JP2725483B2 - Production method of chlorinated polyolefin - Google Patents

Production method of chlorinated polyolefin

Info

Publication number
JP2725483B2
JP2725483B2 JP3166626A JP16662691A JP2725483B2 JP 2725483 B2 JP2725483 B2 JP 2725483B2 JP 3166626 A JP3166626 A JP 3166626A JP 16662691 A JP16662691 A JP 16662691A JP 2725483 B2 JP2725483 B2 JP 2725483B2
Authority
JP
Japan
Prior art keywords
polyolefin
chlorination
reaction
chlorinated
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3166626A
Other languages
Japanese (ja)
Other versions
JPH05320223A (en
Inventor
政徳 柳田
宏之 高名
浩 大宮
孝 兒玉
廣海 佐々木
健志 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisoo Kk
Original Assignee
Daisoo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisoo Kk filed Critical Daisoo Kk
Priority to JP3166626A priority Critical patent/JP2725483B2/en
Publication of JPH05320223A publication Critical patent/JPH05320223A/en
Application granted granted Critical
Publication of JP2725483B2 publication Critical patent/JP2725483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低分子量ポリオレフィン
を塩素化して溶媒可溶な塩素化ポリオレフィンを製造す
る方法に関するものである。
The present invention relates to a method for producing a solvent-soluble chlorinated polyolefin by chlorinating a low-molecular-weight polyolefin.

【0002】[0002]

【従来の技術】現在、塩素化ポリオレフィンの製造方法
は、工業的には溶媒中での塩素化法と水性懸濁下での塩
素化法が一般的である。溶媒中での塩素化法は四塩化炭
素等の不活性塩素系溶媒中で塩素化するので比較的均一
な塩素化反応が行われるが、ポリオレフィンを溶解して
反応させるため高分子量ポリオレフィンを原料とすると
反応系が高粘度になり、ポリオレフィン濃度、分子量に
制約を受ける。この方法は塗料、接着剤、インキ等に用
いる溶媒可溶型の比較的低分子量塩素化ポリオレフィン
の製造によく実施されている。しかしながら環境問題の
点から四塩化炭素等の含ハロゲン溶媒を用いない方法が
求められている。
2. Description of the Related Art At present, chlorinated polyolefins are generally produced industrially by chlorination in a solvent and chlorination in an aqueous suspension. In the chlorination method in a solvent, chlorination is performed in an inert chlorine-based solvent such as carbon tetrachloride, so that a relatively uniform chlorination reaction is performed.However, in order to dissolve and react the polyolefin, a high molecular weight polyolefin is used as a raw material. Then, the reaction system becomes highly viscous, and the polyolefin concentration and the molecular weight are restricted. This method is often practiced for the production of solvent-soluble, relatively low molecular weight chlorinated polyolefins for use in paints, adhesives, inks and the like. However, a method that does not use a halogen-containing solvent such as carbon tetrachloride is required from the viewpoint of environmental problems.

【0003】一方水性懸濁下の塩素化ではポリオレフィ
ンの融点付近或いは融点以上の温度で塩素化反応を行う
と塩素化中に凝集や団塊化が生じ均一な塩素化が出来な
くなるため、ポリオレフィンの融点以下の温度で塩素化
する方法がとられてきた。そのため水性懸濁法に用いら
れる原料ポリオレフィンは比較的分子量の大きいもの例
えば数万以上が適しており、得られた塩素化ポリオレフ
ィンは主にポリマーブレンド用,成型材料用に商品化さ
れてきた。
On the other hand, in chlorination in aqueous suspension, if the chlorination reaction is carried out at a temperature near or above the melting point of the polyolefin, coagulation or agglomeration occurs during the chlorination and uniform chlorination cannot be performed. The following chlorination methods have been used. Therefore, the raw material polyolefin used in the aqueous suspension method is suitably of a relatively large molecular weight, for example, tens of thousands or more, and the obtained chlorinated polyolefin has been commercialized mainly for polymer blends and molding materials.

【0004】通常ワックスと呼ばれる分子量10000
以下のポリオレフィンは軟化点や融点が低いため、これ
を水性懸濁下で塩素化すると凝集や団塊化が極めて起り
易いので、水性懸濁法は使用されていない。しかし敢え
て塩素化を行う場合は融点以下で行うのが一般的であ
る。その結果反応温度の低い条件下で塩素化を行わねば
ならず、反応が極めて遅くなる。反応速度を高めるため
には、紫外線照射或いはラジカル発生剤の添加等の方法
が知られているが、反応に長時間を要する欠点がある。
このような水性懸濁法によるポリオレフィンの塩素化は
当該ポリオレフィンが粉末状で水中に分散して塩素化さ
れるため、ポリオレフィン粒子の表面が中央部より塩素
化され易いので、不均一な塩素化物となったり、ポリオ
レフィンの結晶が残り易い欠点を有する。このように低
分子量ポリオレフィンを水性懸濁下で塩素化し、溶媒可
溶な塩素化ポリオレフィンを製造することは、反応温度
が低いため塩素化速度が上がらず生産性に影響するこ
と、更に得られた塩素化ポリオレフィンが不均一塩素化
物となり易いので有機溶媒への不溶解物が生じ易い等の
欠点がある。
A molecular weight of 10,000 which is usually called wax
Since the following polyolefins have a low softening point and a low melting point, if they are chlorinated in an aqueous suspension, flocculation and agglomeration extremely easily occur. Therefore, the aqueous suspension method is not used. However, when chlorination is intentionally performed, it is generally performed at a temperature lower than the melting point. As a result, the chlorination must be carried out at a low reaction temperature, and the reaction becomes extremely slow. In order to increase the reaction rate, methods such as irradiation with ultraviolet rays or addition of a radical generator are known, but there is a disadvantage that the reaction requires a long time.
In the chlorination of polyolefin by the aqueous suspension method, since the polyolefin is dispersed in water in the form of powder and is chlorinated, the surface of the polyolefin particles is more easily chlorinated from the central portion, so that an uneven chlorinated product is produced. Or polyolefin crystals are apt to remain. Thus, chlorinating a low-molecular-weight polyolefin under aqueous suspension to produce a solvent-soluble chlorinated polyolefin further affects the productivity because the reaction temperature is low and the chlorination rate does not increase. Since the chlorinated polyolefin is liable to become a non-uniform chlorinated product, there is a disadvantage that an insoluble material is easily generated in an organic solvent.

【0005】[0005]

【発明が解決しようとする課題】以上の点に鑑み、発明
者らは溶媒可溶な塩素化ポリオレフィンを含ハロゲン溶
媒を用いることなく製造する方法を得る目的で鋭意検討
した。その結果低分子量ポリオレフィンを特定条件下で
水中溶融懸濁状態で塩素化することにより上記目的を達
成し得ることを見出し、本発明を完成させるに至った。
In view of the above, the present inventors have made intensive studies to obtain a method for producing a solvent-soluble chlorinated polyolefin without using a halogen-containing solvent. As a result, they have found that the above object can be achieved by chlorinating a low-molecular-weight polyolefin in a molten suspension in water under specific conditions, and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、平均分子量
800〜12000でかつ170℃における溶融粘度
が4000センチポイズ以下のポリオレフィンを水10
0重量部に対して1〜20重量部用い、該ポリオレフィ
を水性媒体中融点より5℃以上高い温度で溶融懸濁状
態にして塩素化することを特徴とする溶媒可溶な塩素化
ポリオレフィンの製造法である。
According to the present invention, a polyolefin having a number average molecular weight of 800 to 12000 and a melt viscosity at 170 ° C. of 4,000 centipoise or less is converted to water 10
1 to 20 parts by weight per 0 parts by weight of the polyolefin
Down the a method of producing solvent-soluble chlorinated polyolefin, wherein the chlorinating in the molten suspension at high temperatures 5 ° C. or higher than the aqueous medium NakaToru point.

【0007】本発明者らは低分子量ポリオレフィンがそ
の融点以上の温度で容易に溶融し、低い溶融粘度を有す
ることに着目し詳細なる検討を行った結果、その融点よ
り5℃以上高い温度で比較的容易に水中で溶融懸濁状態
になり得ることを見出した。この場合溶融懸濁状態とは
水中に溶融された液状ポリオレフィンが分散された状態
をいう。この溶融懸濁状態でのポリオレフィンの塩素化
は、従来の水性懸濁法におけるポリオレフィンと塩素の
反応が固体−媒体中の溶解塩素反応であったのと異なっ
て溶融液状物−媒体中の溶解塩素反応であるためポリオ
レフィンの自由度が非常によいことや、液滴粒子が小さ
く表面積が大きいことなどから均一な塩素化反応が生
じ、均質な塩素化ポリエチレンを得ることができる。
The present inventors have conducted detailed studies focusing on the fact that low-molecular-weight polyolefins easily melt at temperatures higher than their melting points and have low melt viscosities. It has been found that it can easily become a molten suspension in water. In this case, the molten suspension state refers to a state in which the liquid polyolefin melted in water is dispersed. Chlorinated polyolefins in the molten suspension, the conventional polyolefin in the aqueous suspension process and chlorine of the reaction a solid - of the different molten liquid material was dissolved chlorine reaction in medium - dissolved chlorine in the medium Since the reaction is a reaction, the degree of freedom of the polyolefin is very good, and the droplet particles are small and the surface area is large, so that a uniform chlorination reaction occurs and a homogeneous chlorinated polyethylene can be obtained.

【0008】本発明に用いるポリオレフィンとは、粉末
状,ペレット状或いは粗粒状のポリオレフィンの単独重
合体又は共重合体例えばポリエチレン,ポリプロピレ
ン,エチレン−プロピレン共重合体,エチレン−ブテン
共重合体,プロピレン−ブテン共重合体,エチレン−ア
クリル酸エステル共重合体,エチレン−酢酸ビニル共重
合体,エチレン−ブタジエン共重合体,エチレン−マレ
イン酸共重合体或いは部分的酸化されたポリエチレン等
結晶構造を有する重合体或いは非晶質の重合体であって
数平均分子量800〜12000でかつ170℃におけ
る溶融粘度が4000センチポイズ以下のものをいう。
[0008] The polyolefin used in the present invention is a homopolymer or a copolymer of polyolefin in the form of powder, pellets or coarse particles, for example, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, propylene-propylene. Polymers having a crystal structure such as butene copolymer, ethylene-acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-butadiene copolymer, ethylene-maleic acid copolymer or partially oxidized polyethylene Alternatively, it refers to an amorphous polymer having a number average molecular weight of 800 to 12,000 and a melt viscosity at 170 ° C. of 4,000 centipoise or less.

【0009】分子量12000以上,溶融粘度4000
cP(170℃)以上のポリオレフィンは溶融しても粘
度が高すぎるため水中で溶融懸濁状態にすることが難し
く、また塩素化途中の塩素化物の溶融粘度上昇が大き
く、凝集や団塊化を生じ易いので適さない。また分子量
800未満のポリオレフィンは例えば塗料や接着剤とし
て用いた場合樹脂としての強度が十分出ないので好まし
くない。本発明においてはポリオレフィンの塩素化を開
始する前に予めポリオレフィンの融点より5℃以上高い
温度でポリオレフィンを水中に溶融懸濁状態にして後塩
素を導入することが要点の一つで、この際の分散状態が
塩素化の速度や系の安定性に影響を及ぼす。
[0009] Molecular weight 12,000 or more, melt viscosity 4000
Polyolefins having a cP (170 ° C.) or higher have a too high viscosity even when melted, so that it is difficult to form a molten suspension in water. In addition, the chlorinated product undergoes a large increase in melt viscosity during chlorination, resulting in aggregation and agglomeration. Not suitable because it is easy. Further, polyolefins having a molecular weight of less than 800 are not preferable because, for example, when used as a paint or an adhesive, the strength as a resin is insufficient. In the present invention, one of the main points is that before starting the chlorination of the polyolefin, the polyolefin is preliminarily melted and suspended in water at a temperature higher than the melting point of the polyolefin by 5 ° C. or more, and then chlorine is introduced. The state of dispersion affects the rate of chlorination and the stability of the system.

【0010】本発明の反応温度は80〜170℃の範囲
内の,使用するポリオレフィンの融点より5℃以上高い
温度であって、好ましくは該ポリオレフィンの溶融粘度
が4000cP以下となる温度が適している。更に好ま
しくは110〜160℃の範囲内の,使用するポリオレ
フィンの溶融粘度が3000cP以下となる温度が望ま
しい。ここで反応温度をポリオレフィンの融点より5℃
以上高い温度とするのは、ポリオレフィンが完全に溶融
し良好なる溶融懸濁状態を保つためであり、少しでも団
塊化したものが混入していると塩素化が不均一となり溶
媒不溶性の塩素化物が発生するからである。また反応温
度が170℃を越えると、水蒸気圧が高すぎて塩素導入
が困難となり、塩素化物の熱的安定性の低下や酸化劣化
のおそれがあるので好ましくない。
[0010] The reaction temperature of the present invention is a temperature within the range of 80 to 170 ° C, which is higher than the melting point of the polyolefin used by 5 ° C or more, preferably a temperature at which the melt viscosity of the polyolefin becomes 4000 cP or less. . More preferably, the temperature is in the range of 110 to 160 ° C. and the melt viscosity of the polyolefin used is 3000 cP or less. Here, the reaction temperature is 5 ° C. below the melting point of the polyolefin.
The reason why the temperature is set to be higher than above is to keep the melt suspension state in which the polyolefin is completely melted and good, and even if a little agglomeration is mixed, the chlorination becomes uneven and the solvent-insoluble chlorinated product is formed. Because it occurs. On the other hand, if the reaction temperature exceeds 170 ° C., it is not preferable because the steam pressure becomes too high and it becomes difficult to introduce chlorine, and there is a possibility that the thermal stability of the chlorinated product may be reduced or oxidized.

【0011】ポリオレフィンの水中混合割合は水100
重量部に対しポリオレフィン1〜20重量部が適当であ
る。使用する水は通常の工業用水でもよいが、イオン交
換水の方が好ましい。また、塩酸水溶液を使用すること
もでき、反応によって副生する塩酸を含む反応液を濾過
したものも使用することができる。この場合塩酸濃度は
20重量%以下が好ましい。
The mixing ratio of the polyolefin in water is 100
The appropriate amount is 1 to 20 parts by weight of polyolefin per part by weight. The water to be used may be ordinary industrial water, but ion exchange water is more preferable. In addition, an aqueous hydrochloric acid solution can be used, and a filtered reaction solution containing hydrochloric acid by-produced by the reaction can also be used. In this case, the hydrochloric acid concentration is preferably 20% by weight or less.

【0012】本発明は、分散剤の非存在下に水中溶融懸
濁状態で塩素化を行うことができる。しかし、反応温度
における溶融粘度の高いポリオレフィンを使用する場合
やポリオレフィンの水中混合濃度を上げる場合は分散剤
を添加することによって溶融懸濁状態を安定化させるこ
とができる。
In the present invention, chlorination can be carried out in a molten suspension in water in the absence of a dispersant. However, when a polyolefin having a high melt viscosity at the reaction temperature is used or when the concentration of the polyolefin mixed in water is increased, a molten suspension state can be stabilized by adding a dispersant.

【0013】上記分散剤としては通常の界面活性剤やア
クリル系重合体等が使用できる。界面活性剤としては、
非イオン活性剤又はアニオン活性剤で例えばポリオキシ
エチレンアルキルエーテル類,ポリオキシアルキルフェ
ノールエステル類,ポリオキシエチレンアルキルエステ
ル類,ソルビタンアルキルエステル類,エチレンオキサ
イド−プロピレンオキサイドブロックポリマー等の非イ
オン活性剤、アルキルベンゼンスルホン酸ソーダ,アル
コール硫酸エステル,アルキルスルホン酸,アルキルア
リルスルホン酸又はそれらのナトリウム塩、縮合ナフタ
レンのスルホン酸のナトリウム塩等のアニオン活性剤が
適している。
As the above-mentioned dispersant, ordinary surfactants and acrylic polymers can be used. As a surfactant,
Nonionic or anionic surfactants such as nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyalkylphenol esters, polyoxyethylene alkyl esters, sorbitan alkyl esters, ethylene oxide-propylene oxide block polymers, and alkylbenzene Sodium sulfonate, alcohol sulfate, alkylsulfonic acid, alkylallylsulfonic acid or their sodium salts , condensed naphtha
Anionic activators such as the sodium salt of sulfonic acid of len are suitable.

【0014】アクリル系重合体としては、アクリル酸若
しくはアクリル酸エステルの重合体若しくはこれらの共
重合体,又はこれら重合体若しくは共重合体のアルカリ
金属塩若しくはアンモニウム塩で分子量3000以上の
ものが適当であり、特に10000以上のものが好まし
く用いられる。上記アクリル酸エステルとしては炭素数
1〜4のアルキルエステルが好ましい。これら重合体の
内水可溶又はコロイダルディスパージョンとなり得るも
のが本発明に適する。またスチレン重合体あるいはスチ
レン−無水マレイン酸共重合体のスルホン酸のナトリウ
ム塩のようなアニオン活性スチレン系重合体の併用も可
能である。
As the acrylic polymer, a polymer of acrylic acid or an acrylate ester, a copolymer thereof, or an alkali metal salt or an ammonium salt of the polymer or the copolymer having a molecular weight of 3,000 or more is suitable. In particular, those having 10,000 or more are preferably used. The acrylate is preferably an alkyl ester having 1 to 4 carbon atoms. Those which can be in-water-soluble or colloidal dispersion of these polymers are suitable for the present invention. Styrene polymer or stainless steel
Sulfuric acid sodium of len-maleic anhydride copolymer
It is also possible to use an anion-active styrenic polymer such as a salt in combination.

【0015】これら分散剤は単独又は2種以上混合して
使用することができるが、特に界面活性剤とアクリル系
重合体の併用が好ましい。分散剤の使用量はポリオレフ
ィン100重量部に対して固形分で2重量部以下が適当
である。分散剤は、予めポリオレフィン粉末と混合し次
いで反応液である水又は塩酸水溶液中に分散せしめても
よいが、反応液に分散剤を分散溶解した中にポリオレフ
ィンを添加分散し昇温して後にスラリー液としてもよ
い。
These dispersants can be used alone or as a mixture of two or more kinds. Particularly, a combination of a surfactant and an acrylic polymer is preferable. The amount of the dispersant used is suitably 2 parts by weight or less in terms of solids based on 100 parts by weight of the polyolefin. The dispersant may be preliminarily mixed with the polyolefin powder and then dispersed in water or an aqueous hydrochloric acid solution as a reaction solution. It may be a liquid.

【0016】本発明に使用する反応容器としては塩素,
塩酸に耐蝕性のある材質で加圧加熱撹拌できる密閉容器
で一般に塩素化反応に使用される撹拌機付きグラスライ
ニング反応槽でよい。また、スタティックミキサーを使
用した循環方式も反応促進に有効である。所定の塩素含
有量にまで塩素化されたスラリー状の反応生成物は取り
出され濾過して反応生成物と反応液(塩酸水溶液)とに
分ける。反応生成物は苛性ソーダ或いは炭酸ソーダの水
溶液で中和し,濾別後水洗するか、多量の水で繰り返し
洗浄、濾過及び乾燥して塩素化ポリオレフィンの製品と
する。
The reaction vessel used in the present invention is chlorine,
It is a closed container that is made of a material that is resistant to hydrochloric acid and can be heated and stirred under pressure, and may be a glass-lined reaction tank with a stirrer generally used for a chlorination reaction. A circulation system using a static mixer is also effective for promoting the reaction. The slurry-like reaction product chlorinated to a predetermined chlorine content is taken out, filtered and separated into a reaction product and a reaction solution (aqueous hydrochloric acid solution). The reaction product is neutralized with an aqueous solution of caustic soda or sodium carbonate, filtered and washed with water, or repeatedly with a large amount of water.
It is washed, filtered and dried to obtain a chlorinated polyolefin product.

【0017】[0017]

【発明の効果】1) 本発明は溶融状態のポリオレフィ
ンを水中に懸濁させて塩素化反応を行う。従って、ポリ
オレフィンと塩素とは液体−媒体中の溶解塩素反応とな
るため均一な塩素化が可能となり、且つ比較的高温で反
応させるため反応速度が大きく、反応時間が大幅に短縮
される。
According to the present invention, a chlorination reaction is carried out by suspending a molten polyolefin in water. Therefore, the polyolefin and chlorine undergo a dissolved chlorine reaction in the liquid- medium so that uniform chlorination is possible, and since the reaction is carried out at a relatively high temperature, the reaction rate is large and the reaction time is greatly reduced.

【0018】2) 本発明の方法によれば、塩素含有量
35〜70%でも残存結晶を含有しない溶媒可溶な塩素
化ポリオレフィンを容易に製造することができる。
2) According to the method of the present invention, a solvent-soluble chlorinated polyolefin containing no residual crystals even with a chlorine content of 35 to 70% can be easily produced.

【0019】3) 本発明の方法によれば、塩素含有量
が45%を超えるものでも比較的安定に粉末状の塩素化
ポリオレフィンを取出すことが可能である。
3) According to the method of the present invention, powdery chlorinated polyolefin can be relatively stably taken out even if the chlorine content exceeds 45%.

【0020】4) 反応温度が115℃を超えると塩素
化速度は著しく加速される。しかしながら、本発明の生
成物には着色は認められない。更に高塩素化を図る場
合、塩素化の終点付近でも反応が割合速いので、低温塩
素化に比べて塩素反応率を著しく上げることができる。
また、光照射やラジカル開始剤の添加なしでも充分な速
度で塩素化反応を進めることができる。
4) When the reaction temperature exceeds 115 ° C., the chlorination rate is remarkably accelerated. However, no coloring is observed in the products of the invention. Further, when high chlorination is to be achieved, the reaction is relatively fast even near the end point of chlorination, so that the chlorine conversion can be significantly increased as compared with low temperature chlorination.
Further, the chlorination reaction can proceed at a sufficient speed without light irradiation or addition of a radical initiator.

【0021】5) 本発明法による生成物は低温塩素化
物と比べて耐熱安定性や芳香族系溶媒・ケトン系溶媒へ
の溶解度が優れており、かなり均一な塩素化物であるこ
とが分る。
5) The product according to the method of the present invention has excellent heat stability and solubility in aromatic solvents and ketone solvents as compared with low-temperature chlorinated products, indicating that it is a fairly uniform chlorinated product.

【0022】6) 本発明の方法は有機溶媒を用いずに
低分子量ポリオレフィンの高塩素化を円滑に行うことが
でき、溶媒法と比べて経済的であり、環境問題の点で有
利であり、かつ優れた塩素化物が得られる。このように
本発明は産業上意義ある発明であるということができ
る。
6) The method of the present invention can smoothly perform high chlorination of a low molecular weight polyolefin without using an organic solvent, is more economical than the solvent method, and is advantageous in terms of environmental problems. And an excellent chlorinated product can be obtained. Thus, it can be said that the present invention is an industrially significant invention.

【0023】[0023]

【実施例】以下実施例により本発明を詳細に説明する。
例中%は重量基準であり、平均分子量はいずれも数平均
分子量を表す。 実施例1 平均分子量2700,融点107℃,溶融粘度200c
P(160℃),300cP(140℃),密度0.9
3,酸価30の酸変性型のポリエチレン(平均粒経40
0μmの粒体状)3kgを容量100リットルのグラス
ライニング加圧反応槽にイオン交換水65リットルと共
に入れ、これに非イオン界面活性剤(ポリオキシエチレ
ンアルキルフェニルエーテル)3gとアクリル酸重合体
水溶液(pH2.0,分子量13000,固形分30
%)20gを加えて撹拌下に120℃まで昇温した。こ
の温度で原料ポリエチレンは完全に溶融し撹拌によって
溶融懸濁状態にある。次いで塩素ガスを吹き込み、12
0±1℃の範囲で280分かけて、目標量68%まで塩
素化を行った。反応終了後冷却すると塩素化物がスラリ
ー態で得られ、遠心分離により白色粉末状湿体を得た。
The present invention will be described in detail with reference to the following examples.
Examples in percentages Ri weight der number Both average molecular weight average
Represents molecular weight. Example 1 Average molecular weight 2700, melting point 107 ° C., melt viscosity 200c
P (160 ° C), 300 cP (140 ° C), density 0.9
3, acid-modified polyethylene having an acid value of 30 (average particle size of 40
3 kg of 0 μm granules) was put into a 100-liter glass-lined pressurized reaction tank together with 65 liters of ion-exchanged water, and 3 g of a nonionic surfactant (polyoxyethylene alkylphenyl ether) and an aqueous solution of an acrylic acid polymer ( pH 2.0, molecular weight 13,000, solid content 30
%) And heated to 120 ° C. with stirring. At this temperature, the raw polyethylene is completely melted and is in a molten suspension state by stirring. Then, chlorine gas was blown in and 12
Chlorination was performed in the range of 0 ± 1 ° C. over 280 minutes to the target amount of 68%. After the completion of the reaction, when cooled, a chlorinated product was obtained in a slurry state, and a white powdery wet body was obtained by centrifugation.

【0024】これを5倍量のイオン交換水に分散した
後、10%NaOH水溶液で中和し遠心分離により脱
水、その後イオン交換水による洗浄と脱水を繰り返し、
濾過液のpHが6.5となった後、遠心分離し70℃減
圧下で36時間乾燥し、白色超微粉末の塩素化ポリエチ
レンを得た。
This was dispersed in 5 times the volume of ion-exchanged water, neutralized with a 10% aqueous solution of NaOH, dehydrated by centrifugation, and then repeatedly washed and dehydrated with ion-exchanged water.
After the pH of the filtrate reached 6.5, it was centrifuged and dried at 70 ° C. under reduced pressure for 36 hours to obtain a white ultrafine chlorinated polyethylene.

【0025】この生成物は塩素含量67.2%で、塩素
反応率は98.8%であった。この生成物はトルエンに
速やかに溶解して透明な溶液となり、固形分20%の溶
液粘度は8cP(20℃)、ハーゼン色度は10以下で
あった。DSC(差動走査熱量計パーキンエルマー社
製、昇温速度10℃/分)による残存結晶は認められな
かった。
This product had a chlorine content of 67.2% and a chlorine conversion of 98.8%. This product was rapidly dissolved in toluene to form a transparent solution, and the solution viscosity at a solid content of 20% was 8 cP (20 ° C.), and the Hazen chromaticity was 10 or less. No residual crystals were observed by DSC (differential scanning calorimeter, manufactured by Perkin Elmer Co., Ltd., heating rate 10 ° C./min).

【0026】比較例1 実施例1において塩素化反応を70℃で21時間かけて
塩素化目標量70%まで行った以外は実施例1と同様に
試験して白色の2〜3mm径の粒状生成物を得た。これ
を指で軽く揉むと容易に粉体になし得るものであった
が、トルエン溶解では不溶解物が残りブツによる濁りを
生じた。生成物の塩素含量は66.4%で、DSCによ
り0.6cal/gの残存結晶が認められた。
Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the chlorination reaction was carried out at 70 ° C. for 21 hours up to a target chlorination amount of 70%, and white granules having a diameter of 2 to 3 mm were formed. I got something. The powder could be easily formed into a powder by gently rubbing it with a finger. However, in the case of dissolving in toluene, insolubles remained and cloudiness was caused by dust. The chlorine content of the product was 66.4%, and residual crystals of 0.6 cal / g were recognized by DSC.

【0027】比較例2 比較例1において、反応速度を上げる目的で反応温度を
90℃にした以外は比較例1と同様に試験したところ、
塩素化量25%で団塊化を生じ、塩素化を進めることが
できなかった。
Comparative Example 2 A test was conducted in the same manner as in Comparative Example 1 except that the reaction temperature was increased to 90 ° C. in order to increase the reaction rate.
Agglomeration occurred at a chlorination amount of 25%, and chlorination could not proceed.

【0028】実施例2 平均分子量1000,融点109℃,溶融粘度10cP
(160℃),20cP(140℃),密度0.92の
低密度ポリエチレン1kgを容量100リットルのグラ
スライニング加圧反応槽にイオン交換水75リットルと
共に入れ、125℃で攪拌分散後、溶融懸濁状態下に塩
素ガスを吹き込み、125±1℃の範囲で240分かけ
て塩素化目標量69%まで塩素化を行い、冷却後スラリ
ーを取出し遠心分離により白色の粉末状湿体を得た。こ
れを実施例1と同様に処理して白色の超微粉末の塩素化
ポリエチレンを得た。この生成物は塩素含量67.8%
で、塩素反応率は98.3%であった。これはトルエン
に速やかに溶解し、透明な溶液となった。トルエン溶解
液の粘度は固形分40%で45cP(25℃)、ハーゼ
ン色度は20であった。
Example 2 Average molecular weight: 1000, melting point: 109 ° C., melt viscosity: 10 cP
(160 ° C.), 20 kg (140 ° C.), 1 kg of low-density polyethylene having a density of 0.92 are put into a 100-liter glass-lined pressurized reaction vessel together with 75 liters of ion-exchanged water, stirred and dispersed at 125 ° C., and then melt-suspended. Chlorine gas was blown in under this condition, chlorination was performed within a range of 125 ± 1 ° C. over 240 minutes to a chlorination target amount of 69%, and after cooling, the slurry was taken out and centrifuged to obtain a white powdery wet body. This was treated in the same manner as in Example 1 to obtain a white ultrafine chlorinated polyethylene. The product has a chlorine content of 67.8%
And the chlorine conversion was 98.3%. This quickly dissolved in toluene to give a clear solution. The viscosity of the toluene solution was 45 cP (25 ° C.) at a solid content of 40%, and the Hazen chromaticity was 20.

【0029】比較例3 実施例2において、70℃で攪拌分散下に塩素を吹き込
んだ以外は実施例2と同様に塩素化を行ったところ塩素
化率約10%頃から団塊化が始まり、攪拌できなくなっ
たので、反応を中止した。
Comparative Example 3 Chlorination was performed in the same manner as in Example 2 except that chlorine was blown in at 70 ° C. while stirring and dispersing. Agglomeration started from about 10% of the chlorination rate, and stirring was continued. The reaction was stopped because it was no longer possible.

