JP3424251B2 - Method for producing chlorinated paraffin - Google Patents

Method for producing chlorinated paraffin

Info

Publication number
JP3424251B2
JP3424251B2 JP02524993A JP2524993A JP3424251B2 JP 3424251 B2 JP3424251 B2 JP 3424251B2 JP 02524993 A JP02524993 A JP 02524993A JP 2524993 A JP2524993 A JP 2524993A JP 3424251 B2 JP3424251 B2 JP 3424251B2
Authority
JP
Japan
Prior art keywords
paraffin
chlorine
reaction
temperature
chlorinated paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02524993A
Other languages
Japanese (ja)
Other versions
JPH06239774A (en
Inventor
賢二 板谷
宏之 高名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP02524993A priority Critical patent/JP3424251B2/en
Publication of JPH06239774A publication Critical patent/JPH06239774A/en
Application granted granted Critical
Publication of JP3424251B2 publication Critical patent/JP3424251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は布類の防火防水加工剤、
木材の防火防水加工処理、防火塗料、プラスチック,ゴ
ム,印刷インキ配合剤等に使用される塩素化パラフィン
の製造方法に関するものである。
The present invention relates to a fireproofing / waterproofing agent for cloths,
The present invention relates to a method for producing chlorinated paraffin used for fireproofing / waterproofing treatment of wood, fireproofing paint, plastic, rubber, printing ink compounding agents and the like.

【0002】[0002]

【従来の技術】現在、塩素化パラフィンは工業的には四
塩化炭素等、塩素に対し不活性な溶剤中で塩素化を行う
方法で製造されている。即ち、塩素化終了の時点で反応
生成物である塩素化パラフィンは溶剤に溶解したかたち
で得られ、その後余剰の塩素、反応副生成物である塩酸
ならびに溶剤を除去した後、冷却固化したものをしかる
べき方法で粉砕・分級して製品とする方法である。
2. Description of the Related Art Currently, chlorinated paraffin is industrially produced by a method of chlorinating in a solvent inert to chlorine such as carbon tetrachloride. That is, at the end of chlorination, chlorinated paraffin, which is a reaction product, is obtained in the form of being dissolved in a solvent, and then excess chlorine, hydrochloric acid as a reaction by-product, and solvent are removed, and then cooled and solidified. This is a method of crushing and classifying into a product by an appropriate method.

【0003】パラフィンの塩素化は塩素含有量約50重
量%までは特に溶剤を用いることなく常圧下においてさ
えも発熱を伴ってスムーズに進行し、しかも製品は液状
で得られるので、特に技術的な問題はない。しかこの
方法で塩素含有量50重量%を越えるものを得ようとし
ても、塩素含有量の増加につれ反応物の粘度の上昇が起
こり、それに伴って攪拌が容易でなく反応自体も非常に
緩慢になり、反応終結までに長時間を要するようになる
ため工業的には成り立たない方法となる。
The chlorination of paraffin progresses smoothly with heat generation even under normal pressure without using a solvent up to a chlorine content of up to about 50% by weight, and since the product is obtained in a liquid state, it is particularly technically technical. No problem. Also However an effort to obtain those exceeding chlorine content 50 wt% in this way, increase will occur in the viscosity of the reaction product as the increase in chlorine content, the reaction itself very slowly not easy stirring with it Since it takes a long time to complete the reaction, this method is not industrially feasible.

【0004】パラフィンは塩素化反応により塩素含有量
が増すにつれて一時は軟化点が低下し、塩素含有量40
重量%付近では常温においてても液状となり、更に塩素
含有量が増すと軟化点が上昇し塩素含有量70重量%で
は軟化点は約100℃となるものである。そこで現行法
では溶剤を用いて反応中のパラフィンを溶液すること
により、反応物の粘度を下げ、気液の接触効果を高めた
結果、塩素化反応は容易に進行するかたちとなってい
る。
The paraffin content of paraffin temporarily decreases as the chlorine content increases due to the chlorination reaction.
When the content of chlorine is 70% by weight, it becomes liquid even at room temperature. When the content of chlorine is 70% by weight, the softening point is about 100 ° C. Therefore by paraffin in the reaction with the solution using a solvent in the current method, to lower the viscosity of the reactants, as a result of increased contact effect of gas-liquid, the chlorination reaction is a form which proceeds easily.

【0005】[0005]

【発明が解決しようとする課題】しかるに、環境問題か
ら近い将来この有用な四塩化炭素が使用できない事態を
迎えようとしており、しかも四塩化炭素と同等の性能を
持つハロゲン化溶剤はことごとく同じ運命をたどること
が決定されており、このような溶剤法に替るべき工業的
な製造法の出現が待たれている。本発明の目的は水性溶
媒中で懸濁状態にてパラフィンの塩素化を行い、溶剤法
と同等な品質の塩素化パラフィンの製造法を提供するこ
とにある。
However, due to environmental problems, it is about to come to a situation where this useful carbon tetrachloride cannot be used in the near future, and halogenated solvents having the same performance as carbon tetrachloride all have the same fate. It has been decided to follow, and the appearance of an industrial manufacturing method to replace such a solvent method is awaited. It is an object of the present invention to provide a method for producing chlorinated paraffin having a quality equivalent to that of a solvent method by chlorinating paraffin in a suspension state in an aqueous solvent.

【0006】[0006]

【課題を解決するための手段】本発明はすなわち、分子
量280〜450のパラフィンを、水性溶媒中で溶融懸
濁状態にて70〜150℃で塩素化を行う方法であっ
て、塩素化反応終了時の温度を105〜150℃とする
ことを特徴とする塩素化パラフィンの製造方法である。
The present invention is a method of chlorinating paraffin having a molecular weight of 280 to 450 in an aqueous solvent in a molten suspension state at 70 to 150 ° C., wherein the chlorination reaction is completed. The method is a method for producing chlorinated paraffin, characterized in that the temperature at the time is 105 to 150 ° C.

【0007】本発明に使用されるパラフィンとは、パラ
フィンWAX,固形パラフィン,石ロウ等の名称で知ら
れているものであり、JISK2235で分類されてい
るところの120Pから135Pに該当し、主成分の分
子量は大体280〜450であり、分子式ではC20〜C
32に相当する。このパラフィンは50〜70℃付近の融
点を有し、それ以上の温度では液体となる。
The paraffin used in the present invention is known under the names of paraffin WAX, solid paraffin, stone wax, etc., which corresponds to 120P to 135P classified by JISK2235, and is a main component. the molecular weight is approximately 280~450, C 20 ~C the molecular formula
Equivalent to 32 . This paraffin has a melting point of about 50 to 70 ° C., and becomes a liquid at a temperature higher than that.

【0008】本発明においては原料パラフィンの軟化点
より高い温度域で、パラフィンが水中で溶融し懸濁して
いる状態において塩素の導入を開始する。また塩素化反
応は前述のごとく塩素含有量50重量%までは発熱を伴
って比較的速やかに進行するので、塩素化反応の開始は
特に高い温度を必要とせず80℃近辺での温度域でもよ
い。塩素化反応の速度は150℃までは温度が高い程速
やかであるが、150℃をピークとしてそれより高い温
度になると理由は不明であるが、かえって遅くなる。従
って概ね80℃以上、150℃以下に制御することが肝
要である。
In the present invention, the introduction of chlorine is started in the temperature range higher than the softening point of the raw paraffin, in the state where the paraffin is melted and suspended in water. Further, since the chlorination reaction proceeds relatively quickly with heat generation up to a chlorine content of 50% by weight as described above, the initiation of the chlorination reaction does not require a particularly high temperature and may be in a temperature range around 80 ° C. . The rate of the chlorination reaction becomes faster as the temperature rises up to 150 ° C, but the reason why the temperature reaches a peak at 150 ° C and becomes higher than that is unknown, but rather slows down. Therefore, it is important to control the temperature to 80 ° C or higher and 150 ° C or lower.

【0009】パラフィンと水との混合割合は重量比でパ
ラフィン1に対し大体水5〜100でよいが、より好ま
しくは水20〜50である。その理由は水中におけるパ
ラフィンの分散状態に起因し、水の量が5未満では水中
におけるパラフィンの分散状態が微粒子状を保てなくな
る結果、反応速度が遅くなるからであり、100を越え
ると運転効率が悪化するからである。
The mixing ratio of paraffin and water may be approximately 5 to 100 with respect to 1 part by weight of paraffin, and more preferably 20 to 50 with water. The reason is that the dispersion state of paraffin in water is less than 5, and when the amount of water is less than 5, the dispersion state of paraffin in water cannot be maintained as a fine particle, resulting in a slow reaction rate. Is worse.

【0010】塩素化反応時におけるパラフィンの分散を
よくするために、分散剤を反応系中に加えることが好ま
しい。分散剤としては通常界面活性剤やアクリル系重合
体が用いられ、界面活性剤としては非イオン系あるいは
陰イオン系のもので例えばポリオキシエチレンアルキル
エーテル類,ポリオキシアルキルフェノールエステル
類,ポリオキシエチレンアルキルエステル類,アルキル
アリルスルフォン酸ソーダ類,アルコール硫酸エステル
類,アルキルスルフォン酸ソーダ類が用いられる。アク
リル系重合体としてはアクリル酸又はアクリル酸エステ
ルの重合体もしくはこれらの共重合体、又はこれらの重
合体もしくは共重合体のアルカリ金属塩類で、分子量3
000以上好ましくは10000以上のものが用いられ
る。これら分散剤は単独で使用するより、むしろ界面活
性剤とアクリル系重合体を組合せて使用することが好ま
しく、その添加量は原料パラフィンの重量の0.5〜2
%が好適である。
In order to improve the dispersion of paraffin during the chlorination reaction, it is preferable to add a dispersant to the reaction system. A surfactant or an acrylic polymer is usually used as the dispersant, and a nonionic or anionic surfactant is used as the dispersant, such as polyoxyethylene alkyl ethers, polyoxyalkylphenol esters, polyoxyethylene alkyl. Esters, sodium alkylallyl sulfonates, alcohol sulfates, and sodium alkyl sulfonates are used. The acrylic polymer is a polymer of acrylic acid or acrylic acid ester or a copolymer thereof, or an alkali metal salt of these polymers or copolymers, and has a molecular weight of 3
000 or more, preferably 10,000 or more are used. These dispersants are preferably used in combination with a surfactant and an acrylic polymer rather than used alone, and the addition amount thereof is 0.5 to 2 based on the weight of the raw material paraffin.
% Is preferred.

【0011】本発明はパラフィンの媒体として水を使用
し、100℃以上の温度での系を扱うので圧力容器が必
要であり、一方の原料は塩素という腐食性のガスであ
り、しかも腐食性の強い塩酸を副生するので反応容器に
は相応の配慮が必要である。この条件に叶い工業的にも
問題のない材質の容器としてはグラスライニングされた
オートクレーブが推奨される。反応容器には温度計,圧
力計のほか、塩素ガスの導入量が確認できる流量計を備
えることが好ましい。このようにして塩素化反応の終了
時の温度を105〜150℃に調整することにより、塩
素含有量68〜72重量%までパラフィンの塩素化を行
うことができる。所定の塩素含有量にまで塩素化された
パラフィンは苛性ソーダ水溶液で洗浄後、水洗,乾燥を
経て製品とする。
Since the present invention uses water as a medium for paraffin and handles a system at a temperature of 100 ° C. or higher, a pressure vessel is required, and one raw material is a corrosive gas called chlorine, which is corrosive. Since strong hydrochloric acid is produced as a by-product, appropriate consideration must be given to the reaction vessel. A glass-lined autoclave is recommended as a container made of a material that meets these conditions and has no industrial problems. In addition to a thermometer and a pressure gauge, it is preferable that the reaction vessel is equipped with a flow meter capable of confirming the amount of chlorine gas introduced. In this way, by adjusting the temperature at the end of the chlorination reaction to 105 to 150 ° C., it is possible to chlorinate paraffin up to a chlorine content of 68 to 72% by weight. Paraffins chlorinated to a specified chlorine content are washed with an aqueous solution of caustic soda, washed with water and dried to obtain products.

【0012】[0012]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。例中組成%はすべて重量%である。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. In the examples, all composition% are weight%.

【0013】実施例1 日本石油化学社製125パラフィン(融点51.7℃以
上,54.5℃未満)2kgを容量100lのグラスラ
イニング製耐圧反応容器にイオン交換水70lと共に仕
込み、70℃まで加熱した。パラフィンは溶融し水面に
油膜状に広がった。攪拌を開始するとパラフィンは油滴
状で水中に分散した。
Example 1 2 kg of 125 paraffin manufactured by Nippon Petrochemical Co., Ltd. (melting point: 51.7 ° C. or more, less than 54.5 ° C.) was charged into a 100 liter capacity glass-lined pressure resistant reaction vessel together with 70 l of ion-exchanged water and heated to 70 ° C. did. Paraffin melted and spread as an oil film on the water surface. When stirring was started, paraffin was dispersed in water in the form of oil drops.

【0014】次いで塩素ガスを導入したところ最初は速
やかに、後緩やかな速度で約1時間で1.2kgの塩素
を吸収したところで吸収がほぼ停止した。温度を徐々に
上げたところ、100℃となった時点で塩素の吸収が再
び速やかになった。約2時間かけてなお3.8kgの塩
素ガスを追加吸収した。塩素の吸収速度が再び低下した
ので温度を130℃とし最終的に4.75kgの塩素を
導入した。合計の反応時間は4.2時間であった。反応
終了時点では、塩素化パラフィンは大塊〜小塊の不規則
な形状で水中に浮遊していた。攪拌を行ったまま冷却
し、小指頭大の塊から粉体まで種々の形状の塩素化され
たパラフィンを取り出した。これを粉砕した後、洗浄,
乾燥し塩素含有量を測定したところ70.1%であっ
た。
Then, when chlorine gas was introduced, the absorption was stopped rapidly at first, and after absorbing 1.2 kg of chlorine at a slow speed for about 1 hour, the absorption was almost stopped. When the temperature was gradually increased, the absorption of chlorine became prompt again when the temperature reached 100 ° C. 3.8 kg of chlorine gas was additionally absorbed over about 2 hours. Since the chlorine absorption rate decreased again, the temperature was adjusted to 130 ° C. and 4.75 kg of chlorine was finally introduced. The total reaction time was 4.2 hours. At the end of the reaction, the chlorinated paraffin was floating in water in an irregular shape of large lumps to small lumps. The mixture was cooled with stirring, and chlorinated paraffins of various shapes from small fingertip-sized lumps to powder were taken out. After crushing this, washing,
When it was dried and the chlorine content was measured, it was 70.1%.

【0015】比較例1 実施例1と同様の条件でパラフィンとイオン交換水を反
応容器に仕込んだ。これを100℃まで加熱し、攪拌し
ながら塩素ガスを導入したところ、約2時間で3kgの
塩素が吸収された。温度を155℃とし更に塩素を導入
したところ約3時間で更に1.72kgの塩素が吸収さ
れた。反応物の状態は実施例1と異なり反応器の底に沈
み柔かい餅状で回転していた。攪拌を行ったまま冷却
し、実施例1と同様な小指頭大の塊から粉体まで種々の
形状の塩素化されたパラフィンを取り出した。但し明ら
かに淡褐色を呈しており、高温のため何らかの化学的な
変化を生じていると推測された。これを粉砕したところ
淡い黄色を呈しており、洗浄,乾燥し塩素含有量を測定
したところ70.3%であった。
Comparative Example 1 Paraffin and ion-exchanged water were charged into a reaction vessel under the same conditions as in Example 1. When this was heated to 100 ° C. and chlorine gas was introduced while stirring, 3 kg of chlorine was absorbed in about 2 hours. When the temperature was adjusted to 155 ° C. and chlorine was further introduced, 1.72 kg of chlorine was absorbed in about 3 hours. Unlike the case of Example 1, the state of the reaction product was that it sank to the bottom of the reactor and rotated like a soft dough. The mixture was cooled while being stirred, and chlorinated paraffins having various shapes from small fingertip-sized lumps to powders similar to those in Example 1 were taken out. However, it was clearly light brown, and it was speculated that some chemical changes occurred due to the high temperature. When it was crushed, it had a pale yellow color, and when it was washed and dried and the chlorine content was measured, it was 70.3%.

【0016】比較例2 実施例1と同様の条件でパラフィンとイオン交換水を反
応容器に仕込んだ。これを90℃まで加熱し、攪拌しな
がら塩素ガスを導入したところ約6時間で3kgの塩素
が吸収された。更に塩素を導入したところ15時間で更
に1.29kgの塩素が吸収された時点で塩素の吸収が
事実上停止した。反応物は攪拌機に絡みつき異常な振動
を生じた。これを冷却し、反応容器の蓋をあけ、反応物
を取り出し粉砕,洗浄,乾燥し塩素含有量を測定したと
ころ、66.9%であった。
Comparative Example 2 Under the same conditions as in Example 1, paraffin and deionized water were charged into a reaction vessel. When this was heated to 90 ° C. and chlorine gas was introduced while stirring, 3 kg of chlorine was absorbed in about 6 hours. When more chlorine was introduced, the absorption of chlorine was virtually stopped when 1.29 kg of chlorine was absorbed in 15 hours. The reaction product was entangled with the stirrer and caused abnormal vibration. This was cooled, the lid of the reaction vessel was opened, the reaction product was taken out, pulverized, washed and dried, and the chlorine content was measured and found to be 66.9%.

【0017】実施例2 日本精蝋社製135パラフィン(融点57.2℃以上,
60.0℃未満)10kgを容量100lのグラスライ
ニング製耐圧容器にイオン交換水70l及び非イオン系
界面活性剤(第一工業製薬社製,商品名ノイゲンEA1
20)5gとアクリル酸重合体(ロームアンドハース社
製,商品名プライマルA−1)18gと共に仕込み、1
00℃まで加熱した。攪拌を開始するとパラフィンは細
かい油滴状で水中に分散した。
Example 2 135 paraffin manufactured by Nippon Seiro Co., Ltd. (melting point: 57.2 ° C. or higher,
10 kg of less than 60.0 ° C.) in a glass-lined pressure-resistant container having a capacity of 100 l, 70 l of ion-exchanged water and a nonionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd., trade name Neugen EA1)
20) Charged together with 5 g and 18 g of acrylic acid polymer (Rohm and Haas, trade name Primal A-1), 1
Heated to 00 ° C. When stirring was started, paraffin was dispersed in water in the form of fine oil droplets.

【0018】次いで塩素ガスを導入したところ速やかな
速度で約3時間で12kgの塩素を吸収したところで吸
収速度が低下した。温度を150℃とし約2時間かけて
なお12kgの塩素ガスを追加吸収した。塩素の吸収速
度はほぼ直線的で特に障害もなく反応が順調に推移した
と思われた。合計の反応時間は5.5時間で計24kg
の塩素が吸収された。反応終了時点では、塩素化パラフ
ィンは小塊の不規則な形状で水中に浮遊していた。攪拌
を行ったまま冷却し、大部分は粉体で小量の球状塊(1
〜5mm塊)の混じった塩素化された純白のパラフィン
を反応容器下部のバルブより取り出した。全量を粉砕し
たのち洗浄,乾燥し塩素含有量を測定したところ、6
9.8%であった。
Next, when chlorine gas was introduced, the absorption rate decreased when 12 kg of chlorine was absorbed in about 3 hours at a rapid rate. The temperature was set to 150 ° C., and 12 kg of chlorine gas was additionally absorbed over about 2 hours. The chlorine absorption rate was almost linear, and it was thought that the reaction proceeded smoothly without any particular problems. Total reaction time is 5.5 hours and total 24kg
Chlorine was absorbed. At the end of the reaction, the chlorinated paraffin was floating in water in the form of small irregular particles. Cool with stirring, mostly powder, and a small amount of spherical lumps (1
Chlorinated pure white paraffin mixed with ˜5 mm lump) was taken out from the valve at the bottom of the reaction vessel. After crushing the whole amount, washing, drying and measuring the chlorine content, 6
It was 9.8%.

【0019】実施例3 日本精蝋社製120パラフィン(融点48.9℃以上,
51.7℃未満)10kgを実施例2と同様の条件でイ
オン交換水,界面活性剤と共に反応容器に仕込み、80
℃まで加熱した。攪拌を開始するとパラフィンは細かい
油滴状で水中に分散した。
Example 3 120 paraffin manufactured by Nippon Seiro Co., Ltd. (melting point: 48.9 ° C. or higher,
(Less than 51.7 ° C.) 10 kg was charged into a reaction vessel together with ion-exchanged water and a surfactant under the same conditions as in Example 2, and 80
Heated to ° C. When stirring was started, paraffin was dispersed in water in the form of fine oil droplets.

【0020】次いで塩素ガスを導入したところ速やかな
速度で約3時間で11kgの塩素を吸収したところで吸
収速度が低下した。温度を105℃とし約3時間かけて
なお13kgの塩素ガスを追加吸収した。塩素の吸収速
度はほぼ直線的で特に障害もなく反応が順調に推移した
と思われた。合計の反応時間は6時間で計24kgの塩
素が吸収された。反応終了時点では、塩素化パラフィン
は小塊の不規則な形状で水中に浮遊していた。攪拌を行
ったまま冷却し、大部分は粉体で小量の球状塊(1〜6
mm径)の混じった塩素化された純白のパラフィンを反
応容器下部のバルブより取り出した。全量を粉砕した
後、洗浄,乾燥し塩素含有量を測定したところ、69.
4%であった。
Then, when chlorine gas was introduced, the absorption rate decreased when 11 kg of chlorine was absorbed at a rapid rate in about 3 hours. The temperature was set to 105 ° C., and 13 kg of chlorine gas was additionally absorbed over about 3 hours. The chlorine absorption rate was almost linear, and it was thought that the reaction proceeded smoothly without any particular problems. The total reaction time was 6 hours, and a total of 24 kg of chlorine was absorbed. At the end of the reaction, the chlorinated paraffin was floating in water in the form of small irregular particles. Cool with stirring, mostly powder, small amount of spherical lumps (1-6
(mm diameter) mixed with chlorinated pure white paraffin was taken out from the valve at the bottom of the reaction vessel. After crushing the whole amount, washing and drying, and measuring the chlorine content, 69.
It was 4%.

【0021】[0021]

【表1】 [Table 1]

【0022】以上の実施例及び比較例の結果を表1にま
とめた。比較例1では155℃という高い温度のため反
応物が何らかの損傷を受け、着色したと考えられ、比較
例2では温度不足のため低い塩素含有量のものしか得ら
れなかったことがわかる。
The results of the above Examples and Comparative Examples are summarized in Table 1. In Comparative Example 1, it is considered that the reaction product was damaged and colored due to the high temperature of 155 ° C., and in Comparative Example 2, it was found that only a low chlorine content was obtained due to insufficient temperature.

【0023】[0023]

【発明の効果】本発明は、原料パラフィンを水性溶媒中
で溶融懸濁状態で塩素化反応を行うもので、高塩素含有
量になるまで円滑に反応を進めることができる。従来の
有機溶剤を使用する方法に比較して経済的であり、かつ
環境汚染のないという利点がある。
According to the present invention, the raw material paraffin is subjected to the chlorination reaction in a molten suspension state in an aqueous solvent, and the reaction can be smoothly proceeded to a high chlorine content. Compared with the conventional method using an organic solvent, there are advantages that it is economical and there is no environmental pollution.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子量280〜450のパラフィンを、
水性溶媒中で溶融懸濁状態にて70〜150℃で塩素化
を行う方法であって、塩素化反応終了時の温度を105
〜150℃とすることを特徴とする塩素化パラフィンの
製造方法。
1. Paraffin having a molecular weight of 280 to 450,
A method of chlorinating in an aqueous solvent in a molten suspension state at 70 to 150 ° C., wherein the temperature at the end of the chlorination reaction is 105
The method for producing chlorinated paraffin is characterized in that the temperature is set to 150 ° C.
【請求項2】 得られる塩素化パラフィンの塩素含有量
が68〜72重量%である請求項1に記載の塩素化パラ
フィンの製造方法。
2. The method for producing chlorinated paraffin according to claim 1, wherein the chlorinated paraffin obtained has a chlorine content of 68 to 72% by weight.
【請求項3】 水性溶媒中における塩素化反応を分散剤
の存在下で行う請求項1又は2に記載の塩素化パラフィ
ンの製造方法。
3. The method for producing chlorinated paraffin according to claim 1 or 2, wherein the chlorination reaction is performed in an aqueous solvent in the presence of a dispersant.
JP02524993A 1993-02-15 1993-02-15 Method for producing chlorinated paraffin Expired - Fee Related JP3424251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02524993A JP3424251B2 (en) 1993-02-15 1993-02-15 Method for producing chlorinated paraffin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02524993A JP3424251B2 (en) 1993-02-15 1993-02-15 Method for producing chlorinated paraffin

Publications (2)

Publication Number Publication Date
JPH06239774A JPH06239774A (en) 1994-08-30
JP3424251B2 true JP3424251B2 (en) 2003-07-07

Family

ID=12160723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02524993A Expired - Fee Related JP3424251B2 (en) 1993-02-15 1993-02-15 Method for producing chlorinated paraffin

Country Status (1)

Country Link
JP (1) JP3424251B2 (en)

Also Published As

Publication number Publication date
JPH06239774A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP3650391B2 (en) Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate
US4771086A (en) Encapsulating finely divided solid particles in stable suspensions
JP4208838B2 (en) Surface-treated calcium carbonate and resin composition containing the same
IL46021A (en) Process of manufacturing microfine spherical polymeric beads
USRE34145E (en) Encapsulating finely divided solid particles in stable suspensions
EP1605011B1 (en) Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
JP3424251B2 (en) Method for producing chlorinated paraffin
WO1997017392A1 (en) Granulated powder of filled polytetrafluoroethylene for molding and process for the production thereof
CN113214418B (en) Preparation method of high-porosity polyvinyl chloride
JPH0429610B2 (en)
US4151133A (en) Polymer dispersion process
CN1040442C (en) Polymer scale preventive agent, polymer ization vessel effective in preventing polymer scale deposition, and process of producing polymer using said vessel
US2352525A (en) Chlorination of polymeric materials
CN1125734A (en) Preparation method of high chlorinated polyethylene
JP3036065B2 (en) Process for producing filled polytetrafluoroethylene granulated powder
JPS59122503A (en) Preparation of chlorinated ethylene-propylene copolymer
JPS6289703A (en) Production of chlorinated vinyl chloride resin
US2974129A (en) Process for preparing polyvinyl chloride useful in plastisols
JPH0335248B2 (en)
US4329325A (en) Cyanuric chloride mixtures and process for producing same
JPS6296539A (en) Composite polymer particle and production thereof
JPS633052A (en) Polymer aqueous dispersion, manufacture and use
JP2007277492A (en) Method for producing acetoacetylated polyvinyl alcohol-based resin
JP2761953B2 (en) Production method of rosin emulsion sizing agent
JP2677100B2 (en) Production method of chlorinated polyolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees