JP2724869B2 - Electrodeposition equipment using heat pump - Google Patents

Electrodeposition equipment using heat pump

Info

Publication number
JP2724869B2
JP2724869B2 JP1062240A JP6224089A JP2724869B2 JP 2724869 B2 JP2724869 B2 JP 2724869B2 JP 1062240 A JP1062240 A JP 1062240A JP 6224089 A JP6224089 A JP 6224089A JP 2724869 B2 JP2724869 B2 JP 2724869B2
Authority
JP
Japan
Prior art keywords
heat
tank
temperature
electrodeposition
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1062240A
Other languages
Japanese (ja)
Other versions
JPH02243797A (en
Inventor
敬介 笠原
魁 中村
正己 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP1062240A priority Critical patent/JP2724869B2/en
Publication of JPH02243797A publication Critical patent/JPH02243797A/en
Application granted granted Critical
Publication of JP2724869B2 publication Critical patent/JP2724869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はヒートポンプを利用した電着塗装装置に関
し、特にヒートポンプサイクルにおける蒸発熱と凝縮熱
を効果的に利用して前処理工程槽と電着槽の温度制御を
図った電着塗装装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposition coating apparatus using a heat pump, and more particularly, to a pretreatment tank and an electrodeposition coating apparatus that effectively utilizes heat of evaporation and condensation in a heat pump cycle. The present invention relates to an electrodeposition coating apparatus for controlling the temperature of a tank.

「従来の技術」 従来より電着塗装装置においては湯洗、脱脂、化成処
理等の前処理工程における円滑且つ速やかな前処理を可
能にする為に、前記前処理用の処理液を50〜70℃に加温
制御する必要があり、一方電着槽内では塗料液に通電し
ながら前記前処理終了後の被塗装体に塗装処理を施す為
に温度上昇が生じ易く而も該温度上昇を放置したままで
は適正な塗装処理が不可能になる為に、前記電着槽内の
塗料液を25〜30℃前後の温度に冷却制御させる必要があ
る。
"Prior art" Conventionally, in an electrodeposition coating apparatus, in order to enable smooth and prompt pretreatment in pretreatment steps such as hot water washing, degreasing, and chemical conversion treatment, the treatment liquid for pretreatment is 50 to 70%. It is necessary to control the heating to ℃, while in the electrodeposition bath, while applying the coating liquid, the coating is applied to the object to be coated after the completion of the pre-treatment, the temperature is likely to rise, and the temperature rise is also left. It is necessary to control the cooling of the coating liquid in the electrodeposition tank to a temperature of about 25 to 30 ° C., since proper coating processing cannot be performed if the coating is performed.

そしてかかる加温制御と冷却制御は従来は夫々独立し
た(冷)熱源を用いて行っていたが、このような独立し
た熱源を用いる事は熱効率の面から合理的でない為に、
ヒートポンプサイクルにおける蒸発熱(冷却)と凝縮熱
(加熱)を効果的に利用して電着槽と前処理槽の温度制
御を図った電着塗装装置が提案されている。(特公昭60
−33914号他) そしてかかるシステムを円滑に作動させる為にはヒー
トポンプサイクルの蒸発側と凝縮側間の熱バランスの維
持を図る事が必要である。
Conventionally, the heating control and the cooling control have been performed using independent (cold) heat sources, but using such independent heat sources is not rational in terms of thermal efficiency.
2. Description of the Related Art An electrodeposition coating apparatus has been proposed in which the heat of evaporation (cooling) and the heat of condensation (heating) in a heat pump cycle are effectively used to control the temperature of an electrodeposition tank and a pretreatment tank. (Tokukosho 60
In order to operate such a system smoothly, it is necessary to maintain a heat balance between the evaporation side and the condensation side of the heat pump cycle.