【0030】実施例3 平均分子量4000,融点118℃,溶融粘度1100
cP(140℃),密度0.95の低密度ポリエチレン
1.5kgと分散剤液(非イオン界面活性剤ポリオキシ
エチレンオクチルフェニルエーテル2gとアクリル酸重
合体(pH2.0,分子量13000,固形分30%)
15gを水500gに溶解分散したもの)とを予め混合
し、両者を十分になじませたものを用意した。次に容量
100リットルのグラスライニング加圧反応槽に10%
HCl水溶液70リットルを入れ、攪拌下に上記混合物
を加え,分散後昇温し130℃で溶融懸濁状態下に塩素
ガスを吹き込み、130±1℃の範囲で200分かけて
目標量68%まで塩素化を行った。冷却後スラリー状反
応物を取出し遠心分離により白色の粉末状湿体を得た。
これを5倍量の工業用水に分散した後10%NaOH水
溶液を加えてpH9に維持したままで60℃で2時間攪
拌後、塩酸で中和し遠心分離により脱水、その後の工業
用水による水洗と脱水を3回繰り返し、70℃減圧下で
36時間乾燥し、白色の微粉末状塩素化ポリエチレンを
得た。この生成物は塩素含量67.0%で、塩素反応率
は98.5%であった。またこの生成物はトルエンに速
やかに溶解し、透明な液体となり、固形分20%の溶液
粘度は12cP(20℃)、ハーゼン色度は10であっ
た。
Example 3 Average molecular weight 4000, melting point 118 ° C., melt viscosity 1100
1.5 kg of low-density polyethylene having a cP (140 ° C.) and a density of 0.95 and a dispersant liquid (2 g of a nonionic surfactant polyoxyethylene octylphenyl ether and an acrylic acid polymer (pH 2.0, molecular weight 13,000, solid content 30) %)
15 g dissolved and dispersed in 500 g of water) in advance to prepare a mixture in which both were sufficiently blended. Next, 10% was added to the glass-lined pressurized reaction tank with a capacity of 100 liter.
Add 70 liters of HCl aqueous solution, add the above mixture with stirring, raise the temperature after dispersion, blow in chlorine gas at 130 ° C in a molten and suspended state, and reach the target amount of 68% in the range of 130 ± 1 ° C over 200 minutes. Chlorination was performed. After cooling, the slurry reaction product was taken out and centrifuged to obtain a white powdery wet body.
This was dispersed in 5 times the volume of industrial water, and then stirred at 60 ° C. for 2 hours while maintaining a pH of 9 by adding a 10% aqueous NaOH solution, neutralized with hydrochloric acid, dehydrated by centrifugation, and then washed with industrial water. The dehydration was repeated three times and dried at 70 ° C. under reduced pressure for 36 hours to obtain a white fine powdered chlorinated polyethylene. This product had a chlorine content of 67.0% and a chlorine conversion of 98.5%. This product was rapidly dissolved in toluene to become a transparent liquid, the solution viscosity at a solid content of 20% was 12 cP (20 ° C.), and the Hazen chromaticity was 10.

【0031】比較例4 実施例3において、70℃で攪拌分散後、塩素ガスを吹
き込んで、70±1℃の範囲で22時間かけて塩素化目
標率71%まで塩素化を行った以外は、実施例3と同様
に試験し、生成物を実施例3と同様に処理して白色粒状
生成物を得た。この生成物は塩素含量が66.5%で、
塩素反応率は93.7%であった。この生成物のトルエ
ンへの溶解性を調べると、トルエンには分散するが白濁
を生じ透明な液とならず、放置しておくと不溶解分の沈
澱が多く認められた。また、DSCにより0.8cal
/gの残存結晶が認められた。
COMPARATIVE EXAMPLE 4 In Example 3, except that after stirring and dispersing at 70 ° C., chlorine gas was blown in and chlorination was performed within a range of 70 ± 1 ° C. over 22 hours to a chlorination target rate of 71%. Tested as in Example 3, the product was treated as in Example 3 to give a white granular product. This product has a chlorine content of 66.5%,
The chlorine conversion was 93.7%. When the solubility of this product in toluene was examined, it was dispersed in toluene, but it became cloudy and did not become a transparent liquid. 0.8 cal by DSC
/ G of residual crystals was observed.

【0032】実施例4 平均分子量8000,融点111℃,溶融粘度2000
cP(160℃),3000cP(140℃),密度
0.92の低密度ポリエチレン2kgを容量100リッ
トルのグラスライニング加圧反応槽にイオン交換水85
リットルと共に入れ、これに分散剤としてアニオン活性
剤(エーテルサルフェートのアンモニウム塩pH7.
8)4gとアクリル酸重合体水溶液(pH2.0,分子
量13000,固形分30%)15gを加えて、135
℃で攪拌分散後、溶融懸濁状態下に塩素ガスを吹き込
み、135±1℃の範囲で220分かけて塩素化目標量
68%まで塩素化を行い、冷却後スラリー状物を取出し
遠心分離により白色の粉末状湿体を得た。これを実施例
3と同様に処理して白色の微粉末状塩素化ポリエチレン
を得た。この生成物は塩素含量が67.3%で、塩素反
応率は99%であった。この生成物はトルエンに速やか
に溶解し、透明な溶液となり、固形分20%の溶液粘度
は22cP(20℃)、ハーゼン色度は20であった。
Example 4 Average molecular weight: 8000, melting point: 111 ° C., melt viscosity: 2000
cP (160 ° C.), 3000 cP (140 ° C.), 2 kg of low-density polyethylene having a density of 0.92 were placed in a 100-liter glass-lined pressurized reaction tank with deionized water 85.
Liter together with an anionic activator (ammonium salt of ether sulfate pH7.
8) 4 g and 15 g of an aqueous solution of acrylic acid polymer (pH 2.0, molecular weight 13,000, solid content 30%) were added, and 135 g was added.
After stirring and dispersing at ℃, chlorine gas is blown in a molten suspension state, chlorination is performed to a target chlorination amount of 68% in a range of 135 ± 1 ° C over 220 minutes, and after cooling, a slurry is taken out and centrifuged. A white powdery wet body was obtained. This was treated in the same manner as in Example 3 to obtain a white fine powdered chlorinated polyethylene. This product had a chlorine content of 67.3% and a chlorine conversion of 99%. This product was rapidly dissolved in toluene to form a transparent solution, and the solution viscosity at a solid content of 20% was 22 cP (20 ° C.), and the Hazen chromaticity was 20.

【0033】比較例5 実施例4と同じポリエチレンを予め粉砕により平均粒径
40μmとしたものを、実施例4と同様にして80℃で
20時間かけて水性懸濁下に塩素化目標量72%まで塩
素化を行い、冷却後スラリーを取出し遠心分離により白
色の粒状湿体を得た。この湿体を実施例4と同様に処理
して白色粉末状塩素化ポリエチレンを得た。この生成物
の塩素含量は67.6%で、塩素反応率は94.0%で
あった。またこの生成物をトルエンに分散したところ、
殆ど溶解したが、僅かな濁りと不溶解物が認められ、固
形分20%の溶液粘度は25cP(20℃)で、ハーゼ
ン色度は60であった。
Comparative Example 5 The same polyethylene as in Example 4 was previously pulverized to an average particle size of 40 μm, and the same chlorination as in Example 4 was carried out under aqueous suspension at 80 ° C. for 20 hours while the chlorination target amount was 72%. After cooling, the slurry was taken out and centrifuged to obtain a white granular wet body. This wet body was treated in the same manner as in Example 4 to obtain a white powdery chlorinated polyethylene. The chlorine content of this product was 67.6%, and the chlorine conversion was 94.0%. When this product was dispersed in toluene,
Although almost dissolved, slight turbidity and insoluble matter were recognized, the solution viscosity at a solid content of 20% was 25 cP (20 ° C.), and the Hazen chromaticity was 60.

【0034】実施例5 平均分子量3000,融点140℃,溶融粘度70cP
(160℃),密度0.89の低分子量ポリプロピレン
粉末2kgを容量100リットルのグラスライニング加
圧反応槽にイオン交換水80リットルと共に入れ、これ
に分散剤として非イオン界面活性剤(ポリオキシエチレ
ンノニルフェニルエーテル)5gとアクリル酸重合体水
溶液(pH2.0,分子量13000,固形分30%)
15gを加えて、150℃で攪拌分散後、溶融懸濁状態
下に塩素ガスを吹き込み、150±2℃で200分かけ
て塩素化目標量69%まで塩素化を行い、白色の粉末状
湿体を得た。これを実施例1と同様に処理して、白色微
粉末状塩素化ポリプロピレンを得た。この塩素含量は6
8.1%で、トルエンに速やかに溶解し、透明な溶液と
なり、固形分20%の溶液粘度は5cP(20℃)、ハ
ーゼン色度は20であった。
Example 5 Average molecular weight 3000, melting point 140 ° C., melt viscosity 70 cP
(160 ° C.), 2 kg of low molecular weight polypropylene powder having a density of 0.89 was put into a 100 liter glass-lined pressurized reaction vessel together with 80 liters of ion-exchanged water, and a nonionic surfactant (polyoxyethylene nonyl) was added thereto as a dispersant. 5 g of phenyl ether) and an aqueous solution of acrylic acid polymer (pH 2.0, molecular weight 13,000, solid content 30%)
After adding 15 g and stirring and dispersing at 150 ° C., chlorine gas is blown in a molten suspension state, and chlorination is performed at 150 ± 2 ° C. for 200 minutes to a chlorination target amount of 69% to give a white powdery wet substance. I got This was treated in the same manner as in Example 1 to obtain chlorinated polypropylene in the form of fine white powder. This chlorine content is 6
At 8.1%, it was rapidly dissolved in toluene to form a clear solution. The solution viscosity at a solid content of 20% was 5 cP (20 ° C.), and the Hazen chromaticity was 20.

【0035】比較例6 実施例5において、90℃で攪拌分散後塩素ガスを吹き
込み,90±1℃で反応させた以外は実施例5と同様に
試験したところ塩素含量25%で凝集が始まり団塊とな
ったので反応を中止した。
Comparative Example 6 A test was conducted in the same manner as in Example 5 except that the mixture was stirred and dispersed at 90 ° C., and then blown with chlorine gas and reacted at 90 ± 1 ° C .. The reaction was stopped.

【0036】実施例6 平均分子量2000,融点122℃,溶融粘度80cP
(140℃),密度0.97の高密度ポリエチレン3k
gを容量100リットルのグラスライニング加圧反応槽
にイオン交換水80リットルと共に入れ、これに分散剤
として非イオン界面活性剤(ポリオキシエチレンノニル
フェニルエーテル)6gを加え、130℃で攪拌分散後
溶融懸濁状態下に塩素ガスを吹き込み、130±1℃の
範囲で100分かけて塩素化目標量35%まで塩素化を
行い、冷却後スラリー状物を取出した。塩素化生成物は
脱液すると餅状になり、これを90℃のイオン交換水中
で洗浄し、洗浄水のpHが6を超えた時点で取出し、7
0℃減圧下48時間かけて乾燥し、塊状塩素化ポリエチ
レンを得た。生成物の塩素含量は34.4%で,トルエ
ンに溶解し、透明な溶液となり、固形分30%の溶液は
2100cP(25℃)、ハーゼン色度は5以下であっ
た。
Example 6 Average molecular weight: 2000, melting point: 122 ° C., melt viscosity: 80 cP
(140 ° C), high density polyethylene 3k with density 0.97
g in a glass-lined pressurized reaction vessel having a capacity of 100 liters together with 80 liters of ion-exchanged water, and 6 g of a nonionic surfactant (polyoxyethylene nonylphenyl ether) as a dispersant was added thereto. Chlorine gas was blown into the suspension, and chlorination was performed over a period of 100 minutes within a range of 130 ± 1 ° C. to a target chlorination amount of 35%. After cooling, a slurry was taken out. When the chlorinated product is drained, it forms a rice cake, which is washed in ion-exchanged water at 90 ° C., and is taken out when the pH of the washing water exceeds 6;
Drying was performed at 0 ° C. under reduced pressure for 48 hours to obtain bulk chlorinated polyethylene. The product had a chlorine content of 34.4% and was dissolved in toluene to give a clear solution. A 30% solids solution had 2100 cP (25 ° C.) and Hazen chromaticity of 5 or less.

【0037】比較例7 実施例6において70℃で6時間かけて塩素化目標率3
7%まで塩素化を行った以外は実施例6と同様に反応及
び処理して塊状塩素化ポリエチレンを得た。この生成物
の塩素含量は34.7%、トルエンには一部溶解し、不
溶解物が多く残った。また、DSCによる残留結晶は1
0cal/gであった。
Comparative Example 7 The chlorination target rate of 3 in Example 6 at 70 ° C. for 6 hours
The reaction and treatment were carried out in the same manner as in Example 6 except that the chlorination was carried out up to 7% to obtain bulk chlorinated polyethylene. The chlorine content of this product was 34.7%, it was partially dissolved in toluene, and many insolubles remained. The residual crystal by DSC is 1
It was 0 cal / g.

【0038】実施例7,8 比較例8,9 上記実施例1,4及び比較例1,5で得られた塩素化ポ
リエチレンの各種溶媒への溶解性と耐熱安定性について
試験した結果を表1に示した。溶媒への溶解性試験は、
トルエン,メチルエチルケトン及び酢酸エチルの3種の
各有機溶媒80gに塩素化ポリエチレン20gを加え、
20℃でよくかき混ぜて溶解せしめ、その溶液の外観を
目視観察した。判定結果は表示の記号で示した。比較例
1,5の塩素化ポリエチレンはトルエン不溶解沈澱物を
濾別し乾燥したものについて溶媒への溶解性を調べた。
Examples 7 and 8 Comparative Examples 8 and 9 The chlorinated polyethylenes obtained in Examples 1 and 4 and Comparative Examples 1 and 5 were tested for solubility in various solvents and heat resistance. It was shown to. The solubility test in the solvent
20 g of chlorinated polyethylene was added to 80 g of each of the three organic solvents of toluene, methyl ethyl ketone and ethyl acetate,
The mixture was stirred well at 20 ° C. to dissolve it, and the appearance of the solution was visually observed. The judgment results are shown by symbols on the display. The solubility of the chlorinated polyethylenes of Comparative Examples 1 and 5 in solvents was examined for toluene-insoluble precipitates which were filtered off and dried.

【0039】耐熱安定性試験は70℃で減圧乾燥したも
のを再度100℃恒温乾燥器に5時間入れた後の粉末の
外観を目視観察した。
In the heat stability test, the powder dried at 70 ° C. under reduced pressure was again placed in a constant-temperature oven at 100 ° C. for 5 hours, and the appearance of the powder was visually observed.

【0040】[0040]

【表1】 [Table 1]

フロントページの続き (56)参考文献 特開 昭50−51190(JP,A)Continuation of front page (56) References JP-A-50-51190 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均分子量800〜12000でかつ
170℃における溶融粘度が4000センチポイズ以下
のポリオレフィンを水100重量部に対して1〜20重
量部用い、該ポリオレフィンを水性媒体中融点より5℃
以上高い温度で溶融懸濁状態にして塩素化することを特
徴とする溶媒可溶な塩素化ポリオレフィンの製造法。
1. A polyolefin having a number average molecular weight of 800 to 12,000 and a melt viscosity at 170 ° C. of 4,000 centipoise or less is used in an amount of 1 to 20 weight parts per 100 parts by weight of water.
Used amount unit, 5 ° C. from an aqueous medium NakaToru point the polyolefin
A method for producing a solvent-soluble chlorinated polyolefin, comprising chlorinating in a molten suspension state at a high temperature.
【請求項2】 ポリオレフィンの溶融粘度が4000セ
ンチポイズ以下となる温度で塩素化する請求項1記載の
塩素化ポリオレフィンの製造法。
2. The method for producing a chlorinated polyolefin according to claim 1, wherein the chlorination is carried out at a temperature at which the melt viscosity of the polyolefin is 4000 centipoise or less.
JP3166626A 1991-07-08 1991-07-08 Production method of chlorinated polyolefin Expired - Fee Related JP2725483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166626A JP2725483B2 (en) 1991-07-08 1991-07-08 Production method of chlorinated polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166626A JP2725483B2 (en) 1991-07-08 1991-07-08 Production method of chlorinated polyolefin

Publications (2)

Publication Number Publication Date
JPH05320223A JPH05320223A (en) 1993-12-03
JP2725483B2 true JP2725483B2 (en) 1998-03-11

Family

ID=15834780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166626A Expired - Fee Related JP2725483B2 (en) 1991-07-08 1991-07-08 Production method of chlorinated polyolefin

Country Status (1)

Country Link
JP (1) JP2725483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940722B1 (en) * 2020-01-17 2021-09-29 日本製紙株式会社 Chlorinated polyolefin resin, primers, binders, adhesives, laminates, food packaging materials using it, and their manufacturing methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL159678B (en) * 1973-08-28 1979-03-15 Stamicarbon PROCESS FOR CHLORING ETHENE POLYMERS.

Also Published As

Publication number Publication date
JPH05320223A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
US4554307A (en) Water soluble polymers and dispersions containing them
KR920002985B1 (en) Manufacture of resin extended pigments
US4104453A (en) Melt dispersion saponification of ethylene-vinyl acetate polymer
JP2637912B2 (en) Method for chlorinating and chlorosulfonating olefin polymers in suspensions of liquids completely substituted with fluorine
JP2725483B2 (en) Production method of chlorinated polyolefin
JP2677100B2 (en) Production method of chlorinated polyolefin
JP2677121B2 (en) Method for producing solvent-soluble chlorinated polyolefin
US5180791A (en) Method of producing chlorinated polyolefin
US3592801A (en) Free-flowing fused beads of thermoplastic polymers
JPH0633327B2 (en) Method for producing chlorinated polyolefin
JPH07304817A (en) Production of chlorinated polyolefin
JPH07304818A (en) Production of chlorinated polyolefin
JPH0633324B2 (en) Method for producing chlorinated polyolefin
JPH0639491B2 (en) Method for producing chlorinated polyolefin and apparatus used therefor
JPH07304816A (en) Production of chlorinated polyolefin
JPH07304822A (en) Production of chlorinated polyolefin
JP2727897B2 (en) Chlorinated polyolefin-based coating composition
JPH07304823A (en) Production of chlorinated polyolefin
JPH07304821A (en) Production of chlorinated polyolefin
JPS6024802B2 (en) Method for producing chlorinated polyolefin
JP3424251B2 (en) Method for producing chlorinated paraffin
JPS61179205A (en) Production of chlorinated polyolefin
JPH04209605A (en) Improved process for production of chlorinated polyolefin
JPH07304820A (en) Production of chlorinated polyolefin
JPS62112606A (en) Production of chlorinated polyolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees