JP26957792A JP2729731B2 JP 2729731 B2 JP2729731 B2 JP 2729731B2 JP 4269577 A JP4269577 A JP 4269577A JP 26957792 A JP26957792 A JP 26957792A JP 2729731 B2 JP2729731 B2 JP 2729731B2
Authority
JP
Japan
Prior art keywords
ceramic
laminate
green sheet
manufacturing
multilayer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4269577A
Other languages
Japanese (ja)
Other versions
JPH0697661A (en
Inventor
英明 荒木
順三 福田
昌志 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP4269577A priority Critical patent/JP2729731B2/en
Priority to US08/097,120 priority patent/US5470412A/en
Priority to DE69309358T priority patent/DE69309358T2/en
Priority to EP93112197A priority patent/EP0581294B1/en
Publication of JPH0697661A publication Critical patent/JPH0697661A/en
Application granted granted Critical
Publication of JP2729731B2 publication Critical patent/JP2729731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,集積回路を実装するた
めのセラミックス多層基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic multilayer substrate for mounting an integrated circuit.

【0002】[0002]

【従来技術】集積回路を実装するためのセラミックス多
層基板は,近年においては,小型化,高密度化により,
寸法誤差±0.05%以下の高精度が要求されるように
なってきている。従来,セラミックス多層基板を製造す
るにあたっては,まず,複数のセラミックスグリーンシ
ートにビアホール加工や導体パターン等の印刷を施す。
2. Description of the Related Art In recent years, ceramic multilayer substrates for mounting integrated circuits have recently been reduced in size and density.
High precision with a dimensional error of ± 0.05% or less has been required. Conventionally, in manufacturing a ceramic multilayer substrate, first, a plurality of ceramic green sheets are subjected to via hole processing, printing of a conductor pattern, and the like.

【0003】次いで,図9に示すごとく,上記セラミッ
クスグリーンシート71〜74を積層して平行平板1
1,19の間に挟み,該平行平板11の上から加圧して
上記セラミックスグリーンシートを圧着する。次に,圧
着した上記セラミックスグリーンシートを焼成して,セ
ラミックス多層基板を得る。
Then, as shown in FIG. 9, the ceramic green sheets 71 to 74 are laminated to form a parallel flat plate 1.
The ceramic green sheet is pressed between the parallel flat plates 11 by pressing the ceramic green sheet. Next, the compressed ceramic green sheet is fired to obtain a ceramic multilayer substrate.

【0004】[0004]

【解決しようとする課題】しかしながら,上記製造方法
により得られたセラミックス多層基板は,焼成前におけ
る積層時のグリーンシートの伸び率及び寸法ばらつき
と,焼成時の収縮のばらつきにより,±0.3%を越え
る寸法誤差があり,その後の導体パターン等の印刷精度
が悪くなるという問題があった。本発明はかかる問題点
に鑑み,積層時の伸び率及び焼成時における寸法収縮の
ばらつきが少なく,寸法精度に優れたセラミックス多層
基板の製造方法を提供しようとするものである。
However, the ceramic multi-layer substrate obtained by the above manufacturing method has a variation of ± 0.3% due to the variation in the elongation and the dimensional variation of the green sheet before lamination before firing and the variation in shrinkage during firing. There is a problem that there is a dimensional error exceeding, and the printing accuracy of the conductor pattern and the like thereafter deteriorates. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a ceramic multi-layer substrate which has a small variation in elongation at the time of lamination and dimensional shrinkage at the time of firing and is excellent in dimensional accuracy.

【0005】[0005]

【課題の解決手段】本発明は,セラミックスグリーンシ
ートと,該セラミックスグリーンシートの焼結温度では
焼結しない未焼結グリーンシートとを準備するA工程
と,上記セラミックスグリーンシートの表側面及び裏側
面に上記未焼結グリーンシートを載置して積層体を得る
B工程と,平面方向の伸び率を0.05%以下に抑えた
状態で,上記積層体を加圧して圧着体を得るC工程と,
上記セラミックスグリーンシートの焼結温度で上記圧着
体を焼成するD工程と,上記圧着体から上記未焼結グリ
ーンシートを除去して焼結されたセラミックス基板を得
るE工程とよりなることを特徴とするセラミックス多層
基板の製造方法にある。
According to the present invention, there is provided an A step of preparing a ceramic green sheet and an unsintered green sheet that does not sinter at the sintering temperature of the ceramic green sheet; A step B in which the green sheet is placed on the green sheet to obtain a laminate, and a step C in which the laminate is pressed to obtain a press-bonded body while the elongation in the planar direction is suppressed to 0.05% or less. When,
A step of firing the pressed body at the sintering temperature of the ceramic green sheet; and a step of removing the unsintered green sheet from the pressed body to obtain a sintered ceramic substrate. To manufacture a ceramic multi-layer substrate.

【0006】本発明において最も注目すべきことは,上
記B及びC工程により圧着体を作り,D工程の焼成後に
未焼結グリーンシートを除去することである。上記C工
程において,上記伸び率を0.05%以下に抑える加圧
方法としては,上記積層体と同形状の剛性容器内に上記
積層体を収納した状態で,その上下方向から平行平板に
より加圧する方法がある。
The most remarkable point in the present invention is to produce a press-bonded body by the above-mentioned steps B and C, and to remove the unsintered green sheet after firing in the step D. In the step C, as a pressurizing method for suppressing the elongation to 0.05% or less, the laminate is housed in a rigid container having the same shape as the laminate, and the laminate is pressed by a parallel flat plate from above and below. There is a way to press.

【0007】剛性容器は,内寸法が積層体の平面形状と
同形状である。剛性容器は,積層体を圧着する際に,平
行平板により上下方向に積層体を加圧すると同時に,セ
ラミックスグリーンシートが伸びるのを防止するので,
寸法精度に優れたセラミックス多層基板を得ることがで
きる。
The rigid container has the same internal dimensions as the planar shape of the laminate. The rigid container presses the laminate vertically with parallel plates when pressing the laminate, and at the same time, prevents the ceramic green sheet from stretching.
A ceramic multilayer substrate having excellent dimensional accuracy can be obtained.

【0008】また,他の加圧方法としては,積層体と平
行平板との間に,表面粗度0.4〜0.75μRaのフ
ィルムを介在させて加圧する方法がある。これにより,
グリーンシートの伸び率が小さく,寸法精度の良い圧着
体を得ることができる。表面粗度0.4μRa未満の場
合には,セラミックスグリーンシートの伸び率が大きく
なるという問題がある。一方,0.75μRaを越える
場合には,圧着体の表面が粗くなるという問題がある。
上記フィルムとしては,ポリエステルに代表される有機
物,及び紙等がある。
As another pressing method, there is a method in which a film having a surface roughness of 0.4 to 0.75 μRa is interposed between the laminate and the parallel flat plate to perform pressing. This gives
A green sheet having a small elongation percentage and a high dimensional accuracy can be obtained. When the surface roughness is less than 0.4 μRa, there is a problem that the elongation percentage of the ceramic green sheet is increased. On the other hand, when it exceeds 0.75 μRa, there is a problem that the surface of the press-bonded body becomes rough.
Examples of the film include an organic material represented by polyester, paper, and the like.

【0009】また,上記C工程における別の加圧方法と
しては,液体中における等方圧プレス方法がある。等方
圧プレス方法とは,上記積層体を防水性袋に入れて密封
して密封体となし,該密封体を液体中に浸漬して加圧す
る方法である。該方法によれば,積層体はあらゆる方向
から均等に圧力が加えられるので,得られた圧着体の伸
び率及び寸法ばらつきが小さい。上記密封体内は,真空
状態であることが好ましい。これにより,液体による圧
力が積層体に直接加えることができる。
As another pressing method in the step C, there is an isostatic pressing method in a liquid. The isotropic pressure pressing method is a method in which the above-mentioned laminate is put in a waterproof bag and sealed to form a sealed body, and the sealed body is immersed in a liquid and pressed. According to this method, pressure is uniformly applied to the laminate from all directions, so that the obtained crimped body has small elongation and small dimensional variations. It is preferable that the inside of the sealed body is in a vacuum state. This allows pressure from the liquid to be applied directly to the laminate.

【0010】上記セラミックスグリーンシートは,10
00℃以下で焼結する低温焼成基板材料であることが好
ましい。上記未焼結グリーンシートとしては,例えばア
ルミナ材料を用いる。上記セラミックス基板には,ビア
ホール,導体パターンを予め形成しておくことができ
る。上記セラミックスグリーンシート及びセラミックス
基板は,複数枚でも1枚でもよい。
[0010] The ceramic green sheet has a size of 10
It is preferably a low-temperature fired substrate material that sinters at a temperature of 00 ° C. or lower. As the green sheet, for example, an alumina material is used. Via holes and conductor patterns can be formed in advance on the ceramic substrate. The number of the ceramic green sheet and the ceramic substrate may be plural or one.

【0011】[0011]

【作用及び効果】本発明の製造方法によれば,C工程に
おいて,平面方向の伸び率を0.05%以下に抑えた状
態で,積層体を加圧して圧着体としている。そのため,
焼成前における圧着体の伸び率及び寸法ばらつきが小さ
い。また,そのために,圧着体をその後加熱焼成したと
きにも焼成収縮率及び寸法ばらつきも少ない。
According to the manufacturing method of the present invention, in the step C, the laminate is pressed to form a press-bonded body while the elongation in the planar direction is suppressed to 0.05% or less. for that reason,
Elongation rate and dimensional variation of the press-bonded body before firing are small. Therefore, even when the press-bonded body is subsequently heated and fired, the shrinkage in firing and the dimensional variation are small.

【0012】また,本発明では,上記積層体を加圧して
圧着体を得る際,その上下を未焼結グリーンシートによ
り挟持しており,また焼成にはこの圧着体をそのまま加
熱している。それ故,焼成して得られたセラミックス多
層基板の寸法誤差が±0.05%以下と小さくなり(表
1参照),その後の導体パターン等の印刷精度が良好と
なる。本発明によれば,積層時の伸び率及び焼成時にお
ける寸法収縮のばらつきが少なく,寸法精度に優れたセ
ラミックス多層基板の製造方法を提供することができ
る。
In the present invention, when the above-mentioned laminate is pressed to obtain a press-bonded body, the upper and lower sides thereof are sandwiched by unsintered green sheets, and the pressed-up body is directly heated for firing. Therefore, the dimensional error of the ceramic multilayer substrate obtained by firing is reduced to ± 0.05% or less (see Table 1), and the subsequent printing accuracy of the conductor pattern and the like is improved. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the ceramic multilayer substrate excellent in the dimensional accuracy which the dispersion | variation of the elongation at the time of lamination | stacking and the dimensional shrinkage at the time of baking are small can be provided.

【0013】[0013]

【実施例】実施例1 本発明にかかる実施例につき,図1〜図6を用いて説明
する。本例により製造されたセラミックス多層基板9
は,図5,図6に示すごとく,セラミックス基板81〜
84と,該セラミックス基板に穿設された多数のビアホ
ール5とを有し,該ビアホール5内には導体が充填され
ている。
Embodiment 1 An embodiment according to the present invention will be described with reference to FIGS. Ceramic multilayer substrate 9 manufactured according to this example
Are ceramic substrates 81 to 81 as shown in FIGS.
84 and a large number of via holes 5 formed in the ceramic substrate, and the via holes 5 are filled with a conductor.

【0014】次に,上記セラミックス多層基板の製造方
法につき,図1〜図4を用いて説明する。まず,A工程
において,セラミックスグリーンシートと,該セラミッ
クスグリーンシートの焼結温度では焼結しない未焼結グ
リーンシートとを準備する。上記セラミックスグリーン
シートは,厚み0.3mmの低温焼成基板材料である。
該低温焼成基板材料は,CaO−Al2 3 ─SiO2
─B2 3 系ガラス粉末60重量%とアルミナ粉末40
重量%とよりなる混合粉末に,バインダー,可塑剤,及
び溶剤を加え混練してスラリーを形成し,該スラリーを
ドクターブレード法により成形したものである。
Next, a method of manufacturing the ceramic multilayer substrate will be described with reference to FIGS. First, in step A, a ceramic green sheet and an unsintered green sheet that is not sintered at the sintering temperature of the ceramic green sheet are prepared. The ceramic green sheet is a low-temperature fired substrate material having a thickness of 0.3 mm.
The low-temperature fired substrate material is CaO—Al 2 O 3 ─SiO 2
─60% by weight of B 2 O 3 based glass powder and 40 of alumina powder
A binder, a plasticizer, and a solvent are added to a mixed powder consisting of 100 wt% and kneaded to form a slurry, and the slurry is formed by a doctor blade method.

【0015】上記未焼結グリーンシートは,アルミナ材
料を厚さ0.3mmのシート状に成形したものである。
該アルミナ材料は,アルミナ粉末を用いて,上記セラミ
ックスグリーンシートと同様に成形したものである。次
いで,上記セラミックスグリーンシート及び未焼結グリ
ーンシートを,それぞれ150mm×150mmの正方
形状に切断する。次いで,上記セラミックスグリーンシ
ートにビアホール5(図6参照)を穿設する。
The unsintered green sheet is formed by molding an alumina material into a sheet having a thickness of 0.3 mm.
The alumina material is formed by using alumina powder in the same manner as the above ceramic green sheet. Next, each of the ceramic green sheet and the unsintered green sheet is cut into a 150 mm × 150 mm square shape. Next, a via hole 5 (see FIG. 6) is formed in the ceramic green sheet.

【0016】次に,B工程において,図2に示すごと
く,上記セラミックスグリーンシート74,73,7
2,71を下から順に積層する。更に,最外層のセラミ
ックスグリーンシート71,74の表側面及び裏側面に
上記未焼結グリーンシート61,69を載置して積層体
90を得る。次に,C工程において,図3に示すごと
く,平面方向の伸び率を0.05%以下に抑えた状態
で,上記積層体を加圧して圧着体91を得る。
Next, in step B, as shown in FIG. 2, the ceramic green sheets 74, 73, 7
2, 71 are laminated in order from the bottom. Further, the unsintered green sheets 61 and 69 are placed on the front and back surfaces of the outermost ceramic green sheets 71 and 74 to obtain a laminate 90. Next, in the step C, as shown in FIG. 3, the laminated body is pressed while the elongation percentage in the planar direction is suppressed to 0.05% or less to obtain the press-bonded body 91.

【0017】この圧着体91は,図1に示すごとく,前
記積層体90と同形状の剛性容器1内に上記積層体90
を収納し,平行平板11,19によりその上下方向から
加圧することにより得られる。剛性容器1は,内寸法が
積層体90と同形状である。剛性容器1の内部は,積層
体90と同形状であり,150mm×150mmの正方
形状である。加圧条件は,50kg/cm2 ,100
℃,20秒間である。加圧後は,平行平板11,19を
取り去り,上記圧着体91を剛性容器1から取り出す。
As shown in FIG. 1, this crimped body 91 is placed in a rigid container 1 having the same shape as the laminated body 90.
And pressurized by the parallel plates 11 and 19 from above and below. The rigid container 1 has the same internal dimensions as the laminate 90. The inside of the rigid container 1 has the same shape as the laminate 90 and has a square shape of 150 mm × 150 mm. Pressing conditions are 50 kg / cm 2 , 100
° C for 20 seconds. After the pressurization, the parallel flat plates 11 and 19 are removed, and the press-bonded body 91 is removed from the rigid container 1.

【0018】次に,D工程において,上記セラミックス
グリーンシートの焼結温度で上記圧着体を焼成する。こ
れにより,図4に示すごとく,焼結体92を得る。該焼
結体92は,セラミックスグリーンシート71〜74が
焼結したセラミックス基板81〜84と,未焼結グリー
ンシート61,69とよりなる。焼成条件は,空気中,
最高温度900℃,保持時間20分間である。
Next, in step D, the pressed body is fired at the sintering temperature of the ceramic green sheet. Thus, a sintered body 92 is obtained as shown in FIG. The sintered body 92 includes ceramic substrates 81 to 84 on which ceramic green sheets 71 to 74 are sintered, and unsintered green sheets 61 and 69. The firing conditions are air,
The maximum temperature is 900 ° C and the holding time is 20 minutes.

【0019】次に,E工程において,図4に示すごと
く,上記焼結体92から上記未焼結グリーンシート6
1,69を手により剥離する。その後,表面に残留して
いる微量のアルミナ粉末を溶剤中で超音波洗浄機により
完全に除去する。これにより,図5に示したセラミック
ス多層基板9を得る。
Next, in step E, as shown in FIG.
1, 69 are peeled by hand. Then, a trace amount of alumina powder remaining on the surface is completely removed by an ultrasonic cleaner in a solvent. Thus, the ceramic multilayer substrate 9 shown in FIG. 5 is obtained.

【0020】次に,本例の作用効果について説明する。
本例の製造方法においては,上記C工程において,平面
方向の伸び率を0.05%以下に抑えた状態で,積層体
を加圧して圧着体としている。そのため,焼成前におけ
る圧着体の伸び率及び寸法ばらつきが小さい。また,そ
のために,圧着体91をその後加熱焼成したときにも焼
成収縮率及び寸法ばらつきも少ない。
Next, the operation and effect of this embodiment will be described.
In the manufacturing method of the present example, in the step C, the laminate is pressed to form a press-bonded body while the elongation in the planar direction is suppressed to 0.05% or less. Therefore, the elongation and dimensional variation of the press-bonded body before firing are small. Therefore, even when the pressure-bonded body 91 is subsequently heated and fired, the shrinkage in firing and the dimensional variation are small.

【0021】また,本例では上記積層体90を加圧して
圧着体91を得る際,その上下を未焼結グリーンシート
61,69により挟持しており,また焼成にはこの圧着
体91をそのまま加熱している。それ故,焼成して得ら
れたセラミックス多層基板の寸法誤差が±0.05%以
下と小さくなり(表1参照),その後の導体パターン等
の印刷精度が良好となる。
In this embodiment, when the laminated body 90 is pressurized to obtain the press-bonded body 91, the upper and lower sides thereof are sandwiched between unsintered green sheets 61 and 69, and the pressed-down body 91 is directly used for firing. Heating. Therefore, the dimensional error of the ceramic multilayer substrate obtained by firing is reduced to ± 0.05% or less (see Table 1), and the subsequent printing accuracy of the conductor pattern and the like is improved.

【0022】また,上記圧着体91は,積層体90と同
形状の剛性容器1内に上記積層体90を収納した状態
で,積層体90をその上下方向から加圧している。その
ため,剛性容器1は,積層体90を圧着する際に,平面
方向に伸びようとしているセラミックスグリーンシート
71〜74の伸びを防止する。それ故,寸法精度に優れ
たセラミックス多層基板9を得ることができる。
The crimping body 91 presses the laminate 90 from above and below in a state where the laminate 90 is housed in the rigid container 1 having the same shape as the laminate 90. Therefore, the rigid container 1 prevents the ceramic green sheets 71 to 74 from expanding in the plane direction when the laminate 90 is pressed. Therefore, a ceramic multilayer substrate 9 having excellent dimensional accuracy can be obtained.

【0023】実施例2 本例においては,実施例1のC工程において,図7に示
すごとく,剛性容器を用いることなく,積層体90と平
行平板11,19との間に,表面粗度0.5μRaのフ
ィルム21,29を介在させた状態で積層体90を加圧
して圧着体としている。圧着後,圧着体からフィルム2
1,29を剥離する。該フィルム21,29は,ポリエ
ステルフィルムである。その他は,実施例1と同様であ
る。本例によれば,グリーンシートの伸び率が小さく,
寸法精度の良い圧着体を得ることができる。本例におい
ても,実施例1と同様の効果を得ることができる。
Embodiment 2 In this embodiment, as shown in FIG. 7, in the step C of the embodiment 1, the surface roughness between the laminate 90 and the parallel flat plates 11 and 19 is reduced to 0 without using a rigid container. The laminate 90 is pressurized with the films 21 and 29 of 0.5 μRa interposed therebetween to form a press-bonded body. After crimping, press the film 2
Strip 1 and 29. The films 21, 29 are polyester films. Others are the same as the first embodiment. According to this example, the elongation percentage of the green sheet is small,
A crimped body with good dimensional accuracy can be obtained. In this embodiment, the same effect as in the first embodiment can be obtained.

【0024】実施例3 本例においては,図8に示すごとく,C工程において,
液体中における等方圧プレス方法により積層体を加圧し
ている。該等方圧プレス方法は,上記積層体90を防水
性袋12の中に密封して密封体10となし,該密封体1
0を水槽17内の液体18中に浸漬して,この液体18
を加圧する方法である。上記密封体10内は,真空状態
である。液体18は水である。液体18の加圧条件は,
80kg/cm2 ,80℃,120秒間である。加圧後
は,防水性袋12から取り出して,圧着体を得る。その
他は,実施例1と同様である。
Embodiment 3 In this embodiment, as shown in FIG.
The laminate is pressed by an isostatic pressing method in a liquid. In the isostatic pressing method, the laminate 90 is sealed in a waterproof bag 12 to form a sealed body 10.
0 is immersed in a liquid 18 in a water tank 17,
Is applied. The inside of the sealing body 10 is in a vacuum state. Liquid 18 is water. The conditions for pressurizing the liquid 18 are as follows:
80 kg / cm 2 , 80 ° C., 120 seconds. After pressurization, it is taken out of the waterproof bag 12 to obtain a crimped body. Others are the same as the first embodiment.

【0025】本例においては,等方圧プレス方法により
積層体90を加圧しているので,積層体90はあらゆる
方向から均等に圧力が加えられる。そのため,得られた
圧着体の伸び率及び寸法ばらつきが小さい。本例におい
ても,実施例1と同様の効果を得ることができる。
In this embodiment, since the laminated body 90 is pressed by the isotropic pressing method, the laminated body 90 is uniformly pressed from all directions. Therefore, the elongation rate and the dimensional variation of the obtained pressed body are small. In this embodiment, the same effect as in the first embodiment can be obtained.

【0026】実施例4 本例においては,前記実施例1〜3にかかる積層体の伸
び率,焼成による圧着体の収縮率,及びセラミックス基
板の寸法誤差について,測定した。該測定に当たって
は,図6に示すごとく,セラミックス基板81に穿設さ
れた口径0.3mmのビアホール5の座標間を測定し
た。その結果を表1に示す。
Example 4 In this example, the elongation rate of the laminate according to Examples 1 to 3, the shrinkage rate of the press-bonded body due to firing, and the dimensional error of the ceramic substrate were measured. In the measurement, as shown in FIG. 6, the distance between the coordinates of the via holes 5 having a diameter of 0.3 mm formed in the ceramic substrate 81 was measured. Table 1 shows the results.

【0027】尚,比較のために以下の方法によりセラミ
ックス多層基板(比較例1〜4)を製造し,上記と同様
に測定した。比較例1は,C工程において,剛性容器を
用いることなく,積層体の上下に平行平板を載置して加
圧した。その他は,実施例1と同様である。比較例2に
おいて,積層体は,未焼結グリーンシートを用いておら
ず,セラミックスグリーンシートのみからなる。その他
は,比較例1と同様である。
For comparison, ceramic multilayer substrates (Comparative Examples 1 to 4) were manufactured by the following method and measured in the same manner as above. In Comparative Example 1, in the step C, parallel flat plates were placed above and below the laminate without using a rigid container, and pressure was applied. Others are the same as the first embodiment. In Comparative Example 2, the laminate did not use unsintered green sheets, but was composed only of ceramic green sheets. Others are the same as Comparative Example 1.

【0028】比較例3において,積層体は,未焼結グリ
ーンシートを用いておらず,セラミックスグリーンシー
トのみからなる。その他は,実施例1と同様である。比
較例4において,積層体は,未焼結グリーンシートを用
いておらず,セラミックスグリーンシートのみからな
る。その他は,実施例3と同様である。
In Comparative Example 3, the laminate did not use unsintered green sheets, but was composed of only ceramic green sheets. Others are the same as the first embodiment. In Comparative Example 4, the laminate did not use unsintered green sheets, but was composed only of ceramic green sheets. Others are the same as the third embodiment.

【0029】表1より知られるように,実施例1〜3の
製造方法においては,積層体の伸び率は0.05%以
下,焼成による圧着体の収縮率は0.32%以下であ
り,セラミックス基板の寸法精度は±0.05%以下で
あった。尚,平行平板を用いた比較例1,2において
は,積層体の伸び率が他の例と比べて高かった。未焼結
グリーンシートを用いなかった比較例2〜4では,焼成
による収縮率及びセラミックス基板の寸法誤差が他の例
と比べて著しく高かった。本例からも知られるように,
実施例1〜3の製造方法は,積層体の伸び率,焼成によ
る圧着体の収縮率,及びセラミックス基板の寸法誤差の
いずれにおいても良好な結果をもたらすものであること
が分かる。
As can be seen from Table 1, in the production methods of Examples 1 to 3, the elongation of the laminate is 0.05% or less, and the shrinkage of the press-bonded body by firing is 0.32% or less. The dimensional accuracy of the ceramic substrate was ± 0.05% or less. In Comparative Examples 1 and 2 using the parallel plate, the elongation of the laminate was higher than those of the other examples. In Comparative Examples 2 to 4 in which the unsintered green sheet was not used, the shrinkage due to firing and the dimensional error of the ceramic substrate were significantly higher than those of the other examples. As can be seen from this example,
It can be seen that the production methods of Examples 1 to 3 give good results in any of the elongation rate of the laminate, the shrinkage rate of the press-bonded body due to firing, and the dimensional error of the ceramic substrate.

【0030】[0030]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の電子部品搭載用基板の製造工程説明
図(C工程)。
FIG. 1 is a view illustrating a manufacturing process of an electronic component mounting board according to a first embodiment (C process).

【図2】実施例1における積層体の断面図。FIG. 2 is a cross-sectional view of a laminated body according to the first embodiment.

【図3】実施例1における圧着体の断面図。FIG. 3 is a cross-sectional view of the crimped body according to the first embodiment.

【図4】実施例1における焼結体の断面図。FIG. 4 is a sectional view of a sintered body according to the first embodiment.

【図5】実施例1の電子部品搭載用基板の断面図。FIG. 5 is a cross-sectional view of the electronic component mounting board according to the first embodiment.

【図6】実施例1の電子部品搭載用基板の平面図。FIG. 6 is a plan view of the electronic component mounting board according to the first embodiment.

【図7】実施例2の電子部品搭載用基板の製造工程説明
図(C工程)。
FIG. 7 is an explanatory view (C step) of a manufacturing process of the electronic component mounting board according to the second embodiment.

【図8】実施例3の電子部品搭載用基板の製造工程説明
図(C工程)。
FIG. 8 is an explanatory view (C step) of a manufacturing process of the electronic component mounting board according to the third embodiment.

【図9】従来例の電子部品搭載用基板の製造工程説明
図。
FIG. 9 is an explanatory view of a manufacturing process of a conventional electronic component mounting substrate.

【符号の説明】[Explanation of symbols]

1.. 剛性容器, 10...密封体, 11,19...平行平板, 12...防水性袋, 18...液体, 61,69...未焼結グリーンシート, 71〜74...セラミックスグリーンシート, 81〜84...セラミックス基板, 9...セラミックス多層基板, 90...積層体, 91...圧着体, 92...焼結体, 1. . Rigid container, 10. . . Sealed body, 11,19. . . Parallel plate, 12. . . Waterproof bag, 18. . . Liquid, 61, 69. . . Unsintered green sheet, 71-74. . . Ceramic green sheet, 81-84. . . 8. ceramic substrate, . . Ceramic multilayer substrate, 90. . . Laminate, 91. . . Crimped body, 92. . . Sintered body,

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックスグリーンシートと,該セラ
ミックスグリーンシートの焼結温度では焼結しない未焼
結グリーンシートとを準備するA工程と, 上記セラミックスグリーンシートの表側面及び裏側面に
上記未焼結グリーンシートを載置して積層体を得るB工
程と, 平面方向の伸び率を0.05%以下に抑えた状態で,上
記積層体を加圧して圧着体を得るC工程と, 上記セラミックスグリーンシートの焼結温度で上記圧着
体を焼成するD工程と, 上記圧着体から上記未焼結グリーンシートを除去して焼
結されたセラミックス基板を得るE工程とよりなること
を特徴とするセラミックス多層基板の製造方法。
1. A step of preparing a ceramic green sheet and an unsintered green sheet that does not sinter at the sintering temperature of the ceramic green sheet; A step B in which a green sheet is placed to obtain a laminate; a step C in which the laminate is pressed to obtain a press-bonded body while the elongation in the planar direction is kept to 0.05% or less; A ceramic multi-layer comprising: a step D for firing the pressed body at the sintering temperature of the sheet; and a step E for removing the unsintered green sheet from the pressed body to obtain a sintered ceramic substrate. Substrate manufacturing method.
【請求項2】 請求項1において,上記セラミックスグ
リーンシートは1000℃以下で焼結する低温焼成基板
材料であることを特徴とするセラミックス多層基板の製
造方法。
2. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the ceramic green sheet is a low-temperature fired substrate material sintered at 1000 ° C. or lower.
【請求項3】 請求項1において,上記未焼結グリーン
シートはアルミナ材料であることを特徴とするセラミッ
クス多層基板の製造方法。
3. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the unsintered green sheet is made of an alumina material.
【請求項4】 請求項1において,上記C工程における
積層体の加圧方法は,上記積層体と同形状の剛性容器中
に上記積層体を収納した状態で,その上下方向から平行
平板により加圧する方法であることを特徴とするセラミ
ックス多層基板の製造方法。
4. The method according to claim 1, wherein the method of pressing the laminate in the step C includes applying the laminate in a rigid container having the same shape as the laminate by using a parallel flat plate from above and below. A method of manufacturing a ceramic multilayer substrate, which is a method of pressing.
【請求項5】 請求項1において,上記C工程における
積層体の加圧方法は,上記積層体と平行平板との間に,
表面粗度0.4〜0.75μRaのフィルムを介在して
加圧する方法であることを特徴とするセラミックス多層
基板の製造方法。
5. The method according to claim 1, wherein the method of pressing the laminate in the step C includes the step of:
A method for producing a ceramic multilayer substrate, which is a method in which pressure is applied via a film having a surface roughness of 0.4 to 0.75 Ra.
【請求項6】 請求項1において,上記C工程における
積層体の加圧方法は,液体中における等方圧プレス方法
であることを特徴とするセラミックス多層基板の製造方
法。
6. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the method of pressing the laminate in the step C is an isostatic pressing method in a liquid.
【請求項7】 請求項1において,上記セラミックス基
板には,ビアホール,導体パターンが予め形成されてい
ることを特徴とするセラミックス多層基板の製造方法。
7. The method according to claim 1, wherein a via hole and a conductor pattern are formed in the ceramic substrate in advance.
JP4269577A 1992-07-30 1992-09-11 Manufacturing method of ceramic multilayer substrate Expired - Lifetime JP2729731B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4269577A JP2729731B2 (en) 1992-09-11 1992-09-11 Manufacturing method of ceramic multilayer substrate
US08/097,120 US5470412A (en) 1992-07-30 1993-07-27 Process for producing a circuit substrate
DE69309358T DE69309358T2 (en) 1992-07-30 1993-07-29 Method of manufacturing a circuit substrate
EP93112197A EP0581294B1 (en) 1992-07-30 1993-07-29 Process for producing a circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4269577A JP2729731B2 (en) 1992-09-11 1992-09-11 Manufacturing method of ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JPH0697661A JPH0697661A (en) 1994-04-08
JP2729731B2 true JP2729731B2 (en) 1998-03-18

Family

ID=17474306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4269577A Expired - Lifetime JP2729731B2 (en) 1992-07-30 1992-09-11 Manufacturing method of ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JP2729731B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311044B2 (en) * 1992-10-27 2002-08-05 株式会社東芝 Method for manufacturing semiconductor device
US6228196B1 (en) * 1998-06-05 2001-05-08 Murata Manufacturing Co., Ltd. Method of producing a multi-layer ceramic substrate
JP2003008215A (en) * 2001-06-18 2003-01-10 Sumitomo Metal Electronics Devices Inc Method of manufacturing ceramic multilayer board
JP2003017851A (en) * 2001-06-29 2003-01-17 Murata Mfg Co Ltd Manufacturing method of multilayer ceramic substrate
KR100447032B1 (en) * 2002-12-02 2004-09-07 전자부품연구원 Resistor-buried multilayer low-temperature-cofired-ceramic substrate with flat surface and fabrication method thereof
JP2007335653A (en) * 2006-06-15 2007-12-27 Alps Electric Co Ltd Circuit board, method of manufacturing the same, and circuit module using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828579B2 (en) * 1990-07-04 1996-03-21 株式会社日立製作所 Method for manufacturing ceramic multilayer substrate

Also Published As

Publication number Publication date
JPH0697661A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
EP0581294B1 (en) Process for producing a circuit substrate
TW561809B (en) Manufacturing method for multilayer ceramic device
US20010054481A1 (en) Method for making multilayer board having a cavity
JP3709802B2 (en) Manufacturing method of multilayer ceramic substrate
JP2729731B2 (en) Manufacturing method of ceramic multilayer substrate
JPH07122455A (en) Manufacture of multilayered ceramic electronic component
US7240424B2 (en) Method of laminating low temperature co-fired ceramic (LTCC) Material
JP2001217139A (en) Manufacturing method of laminated electronic component
JP4116854B2 (en) Method for manufacturing ceramic laminate
JPH03250612A (en) Manufacture of laminated ceramic parts
JP2004165375A (en) Method for manufacturing ceramic lamination
JP3042464B2 (en) Manufacturing method of ceramic electronic components
JP2005191409A (en) Method for manufacturing laminated ceramic capacitor
US6245185B1 (en) Method of making a multilayer ceramic product with thin layers
JPH06283375A (en) Manufacture of layered electronic components
JP2008186897A (en) Method of manufacturing multilayer ceramic substrate
JPH04152107A (en) Lamination molding method of ceramic sheet
JPH0396207A (en) Manufacture of laminated ceramic electronic part
JPH04329617A (en) Manufacture of laminated ceramic electronic component
JP2950008B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004186343A (en) Ceramic laminate and its manufacturing method
JP3872283B2 (en) Manufacturing method of glass ceramic substrate
JP2575339Y2 (en) Laminating device for multilayer ceramic electronic components
JP2009246102A (en) Method for manufacturing laminated electronic component
JPH0250494A (en) Manufacture of laminated ceramic substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 15