この場合、理想的には前処理槽と電着槽内に投入され
る被塗装体は同一、言い変えればその加熱/冷却される
熱容量は一定の為に、前処理槽に投入前の被塗装体の温
度、言い変えれば電着槽の温度を環境温度と同程度に維
持する事が可能であれば、蒸発側と凝縮側間の奪熱及び
吸熱容量は同一となり、容易に蒸発側と凝縮側間の熱バ
ランスの維持を図る事が可能となるが、実際には前記環
境温度は電着槽の温度より低い20〜25℃前後(室内空調
温度)に維持されているのみならず、特に前処理槽と環
境温度との温度差は、電着槽と環境温度との温度差より
数段大であり、更に前記各槽は開放槽である為に、環境
温度との温度差に起因する熱損失は更に増大する。
In this case, ideally, the object to be charged into the pretreatment tank and the electrodeposition tank is the same, in other words, the heat capacity to be heated / cooled is constant. If it is possible to maintain the temperature of the body, in other words, the temperature of the electrodeposition tank, at about the same as the ambient temperature, the heat loss and heat absorption capacity between the evaporation side and the condensation side will be the same, and the evaporation side will easily condense with the evaporation side. It is possible to maintain the heat balance between the sides, but in practice, the environmental temperature is not only maintained at around 20 to 25 ° C. (indoor air conditioning temperature) lower than the temperature of the electrodeposition tank, The temperature difference between the pretreatment tank and the environmental temperature is several steps larger than the temperature difference between the electrodeposition tank and the environmental temperature, and furthermore, because each of the tanks is an open tank, it is caused by the temperature difference from the environmental temperature. Heat losses are further increased.

この為、電着槽側に比して前処理槽側の奪熱量が数段
大になる為に、必然的に両槽間に生じる熱的アンバラン
スが極めて大になり、この為公知の技術においては前記
前処理槽側に補助熱源としてボイラーを設ける必要があ
った。(特公昭61−60918号) 「発明が解決しようとする課題」 しかしながらボイラーのような独立した熱源を、例え
補助熱源としてでも用いる事は熱効率の面から合理的で
ない事は前記した通りであり、この為例えヒートポンプ
サイクルを前記電着塗装システムに適用したとしてもそ
の総合的な熱効率の面で不満が生じる。
For this reason, the amount of heat deprived on the pretreatment tank side becomes several steps larger than that on the electrodeposition tank side, so that the thermal imbalance generated between both tanks inevitably becomes extremely large. In, it was necessary to provide a boiler as an auxiliary heat source on the pretreatment tank side. (Japanese Patent Publication No. 61-60918) "Problems to be Solved by the Invention" However, as described above, it is not rational in terms of thermal efficiency to use an independent heat source such as a boiler, even as an auxiliary heat source. For this reason, even if the heat pump cycle is applied to the electrodeposition coating system, dissatisfaction occurs in terms of the overall thermal efficiency.

又負荷変動の面でも、前記した公知の電着塗装装置に
おいては電着液の冷却と前処理液(化成液及び脱脂液)
の加熱を1基のヒートポンプユニットで行うために、負
荷に対応し切れない場合が生ずる。
Also in terms of load fluctuation, in the above-mentioned known electrodeposition coating apparatus, cooling of the electrodeposition liquid and pretreatment liquid (chemical conversion liquid and degreasing liquid)
Is performed by a single heat pump unit, so that it may not be possible to cope with the load.

本発明はかかる従来技術の欠点に鑑み、ボイラー等の
独立した補助熱源を用いる事なく2つのヒートポンプサ
イクルを効果的に組み合わせ、これにより熱効率を大幅
に向上させた電着塗装装置を提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention provides an electrodeposition coating apparatus in which two heat pump cycles are effectively combined without using an independent auxiliary heat source such as a boiler, thereby greatly improving thermal efficiency. Aim.

「課題を解決する為の手段」 本発明は第1図に示す如く、電着槽A側に比しての奪
熱量が数段大になる前処理槽B側の加熱を、電着槽を冷
却する冷凍負荷を熱源とする第1のヒートポンプCの凝
縮熱のみで行う事なく、補助加熱を行う点においては前
記した公知技術と同一であるが、補助熱源として前記公
知技術のようにボイラーを用いる事なく、第1のヒート
ポンプCともにその凝縮熱を利用して前処理槽を加熱す
る第2のヒートポンプDとを設け、該第2のヒートポン
プの熱源に、電着槽内温度と前処理槽内温度のほぼ中間
温度に対応する前記前処理槽Bより放熱される低温蒸気
等の潜熱損失を用いる事により、前記第1及び第2のヒ
ートポンプC,Dとの間で実質的に二段圧縮構成となるよ
うに設定した点を特徴とするものである。
[Means for Solving the Problems] As shown in FIG. 1, the present invention heats the pretreatment tank B side where the amount of heat deprived is several steps larger than that of the electrodeposition tank A side. It is the same as the above-described known technology in that the auxiliary heating is performed without using only the condensation heat of the first heat pump C that uses the refrigeration load for cooling as a heat source, but a boiler is used as the auxiliary heat source as in the known technology. Without using, the first heat pump C is provided with a second heat pump D for heating the pretreatment tank by utilizing the heat of condensation thereof, and the heat source of the second heat pump includes the temperature in the electrodeposition tank and the temperature of the pretreatment tank. By using a latent heat loss of low-temperature steam or the like radiated from the pretreatment tank B corresponding to a substantially intermediate temperature of the internal temperature, substantially two-stage compression between the first and second heat pumps C and D is performed. It is characterized in that it is set to have a configuration.

即ち本発明は前記前処理槽Bと環境温度との温度差に
着目して、言い換えれば前記環境温度を実質的に中間冷
却器として機能させる事により、前記前処理槽Bより放
熱される低温蒸気等の潜熱損失を二段圧縮機のほぼ中間
温度に対応させ、これにより前記第1及び第2のヒート
ポンプC,Dとの間で実質的に二段圧縮構成となるように
設定したものである。
That is, the present invention focuses on the temperature difference between the pretreatment tank B and the environmental temperature, in other words, by making the environmental temperature substantially function as an intercooler, the low-temperature steam radiated from the pretreatment tank B The latent heat loss corresponding to the intermediate temperature of the two-stage compressor is set so that a substantially two-stage compression configuration is formed between the first and second heat pumps C and D. .

尚、Eは前記両ヒートポンプC,Dの凝縮熱を貯溜する
為の温水タンクである。
E is a hot water tank for storing the heat of condensation of the heat pumps C and D.

「作用」 本発明は、前処理槽と環境温度との温度差に起因する
熱損失を有効に利用して、言い換えれば前記環境温度を
中間冷却器として機能させて二段圧縮構造を取るように
構成した為に、第2のヒートポンプDの駆動負荷の低減
を図るとともに、前記第2のヒートポンプDは特別な熱
源を用いる事なく第1ヒートポンプCの凝縮器側での熱
損失を第2のヒートポンプDで効率的に回収し、実質的
に熱エネルギーサイクルの閉回路化を図り、これにより
大幅な省エネルギー化を図ったものである。
"Action" The present invention effectively utilizes the heat loss caused by the temperature difference between the pretreatment tank and the environmental temperature, in other words, the environmental temperature functions as an intercooler so as to take a two-stage compression structure. With this configuration, the driving load of the second heat pump D is reduced, and the second heat pump D reduces the heat loss on the condenser side of the first heat pump C without using a special heat source. D efficiently recovers the heat, and substantially closes the thermal energy cycle, thereby achieving significant energy savings.

又電着液の冷却は第1のヒートポンプCのみで、又前
処理液の加熱は両ヒートポンプC,Dの凝縮熱を合算して
行うように構成した為に、熱損失の面でアンバランスが
生じている電着槽と前処理槽B間の熱バランスが容易に
図れる。
Also, the electrodeposition liquid is cooled only by the first heat pump C, and the pretreatment liquid is heated by summing the heat of condensation of both heat pumps C and D. Therefore, imbalance is caused in terms of heat loss. The heat balance between the generated electrodeposition tank and the pretreatment tank B can be easily achieved.

即ちより具体的に説明すると、前記低温蒸気は電着液
の制御温度より高い40℃前後である為に中間温度として
機能させる事が出来、これにより第2のヒートポンプD
の圧縮負荷は小さく、従ってその動力消費も少なくて済
むとともに、該蒸気を液化させる時点で大きな潜熱エネ
ルギーを得る事が出来、前処理槽Bの補助エネルギとし
て十分なる凝縮熱を得る事が可能である。
More specifically, since the low-temperature steam is at about 40 ° C., which is higher than the control temperature of the electrodeposition liquid, it can function as an intermediate temperature.
The compression load is small, and therefore the power consumption is small. In addition, large latent heat energy can be obtained when the vapor is liquefied, and sufficient heat of condensation can be obtained as auxiliary energy for the pretreatment tank B. is there.

尚、本発明は、前記両ヒートポンプC,Dの凝縮熱を同
一に設定する事により前処理槽Bへの供給エネルギー負
荷容量の安定化を図り、これにより、前処理槽B側で前
記熱負荷変動が生じた場合においても、その加熱温度制
御を精度よく行う事が可能となる。
The present invention stabilizes the energy load capacity to be supplied to the pretreatment tank B by setting the heat of condensation of the heat pumps C and D to the same value. Even when the fluctuation occurs, the heating temperature control can be performed with high accuracy.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的
に詳しく説明する。ただしこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, preferred embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It's just

第2図は本発明の実施例に係る電着塗装装置の概略図
を示し、その構成を簡単に説明するに、1は電着槽、2
は化成槽、3は脱脂槽で公知のようにこれらの槽内に貯
溜している塗料液又は処理液は熱交換器4,6,7を介して
夫々冷水タンク18又は温水タンク9に貯溜している冷水
(温水)により冷却又は加熱可能に構成している。
FIG. 2 is a schematic view of an electrodeposition coating apparatus according to an embodiment of the present invention.
Is a chemical tank, and 3 is a degreasing tank. As is well known, the coating liquid or processing liquid stored in these tanks is stored in a cold water tank 18 or a hot water tank 9 via heat exchangers 4, 6, and 7, respectively. It can be cooled or heated by cold water (hot water).

5は第1のヒートポンプユニットで、その蒸発器30側
で前記電着槽1側の熱交換器4を介して塗料液と熱交換
した冷水を冷却した後冷水タンク18に戻入可能に構成す
るとともに、凝縮器31側で低温側の温水タンク9の低温
槽10より導かれた温水を加熱した後、その一部を温水タ
ンク9の高温槽11に導きつつ、他の温水を熱交換器6を
介して化成液と熱交換した後温水タンク9の低温槽10に
導くように構成している。
Reference numeral 5 denotes a first heat pump unit which cools cold water which has exchanged heat with the coating liquid via the heat exchanger 4 on the side of the electrodeposition tank 1 on the side of the evaporator 30 and then returns the cold water to the cold water tank 18. After heating the hot water guided from the low-temperature tank 10 of the hot water tank 9 on the low-temperature side on the condenser 31 side, another part of the hot water is guided to the high-temperature tank 11 of the hot water tank 9 while another heat water is passed through the heat exchanger 6. After the heat exchange with the chemical conversion solution, the liquid is guided to the low-temperature tank 10 of the hot water tank 9.

8は、化成槽2及び脱脂槽3より放熱される低温蒸気
を蒸発器32側へ導き、その潜熱損失を熱源として凝縮熱
を生成する第2のヒートポンプユニットで、凝縮器33側
で温水タンク9の低温槽10より導かれた温水を加熱した
後温水タンク9の高温槽11に戻入可能に構成している。
Reference numeral 8 denotes a second heat pump unit that guides low-temperature steam radiated from the chemical conversion tank 2 and the degreasing tank 3 to the evaporator 32 and generates heat of condensation using the latent heat loss as a heat source. After the hot water guided from the low temperature tank 10 is heated, the hot water can be returned to the high temperature tank 11 of the hot water tank 9.

一方脱脂槽3内の脱脂液は熱交換器7を介して温水タ
ンク9の高温槽11より導かれた温水と熱交換可能に構成
され、該熱交換後の温水は低温側温水タンク9に戻入さ
れる。
On the other hand, the degreasing solution in the degreasing tank 3 is configured to be able to exchange heat with the hot water guided from the high temperature tank 11 of the hot water tank 9 via the heat exchanger 7, and the hot water after the heat exchange returns to the low temperature side hot water tank 9. Is done.

12は前記タンク8,9内の負荷変動を吸収する為の外気
熱交換器で、夫々ヒーティングタワー及びクーリングタ
ワーとして機能させる。
Reference numeral 12 denotes an outside air heat exchanger for absorbing load fluctuations in the tanks 8, 9, which function as a heating tower and a cooling tower, respectively.

次にかかる実施冷に基づく作用を説明する。 Next, the operation based on the actual cooling will be described.

電着槽1の塗料液はポンプ13によって管路34を循環
し、熱交換器4により第1のヒートポンプユニット5の
蒸発器30により冷却された冷水と熱交換して27℃±1℃
に冷却される。又、蒸発器30と電着槽1の液を冷水を介
在させずに直接熱交換してもよい。一方、前記ヒートポ
ンプユニット5の凝縮器31により加熱された温水は、ポ
ンプ14によって管路41−44を循環する化成槽2の化成液
と熱交換器6で熱交換されて化成液を加熱して50℃±1
℃に保持すると共に、管路42により温水タンク9の高温
槽11に導かれて58℃の温水として貯溜される。
The coating liquid in the electrodeposition tank 1 is circulated through the pipe line 34 by the pump 13 and exchanges heat with the cold water cooled by the evaporator 30 of the first heat pump unit 5 by the heat exchanger 4 to 27 ° C. ± 1 ° C.
Is cooled. Further, the liquid in the evaporator 30 and the electrodeposition tank 1 may be directly heat-exchanged without using cold water. On the other hand, the hot water heated by the condenser 31 of the heat pump unit 5 is heat-exchanged in the heat exchanger 6 with the chemical liquid in the chemical conversion tank 2 circulating through the pipes 41-44 by the pump 14, thereby heating the chemical liquid. 50 ℃ ± 1
C., and is led to the high temperature tank 11 of the hot water tank 9 via the pipe 42 and stored as 58 ° C. hot water.

又、脱脂槽3の脱脂液はポンプ19により管路36を循環
して、熱交換器7により温水タンク9の高温槽11よりポ
ンプ16で汲上げられた温水と熱交換して加熱されて50℃
±1℃に保持される。
The degreasing liquid in the degreasing tank 3 is circulated through a pipe 36 by a pump 19, and is heated by the heat exchanger 7 by exchanging heat with hot water pumped by the pump 16 from the high temperature tank 11 of the hot water tank 9. ° C
Maintained at ± 1 ° C.

一方、化成槽2及び脱脂槽3内の処理液は環境温度よ
り高い50℃±1℃に保持されている為に低温蒸気となっ
て蒸発し、そしてその低温蒸気を夫々吸気ファン20,21
により管52に吸入されて第2のヒートポンプユニット8
の熱源として導入し、該ヒートポンプユニット8を作動
させて温水タンク9の低温槽10よりポンプ22により汲み
上げた53℃の温水を58℃に加熱して温水タンク9の高温
槽11に導かれる。尚温水タンク9は高温水槽11と戻入側
の低温水槽10に仕切りで分けられる。
On the other hand, since the processing liquid in the chemical conversion tank 2 and the degreasing tank 3 is maintained at 50 ° C. ± 1 ° C., which is higher than the ambient temperature, the processing liquid evaporates as low-temperature steam, and the low-temperature steam is supplied to the intake fans 20, 21 respectively.
Is sucked into the pipe 52 by the second heat pump unit 8
The heat pump unit 8 is operated to heat the 53 ° C. hot water pumped by the pump 22 from the low temperature tank 10 of the hot water tank 9 to 58 ° C. and is led to the high temperature tank 11 of the hot water tank 9. The hot water tank 9 is divided into a high-temperature water tank 11 and a low-temperature water tank 10 on the return side.

そして温水タンク9の高温槽11の温水の温度が上昇し
て60℃以上になった場合や、冷水タンク18の温度が規定
温度(約20℃)より上昇した場合は外気熱交換器12をク
ーリングタワーとして作動させ、冷水タンク18の冷水温
度より可成り低下した場合は該熱交換器12をヒーティン
グタワーとして作動させる。
If the temperature of the hot water in the high-temperature tank 11 of the hot water tank 9 rises to 60 ° C. or higher, or if the temperature of the cold water tank 18 rises above a specified temperature (about 20 ° C.), the outside air heat exchanger 12 is connected to the cooling tower. When the temperature of the chilled water in the chilled water tank 18 drops considerably, the heat exchanger 12 is operated as a heating tower.

「発明の効果」 以上記載した如く、本発明によればボイラー等の独立
した補助熱源を用いる事なく2つのヒートポンプサイク
ルを効果的に組み合わせる事により熱効率を大幅に向上
させる事が出来る。
[Effects of the Invention] As described above, according to the present invention, thermal efficiency can be significantly improved by effectively combining two heat pump cycles without using an independent auxiliary heat source such as a boiler.

又本発明は電着液の冷却は第1のヒートポンプのみ
で、又前処理液の加熱は両ヒートポンプの凝縮熱を合算
して行うように構成した為に、熱損失の面でアンバラン
スが生じている電着槽1と前処理槽間の熱バランスが容
易に図れるとともに、前記第2のヒートポンプは特別な
熱源を用いる事なく従来ヒートロスとして捨てられてい
た前処理槽より放熱される低温蒸気等の潜熱損失を熱源
としている為に従来技術に比して大幅な省エネルギーが
図れる。
Further, the present invention is configured such that the electrodeposition liquid is cooled only by the first heat pump, and the pretreatment liquid is heated by adding the heat of condensation of both heat pumps, so that imbalance occurs in terms of heat loss. The heat balance between the electrodeposition tank 1 and the pretreatment tank can be easily attained, and the second heat pump does not use a special heat source. Since the latent heat loss is used as a heat source, significant energy savings can be achieved as compared with the prior art.

等の種々の著効を有す。And so on.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本構成図、第2図は本発明の実施例
に係る電着塗装装置の概略図を示す。 A,1:電着槽、B,2,3:前処理槽 C,5:第1のヒートポンプ D,8:第2のヒートポンプ
FIG. 1 is a schematic diagram of a basic configuration of the present invention, and FIG. 2 is a schematic diagram of an electrodeposition coating apparatus according to an embodiment of the present invention. A, 1: Electrodeposition tank, B, 2,3: Pretreatment tank C, 5: First heat pump D, 8: Second heat pump

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ヒートポンプサイクルにおける蒸発熱と凝
縮熱を効果的に利用して前処理工程槽と電着槽間の温度
制御を図った電着塗装装置において、電着槽を冷却する
冷凍負荷を熱源とする第1のヒートポンプの凝縮熱で加
熱された前処理工程槽より放熱される低温蒸気の潜熱損
失を第2のヒートポンプの熱源とし、第2のヒートポン
プの凝縮熱で前処理工程槽の加熱を行うことにより、第
1及び第2のヒートポンプの間で実質的に二段圧縮構成
としたことを特徴とするヒートポンプ利用の電着塗装装
1. A refrigerating load for cooling an electrodeposition tank in an electrodeposition coating apparatus in which a temperature between a pretreatment step tank and an electrodeposition tank is controlled by effectively utilizing heat of evaporation and condensation in a heat pump cycle. The latent heat loss of the low-temperature steam radiated from the pretreatment step tank heated by the heat of condensation of the first heat pump as a heat source is used as the heat source of the second heat pump, and the pretreatment step tank is heated by the heat of condensation of the second heat pump. The first and second heat pumps are substantially in a two-stage compression configuration.
【請求項2】前記両ヒートポンプの凝縮熱を同一温度に
設定した請求項1)記載の電着塗装装置
2. The electrodeposition coating apparatus according to claim 1, wherein the heats of condensation of both heat pumps are set to the same temperature.
JP1062240A 1989-03-16 1989-03-16 Electrodeposition equipment using heat pump Expired - Fee Related JP2724869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062240A JP2724869B2 (en) 1989-03-16 1989-03-16 Electrodeposition equipment using heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062240A JP2724869B2 (en) 1989-03-16 1989-03-16 Electrodeposition equipment using heat pump

Publications (2)

Publication Number Publication Date
JPH02243797A JPH02243797A (en) 1990-09-27
JP2724869B2 true JP2724869B2 (en) 1998-03-09

Family

ID=13194426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062240A Expired - Fee Related JP2724869B2 (en) 1989-03-16 1989-03-16 Electrodeposition equipment using heat pump

Country Status (1)

Country Link
JP (1) JP2724869B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354140B2 (en) * 2000-12-04 2009-10-28 フタバ産業株式会社 Manufacturing method of fuel inlet
JP2008056980A (en) * 2006-08-30 2008-03-13 Parker Engineering Kk Pretreatment electrodeposition coating apparatus
JP5274417B2 (en) * 2009-09-14 2013-08-28 株式会社大気社 Electrodeposition coating equipment
JP5485661B2 (en) * 2009-11-16 2014-05-07 中部電力株式会社 Electrodeposition coating equipment
CN102345933B (en) * 2011-09-21 2013-04-03 梁守棋 Electrophoresis rinsing bath heating system for aluminum profile industry
CN102586841A (en) * 2012-03-29 2012-07-18 苏州源申涂装净化设备有限公司 Electrophoretic coating line heat energy recovery system
CN103806082B (en) * 2014-01-28 2016-04-13 太仓丽盛制版有限公司 Intaglio plate manufactures the temperature control system of electroplate liquid
JP5992575B2 (en) * 2015-05-14 2016-09-14 中部電力株式会社 Start-up device and start-stop device for electrodeposition coating equipment

Also Published As

Publication number Publication date
JPH02243797A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
JP7300474B2 (en) cooling system
JP2724869B2 (en) Electrodeposition equipment using heat pump
CA3230651A1 (en) Multi-split central air conditioning system for simultaneous cooling and heating
JPS5829397Y2 (en) Air conditioning equipment
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
CN221036272U (en) Low-wind-resistance combined cooling system
CN219264613U (en) Absorption type unit for cascade utilization of high-temperature heat source
CN114251864B (en) Absorption refrigerator
JPS63998Y2 (en)
CN220380014U (en) Cold and hot joint debugging system
KR101775036B1 (en) Hybrid air conditioning system for vessel
JPS6358062A (en) Cooling device by circulation of refrigerant
JPS5843365A (en) Multiple effect absorption refrigerator
JP3591742B2 (en) Cold / hot water simultaneous supply type cold / hot water generator
JPS58108372A (en) Air-conditioning hot-water supply device
JPS6113885Y2 (en)
JP3429905B2 (en) Absorption refrigerator
JPS6018735Y2 (en) Heat recovery heating and cooling equipment
JPS58102071A (en) Air conditioner
CN116928766A (en) Refrigerating, heating and ice cold accumulation combined system based on closed heat source tower
JP2002098428A (en) Refrigerating/freezing apparatus
JPS61276662A (en) Heat pump type water heater
JPS6110137Y2 (en)
JPH09133430A (en) Air conditioner using lng plant equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees