JP2724749B2 - Annual ring type refractory electric furnace and heating / cooling control method - Google Patents

Annual ring type refractory electric furnace and heating / cooling control method

Info

Publication number
JP2724749B2
JP2724749B2 JP15391789A JP15391789A JP2724749B2 JP 2724749 B2 JP2724749 B2 JP 2724749B2 JP 15391789 A JP15391789 A JP 15391789A JP 15391789 A JP15391789 A JP 15391789A JP 2724749 B2 JP2724749 B2 JP 2724749B2
Authority
JP
Japan
Prior art keywords
annual ring
heating
electric furnace
heating element
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15391789A
Other languages
Japanese (ja)
Other versions
JPH0320587A (en
Inventor
正至 月岡
博仁 後藤
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
SANJO BUTSUKEN KK
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
SANJO BUTSUKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO, SANJO BUTSUKEN KK filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP15391789A priority Critical patent/JP2724749B2/en
Publication of JPH0320587A publication Critical patent/JPH0320587A/en
Application granted granted Critical
Publication of JP2724749B2 publication Critical patent/JP2724749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、反射型電気炉に係り、特に年輪状の円型加
熱部を有し、半径方向に任意の温度勾配で加熱し得る年
輪型反射電気炉と、これを使用した加熱冷却方法に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a reflection type electric furnace, and more particularly, to a reverberation type electric furnace having an annual ring-shaped circular heating portion, which can be heated at an arbitrary temperature gradient in a radial direction. The present invention relates to a reflection electric furnace and a heating / cooling method using the same.

(従来の技術及び解決しようとする課題) 従来、温度勾配を調節することのできる電気炉には、
円筒型で、円筒軸に平行に発熱4部を複数個設け、夫々
独立に温度制御したものがある。しかし、この電気炉で
は、円筒軸方向に温度勾配があり、円板状の被加熱物を
その半径方向に任意の温度勾配で加熱冷却できなかっ
た。
(Conventional technology and problems to be solved) Conventionally, electric furnaces capable of adjusting a temperature gradient include:
There is a cylindrical type in which a plurality of heat generating parts are provided in parallel with a cylindrical axis, and the temperature of each part is independently controlled. However, in this electric furnace, there is a temperature gradient in the cylindrical axis direction, and it is not possible to heat and cool a disk-shaped object to be heated with an arbitrary temperature gradient in the radial direction.

また、箱型の電気炉で箱の長手方向に複数個の発熱部
を設け、夫々独立に温度制御したものがあるが、この電
気炉では、前記の円筒型の場合と同様に、円板状の被加
熱物をその半径方向に任意の温度勾配で加熱冷却できな
かった。
In addition, there is a box-type electric furnace in which a plurality of heating sections are provided in the longitudinal direction of the box and the temperature is controlled independently of each other. In this electric furnace, as in the case of the cylindrical type, a disk-shaped electric furnace is used. Could not be heated and cooled at an arbitrary temperature gradient in the radial direction.

一方、近年、単結晶の大型化が著しく望まれている
が、従来の大型結晶育成方法である引上げ法(チョクラ
ルスキー法)、引下げ法、(ブリッジマン法)等では直
径の大型化に伴い結晶内部の欠陥や歪みが増加してい
る。この原因は主に大型結晶の中心部と外周部の熱分布
が適切でないことによることは良く知られている。ま
た、本来実用上の単結晶は大口径で薄い形状が要求され
ている。しかし、上記の方法では、大型円柱状の結晶を
育成し、これをわざわざ薄切りする余分な工程が必要で
あり、経済的でない。
On the other hand, in recent years, it has been remarkably desired to increase the size of a single crystal. Defects and strains inside the crystal are increasing. It is well known that this is mainly due to an inappropriate heat distribution in the central part and the peripheral part of the large crystal. Also, a single crystal for practical use is required to have a large diameter and a thin shape. However, the above method requires an extra step of growing a large columnar crystal and slicing it, which is not economical.

このように大型の単結晶の育成が困難である理由の1
つに、そのために必要とする精度よい熱分布が得られる
電気炉が開発されていないことにある。
One of the reasons why it is difficult to grow a large single crystal in this way
Finally, there has been no development of an electric furnace capable of obtaining the required accurate heat distribution.

本発明は、上記従来技術の欠点を解決すると共にかゝ
る要請に応えるべくなされたものであって、円板状等の
被加熱物をその半径方向に任意の温度勾配で加熱冷却し
得る新規な電気炉を提供することを目的とし、またかる
ゝ電気炉を使用して、単結晶育成等に適する被加熱物の
加熱冷却方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art and to meet such a demand. The present invention has a novel object capable of heating and cooling an object to be heated such as a disk at an arbitrary temperature gradient in a radial direction thereof. Another object of the present invention is to provide a method for heating and cooling an object to be heated which is suitable for growing a single crystal using an electric furnace.

(課題を解決するための手段) 前記目的を達成するため、本発明者らは鋭意研究を重
ねた結果、電気炉を構成する発熱体を年輪状に複数本設
け、夫々の発熱体の間隔を極力小さくし、また発熱体間
の輻射と熱伝導による相互作用を極力少なくするよう、
熱反射面と水冷部を有効に配置するという全く新規な構
造設計の電気炉を開発するに至り、この電気炉によれば
夫々の発熱体を独立に温度制御することによって任意の
温度勾配を得ることを見い出し、ここに本発明をなした
ものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, provided a plurality of heating elements constituting an electric furnace in an annual ring shape, and set an interval between each heating element. To minimize the interaction between the heating elements and radiation and heat conduction,
We have developed an electric furnace with a completely new structural design that effectively arranges the heat reflection surface and the water cooling section, and according to this electric furnace, obtain an arbitrary temperature gradient by independently controlling the temperature of each heating element This is what made the present invention.

すなわち、本発明は、冷却された基板の片面に年輪状
に複数個の熱反射凹部面を設け、かつこの凹部内に発熱
体を配置し、夫々の発熱体を独立に温度制御する手段を
設けてなり、かゝる構成の加熱基板を空間部を介して2
枚対向させたことを特徴とする年輪型反射電気炉を要旨
とするものである。
That is, according to the present invention, a plurality of heat reflecting concave surfaces are provided in a ring shape on one surface of a cooled substrate, and a heating element is disposed in the concave portion, and means for independently controlling the temperature of each heating element is provided. The heating substrate having such a configuration is connected to the
The gist is an annual ring-type reflex electric furnace characterized by being opposed to each other.

また、他の本発明は、上記年輪型反射電気炉を使用し
て被加熱物を加熱冷却するに際し、所定のヒートパター
ンを年輪の中心位置から外側方向に放射状に経時的にシ
フトさせて、被加熱物を加熱乃至冷却することを特徴と
する加熱冷却制御方法を要旨とするものである。
Another aspect of the present invention provides a method of heating and cooling an object to be heated using the above-mentioned annual ring-type reflex electric furnace, by shifting a predetermined heat pattern radially outward from the center of the annual ring radially with time, The gist of the present invention is a heating / cooling control method characterized by heating or cooling a heated object.

以下に本発明を実施例を参照しつつ更に詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例) 第1図の(イ)〜(ハ)は、本発明に係る年輪型反射
電気炉の一例を示したものであり、(イ)は縦断面図、
(ロ)は加熱面の正面図、(ハ)は水冷面の正面図であ
る。
(Example) FIGS. 1 (a) to 1 (c) show an example of an annual-ring type reflection electric furnace according to the present invention, wherein FIG.
(B) is a front view of a heating surface, and (c) is a front view of a water cooling surface.

同図(イ)において、一対の加熱基板5が空間部を介
して対向させて配置されている。すなわち、各加熱基板
5は、基板1の片面に複数本の水冷溝2が設けられ、こ
の溝の上にパッキン3とシールド蓋4で密封することに
よって冷却される構造を有し、一方、基板1の他方の片
面には年輪状に複数本の熱反射凹部面6を設け、かつ夫
々の凹部内に独立した発熱体7と熱電対8を配置した構
造を有している。これら一対の加熱基板5は空間部9を
介して2枚対向されている。本冷のように単結晶育成に
適用する場合には、更にこの基板1の年輪の中心位置に
水冷部10によって冷却された突出部11を設け、その先端
にシード測温用の熱電対12が置かれている。
In FIG. 1A, a pair of heating substrates 5 are arranged to face each other via a space. That is, each heating substrate 5 has a structure in which a plurality of water-cooling grooves 2 are provided on one surface of the substrate 1, and the cooling is performed by sealing with a packing 3 and a shield lid 4 on the grooves. A plurality of heat reflecting concave surfaces 6 are provided on the other surface of the device 1 in an annual ring shape, and an independent heating element 7 and a thermocouple 8 are arranged in each concave portion. The pair of heating substrates 5 are opposed to each other via the space 9. When the present invention is applied to the growth of a single crystal as in main cooling, a projection 11 cooled by a water cooling unit 10 is further provided at the center of the annual ring of the substrate 1, and a thermocouple 12 for seed temperature measurement is provided at the tip. It has been placed.

第1図の(ロ)は、基板1を空間部9側から見た正面
図であり、年輪状の独立した複数本の発熱体7の両端は
夫々の発熱体出入口13によって加熱基板5の外側に取り
出されている。
FIG. 1 (b) is a front view of the substrate 1 as viewed from the space portion 9 side. Both ends of a plurality of independent ring-shaped heating elements 7 are provided outside the heating board 5 by respective heating element entrances / exit holes 13. Has been taken out.

また、第1図の(ハ)は、基板1の水冷溝2側から見
た正面図であり、年輪状の水冷溝2には夫々水冷連結部
14が設けられ、また冷却水は水入口15と水出口16によっ
て供給、排出される。基板1の中心には突出部11の突出
部挿入口17がある。なお、上記の冷却方法に限らず、基
坂内に平行状の穴を設けたり、基板上に冷却用パイプを
ロー付けするなどの態様も可能である。
FIG. 1 (c) is a front view of the substrate 1 as viewed from the water cooling groove 2 side.
A cooling water is supplied and discharged by a water inlet 15 and a water outlet 16. At the center of the substrate 1, there is a protrusion insertion opening 17 for the protrusion 11. The cooling method is not limited to the above, and a mode in which a parallel hole is provided in the base slope or a cooling pipe is brazed on the substrate is also possible.

第2図の(イ)及び(ロ)は、本発明に係る年輪型反
射電気炉の発熱体ホルダー部の一実施例を示したもので
ある。
FIGS. 2A and 2B show an embodiment of the heating element holder portion of the annual ring type reflection electric furnace according to the present invention.

すなわち、第2図(イ)の場合は、熱反射凹部面6の
底部に開けられたホルダー用穴18に発熱ホルダー19を差
し込み、ホルダー止めピン20を取り付け発熱体7を発熱
体穴21に通し保持した構成である。
That is, in the case of FIG. 2A, the heat generating holder 19 is inserted into the holder hole 18 formed in the bottom of the heat reflecting concave surface 6, the holder fixing pin 20 is attached, and the heat generating element 7 is passed through the heat generating hole 21. This is the configuration held.

また、第2図(ロ)の場合は、発熱体ホルダー19が基
板1を貫通せずに発熱体7を保持する例であり、発熱体
ホルダー19の先端を石英板22で抑え固定したものであ
る。この例の場合には熱反射凹部面6内、すなわち石英
板22で密閉された熱反射凹部面6内を真空にすることが
でき、これによれば熱反射凹部面が真空状態になるの
で、熱伝導が減少し、輻射効率を向上させることができ
る。勿論、熱反射凹部面6の底部に貫通孔を設けてシー
ルド蓋4と石英板22との間の空間部全体(貫通孔と熱反
射凹部面6内)を真空にすることもできる。
FIG. 2 (b) shows an example in which the heating element holder 19 holds the heating element 7 without penetrating the substrate 1, and the tip of the heating element holder 19 is held down and fixed by the quartz plate 22. is there. In the case of this example, the inside of the heat reflecting concave surface 6, that is, the inside of the heat reflecting concave surface 6 sealed with the quartz plate 22 can be evacuated. Heat conduction is reduced, and radiation efficiency can be improved. Of course, it is also possible to provide a through-hole at the bottom of the heat reflection concave surface 6 to evacuate the entire space between the shield lid 4 and the quartz plate 22 (through hole and inside the heat reflective concave surface 6).

第3図は、発熱体7の電極部取り付けの実施例を示し
たものであり、熱反射凹部面6の底部にある発熱体出入
口13に絶縁管23を挿入し、これを通して発熱体7がター
ミナル部24に接続されている。
FIG. 3 shows an embodiment in which the heating element 7 is attached to the electrode portion. An insulating tube 23 is inserted into the heating element entrance 13 at the bottom of the heat reflecting concave surface 6, through which the heating element 7 is connected to the terminal. It is connected to the unit 24.

第4図は、年輪状発熱体7の冷却効果を高めるために
夫々の熱反射凹部面6の底部に複数個の冷却用ガス入出
口25を設けた例である。
FIG. 4 shows an example in which a plurality of cooling gas inlets / outlets 25 are provided at the bottom of each heat reflecting concave surface 6 in order to enhance the cooling effect of the annual heating element 7.

(作用) 次に上記構成の年輪型電気炉の使用態様を説明する。(Operation) Next, a usage mode of the annual ring type electric furnace having the above configuration will be described.

第5図及び第6図は、本発明による年輪型反射電気炉
を使用して薄型の円板単結を育成する場合に適用した例
を示したものである。
FIG. 5 and FIG. 6 show an example applied to the case of growing a single thin disk by using the annual ring type reflection electric furnace according to the present invention.

第5図(イ)において、対向させた一対の加熱基板5
の空間部9にルツボ26を置き、この中心に冷却された突
出部11に挟まれたシード結晶27が設けられ、このシード
結晶は冷却されている。夫々の年輪状発熱体7は、独立
に温度制御されるが、年輪状発熱体の中心位置に置かれ
たシード結晶27の側面が溶融状態になるように内輪発熱
体の温度は設定され、その外側の育成結晶原料28が充分
溶融されるように、それ以外の発熱体の温度が設定され
る。
In FIG. 5 (a), a pair of opposed heating substrates 5
A crucible 26 is placed in the space 9 of the above, and a seed crystal 27 sandwiched between the cooled projections 11 is provided at the center thereof, and the seed crystal is cooled. The temperature of each annual heating element 7 is independently controlled, but the temperature of the inner heating element is set so that the side surface of the seed crystal 27 placed at the center position of the annual heating element is in a molten state. The temperatures of the other heating elements are set so that the outer growth crystal raw material 28 is sufficiently melted.

なお、ルツボ26の上部を石英板等で蓋をすれば、ルツ
ボの上面と下面を同じ加熱条件にすることができる。
If the upper portion of the crucible 26 is covered with a quartz plate or the like, the upper and lower surfaces of the crucible can be set to the same heating condition.

次に、内輪発熱体7によって得られた温度と温度勾配
を放射状方向に移動させるために、その他の夫々の年輪
状発熱体の温度は、プログラム制御され、外輪発熱体ま
で温度と温度勾配の移動が完了してからすべての年輪状
発熱体は室温まで冷却される。その結果、シード結晶27
より放射状に結晶育成された薄型で円板状の大型結晶を
容易に得ることができる。
Next, in order to move the temperature and temperature gradient obtained by the inner ring heating element 7 in the radial direction, the temperature of each of the other annual ring heating elements is program-controlled, and the temperature and temperature gradient are transferred to the outer ring heating element. After the completion of the above, all the annual heating elements are cooled to room temperature. As a result, the seed crystal 27
A thin, disk-shaped, large crystal grown more radially can be easily obtained.

第5図の(ロ)は、突出部11に挟まれたシード結晶27
が円板状に結晶育成される場合の状態を示すもので、図
中、29はシード溶融面、30は成長面、31は育成単結晶で
ある。
FIG. 5B shows the seed crystal 27 sandwiched between the protrusions 11.
Shows a state in which a crystal is grown in a disk shape. In the figure, 29 is a seed melting surface, 30 is a growth surface, and 31 is a grown single crystal.

第5図の(ハ)は、上部だけに突出部11があり、上方
よりシード結晶27が冷却されて結晶育成される場合の例
である。
FIG. 5C shows an example in which the protruding portion 11 is provided only in the upper portion, and the seed crystal 27 is cooled from above to grow the crystal.

第5図の(ニ)は、下部だけに突出部があり、下方よ
りシード結晶27が冷却されて結晶育成される場合の例で
ある。
FIG. 5 (d) shows an example in which a projection is provided only at the lower portion, and the seed crystal 27 is cooled from below to grow the crystal.

第6図は、本発明に係る年輪型反射電気炉を使用して
薄型の円板単結晶を育成する場合の温度分布の変化状態
を示すもので、縦軸に温度、横軸に結晶の中心を出発点
とした半径方向の距離を表わしている。結晶育成の初期
段階では、一定の温度勾配を持つ温度分布曲線Aになる
ように夫々の年輪状発熱体をプログラム温度設定し、次
に曲線B→C→D→E→F→Gと順次連続的に移行(シ
フト)するように夫々の年輪状発熱体の温度プログラム
を連続的に変化させることによって、一定の温度勾配を
外輪方向に移動させて中心から半径方向に放射状に円板
型単結晶を育成するものである。
FIG. 6 shows a change in the temperature distribution when a thin disk single crystal is grown using the annual ring type reflection electric furnace according to the present invention. The vertical axis represents the temperature, and the horizontal axis represents the center of the crystal. Represents the radial distance from the starting point. In the initial stage of crystal growth, each annual ring-shaped heating element is programmed to have a temperature distribution curve A having a constant temperature gradient, and then the curve B → C → D → E → F → G is sequentially continued. By continuously changing the temperature program of each annual ring-shaped heating element so as to shift (shift), a constant temperature gradient is moved in the direction of the outer ring, and the disk-shaped single crystal is radially radially from the center in the radial direction. To foster.

(使用例) 本発明の年輪型電気炉の設計例として、加熱基板を直
径300mm、厚み25mmのものとし、発熱体と水冷溝を夫々
9本とし、また熱反射凹部は金メッキされた曲面とし、
突出部は直径20mmで、その先端部の直径は10mmに絞った
形状とした。9本のFe−Al系金属発熱体上部には透明石
英円板が取付けられ、熱反射凹部面内を真空にした加熱
基板を上下2枚空間部を介して対向させた。
(Example of use) As a design example of the annual ring type electric furnace of the present invention, the heating substrate is 300 mm in diameter and 25 mm in thickness, the heating element and the water cooling groove are each nine, and the heat reflection concave part is a gold-plated curved surface.
The projection had a diameter of 20 mm, and the diameter of the tip was narrowed to 10 mm. A transparent quartz disk was attached to the upper part of the nine Fe-Al-based metal heating elements, and two heating substrates with the inside of the heat reflection concave portion evacuated were opposed to each other via upper and lower spaces.

放射状単結晶を育成するに当っては、直径240mm、高
さ30mmの石英ルツボの中心に直径が15mm、高さ25mmのKC
l種結晶を置き、種結晶の周りにKCl原料を充填した。上
下加熱基板の空間部内にルツボを挿入し、ルツボ内の種
結晶の上下を突出部で挾み、更に透明石英円板で高さ30
mmのルツボを抑え込むようにした。また電気炉を運転す
るに当っては、今、内輪より外輪方向に受かって年輪状
発熱体、、、……と番号を付けて説明すると、
結晶成長初期には発熱体を830℃、発熱体を880℃、
発熱体を910℃、発熱体からを920℃とした。その
後、発熱体、、の作る温度勾配を外周方向に移動
させながら、かつ内側の単結晶化した部分の温度を550
℃に保つように夫々の発熱体をプログラム温度制御し
た。全体の結晶成長終了後に夫々の発熱体を共に同一の
冷却速度で室温まで冷却した。以上の放射状単結晶製造
方法によって、育成された単結晶は、直径が230mm、厚
みが15mmの良質の円板単結晶であった。
In growing a radial single crystal, KC with a diameter of 15 mm and a height of 25 mm was centered on a quartz crucible with a diameter of 240 mm and a height of 30 mm.
The seed crystal was placed, and the KCl raw material was filled around the seed crystal. Insert the crucible into the space of the upper and lower heating substrates, sandwich the upper and lower sides of the seed crystal in the crucible with the protruding parts, and furthermore, set the transparent quartz disk to a height of 30 mm.
mm crucible is suppressed. In addition, when operating the electric furnace, it is now described that the ring-shaped heating element is received from the inner ring in the outer ring direction and numbered as an annual ring-shaped heating element.
In the early stage of crystal growth, the heating element is 830 ° C, the heating element is 880 ° C,
The temperature of the heating element was 910 ° C., and that of the heating element was 920 ° C. Then, while moving the temperature gradient created by the heating element in the outer peripheral direction, and raising the temperature of the
The temperature of each heating element was controlled by program temperature so as to maintain the temperature. After completion of the entire crystal growth, each heating element was cooled to room temperature at the same cooling rate. The single crystal grown by the above radial single crystal manufacturing method was a high-quality disc single crystal having a diameter of 230 mm and a thickness of 15 mm.

なお、更に年輪状の発熱体間隔を狭くすることによっ
て、放射状に急激な温度勾配と高精度の温度移動が実現
できる。また、発熱体を高温用材質に変え、その取付け
構造等を改善することによって高融点の円板単結晶をも
育成できる。
Further, by further narrowing the interval between the ring-shaped heating elements, it is possible to realize a steep radial temperature gradient and a highly accurate temperature movement. Further, by changing the heating element to a material for high temperature and improving its mounting structure and the like, a disk single crystal with a high melting point can be grown.

また、このような放射状単結晶製造方法により、上記
のKClの他、低融点物質NaCl、LiF、KBr、NaI、Csl、K
l、AgCl、TiCl、Ge等も容易に得られる。また、Ta、Mo
等の高温用発熱体を使用することにより、BaF2、CaF2
MgF2、LiNbO3、LiTaO3等の他、酸化物磁性材料も単結晶
化ができる。
Further, in addition to the above KCl, low-melting substances NaCl, LiF, KBr, NaI, Csl, K
l, AgCl, TiCl, Ge, etc. are also easily obtained. Also, Ta, Mo
By using a heating element for high temperature such as BaF 2 , CaF 2 ,
In addition to MgF 2 , LiNbO 3 , LiTaO 3 and the like, oxide magnetic materials can also be single-crystallized.

勿論、本発明は、単結晶の育成に限られず、第6図に
示したように所望の年輪状の温度勾配を放射状にシフト
できるので、円板状等の他の被加熱物の加熱冷却{例、
帯溶融精製(ゾーンリファイニング)}も可能であるこ
とは云うまでもない。
Of course, the present invention is not limited to the growth of a single crystal, and the desired annual ring-shaped temperature gradient can be shifted radially as shown in FIG. For example,
It goes without saying that zone melting refining (zone refining) is also possible.

(発明の効果) 以上詳述したように、本発明による電気炉は、冷却さ
れた加熱基板の熱反射凹部面の断熱効果と集熱効果によ
り、発熱体間の熱的な相互作用が極度に少なくなり、年
輪状の発熱体の間隔を狭くし、発熱体の数を任意に選べ
る構造であるので、この年輪状発熱体を夫々独立に温度
制御することによって、加熱基盤の放射状方向に1cm当
り250℃の如く急激な温度勾配或いは任意の温度勾配が
容易に得られる。更には夫々の年輪状発熱体を独立にプ
ログラム温度制御し、順次その温度勾配を放射状に移動
することによって、被加熱物を移動せずに、被加熱物移
動と同様の効果が得られる。
(Effects of the Invention) As described in detail above, the electric furnace according to the present invention has extremely low thermal interaction between the heating elements due to the heat insulating effect and the heat collecting effect of the heat reflecting concave surface of the cooled heating substrate. The number of heating elements can be arbitrarily selected by reducing the distance between the ring-shaped heating elements.The temperature can be controlled independently for each of these ring-shaped heating elements. A steep temperature gradient such as 250 ° C. or any temperature gradient can be easily obtained. Further, by independently controlling the temperature of each annual ring-shaped heating element and sequentially moving its temperature gradient radially, an effect similar to the movement of the heated object can be obtained without moving the heated object.

また、本発明を具体的な被加熱物に適用した場合、以
下のような優れた効果が得られる。
Further, when the present invention is applied to a specific object to be heated, the following excellent effects can be obtained.

(1) 大口径の円柱状単結晶を育成せずに、小型の種
子結晶より直径大口径の熱歪みの極度に少ない良質の円
板単結晶が容易に得られる。
(1) A large-diameter, large-diameter, single-crystal single crystal having extremely small thermal distortion with extremely small diameter can be easily obtained without growing a large-diameter cylindrical single crystal.

(2) 放射状の結晶育成であるために、結晶成長速度
が早く短時間で大口径化ができる。
(2) Since the crystal is grown radially, the crystal growth rate is high and the diameter can be increased in a short time.

(3) この方法を帯溶融精製(ゾーンリファイニン
グ)に応用すれば、高速度で高品質の材料が得られる。
(3) If this method is applied to zone melting refining (zone refining), high-quality materials can be obtained at high speed.

(4) この育成方法では、種結晶取付けの自由度が多
いので、各種の結晶に活用できる。
(4) In this growing method, the degree of freedom in mounting the seed crystal is large, so that it can be used for various crystals.

(5) 高温で変態点を有する結晶においては、変態点
以上の温度領域で育成結晶を保持した後、結晶全体を一
気に急冷できる。
(5) In a crystal having a transformation point at a high temperature, the whole crystal can be rapidly cooled at a stretch after holding the grown crystal in a temperature region higher than the transformation point.

(6) 大口径の試料を熱歪みなく、高速度に熱処理で
き、更に内側から加熱冷却したり、外周側から加熱冷却
したり、自由な熱処理ができる。
(6) A large-diameter sample can be heat-treated at a high speed without thermal distortion, and further, can be heated and cooled from the inside, and can be heated and cooled from the outer side, and can be freely heat-treated.

(7) ルツボ形状を製品形状と近いものとし、結晶成
長することによって、加工工程の短縮ができる。
(7) The processing steps can be shortened by making the crucible shape close to the product shape and growing crystals.

【図面の簡単な説明】 第1図(イ)〜(ハ)は本発明に係る年輪型反射電気炉
の一例を示す説明図で、(イ)は縦断面図、(ロ)は加
熱面の平面図、(ハ)は水冷面の平面図であり、 第2図(イ)、(ロ)は夫々、発熱体ホルダー取付けの
断面図、 第3図は電極部取付けの断面図、 第4図は発熱体冷却部の断面図、 第5図(イ)〜(ニ)は本発明を単結晶の育成に適用し
た場合の説明図で、第5図(イ)は年輪型反射電気炉内
にルツボを設置した時の断面図、第5図(ロ)は種結晶
を上下より冷却した場合の成長状況の断面図、第5図
(ハ)は種結晶を上部より冷却した場合の成長状況の断
面図、第5図(ニ)は種結晶を下部より冷却した場合の
成長状況の断面図であり、 第6図(イ)、(ロ)は種結晶を放射状に成長させる場
合の温度分布とその変化をルツボ設置位置との関連で示
した図である。 1……基板、2……水冷溝、3……パッキング、4……
シールド蓋、5……加熱基板、6……熱反射凹部面、7
……発熱体、8……熱電対、9……空間部、10……水冷
部、11……突出部、12……シード熱電対、13……発熱体
出入口、14……水冷連結部、15……水入口、16……水出
口、17……突出部挿入口、18……ホルダー用穴、19……
発熱体ホルダー、20……ホルダー止めピン、21……発熱
体穴、22……石英板、23……絶縁管、24……ターミナ
ル、25……ガス入出口、26……ルツボ、27……シード結
晶、28……育成結晶原料、29……シード溶融面、30……
成長面、31……育成単結晶。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a) to 1 (c) are explanatory views showing an example of an annual ring-type reflection electric furnace according to the present invention, wherein FIG. 1 (a) is a longitudinal sectional view, and FIG. FIG. 2 (a) and FIG. 2 (b) are cross-sectional views of mounting a heating element holder, FIG. 3 is a cross-sectional view of mounting an electrode unit, FIG. Is a cross-sectional view of the cooling part of the heating element, and FIGS. 5 (a) to (d) are explanatory views of the case where the present invention is applied to the growth of a single crystal, and FIG. FIG. 5 (b) is a cross-sectional view of a growth state when the seed crystal is cooled from above and below, and FIG. 5 (c) is a cross-sectional view of the growth state when the seed crystal is cooled from above. FIG. 5 (d) is a cross-sectional view of the growth state when the seed crystal is cooled from below, and FIGS. 6 (a) and 6 (b) are the temperatures when the seed crystal is grown radially. Fabric and the change is a diagram as described relative to the crucible installation position. 1 ... substrate, 2 ... water cooling groove, 3 ... packing, 4 ...
Shield lid, 5: heating substrate, 6: heat reflection concave surface, 7
... heating element, 8 ... thermocouple, 9 ... space part, 10 ... water cooling part, 11 ... projecting part, 12 ... seed thermocouple, 13 ... heating element entrance and exit, 14 ... water cooling connection part, 15 ... water inlet, 16 ... water outlet, 17 ... projection insertion port, 18 ... holder hole, 19 ...
Heating element holder, 20: Holder fixing pin, 21: Heating element hole, 22: Quartz plate, 23: Insulating tube, 24: Terminal, 25: Gas inlet / outlet, 26: Crucible, 27 ... Seed crystal, 28 ... Growth crystal raw material, 29 ... Seed melting surface, 30 ...
Growth surface, 31 ... Growth single crystal.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷却された基板の片面に年輪状に複数個の
熱反射凹部面を設け、かつこの凹部内に発熱体を配置
し、夫々の発熱体を独立に温度制御する手段を設けてな
り、かゝる構成の加熱基板を空間部を介して2枚対向さ
せたことを特徴とする年輪型反射電気炉。
1. A cooled substrate having a plurality of heat-reflecting concave surfaces provided in an annual ring shape on one surface of the substrate, and a heating element disposed in the concave portion, and means for independently controlling the temperature of each heating element. An annual ring-type reflection electric furnace, wherein two heating substrates having such a configuration are opposed to each other via a space.
【請求項2】前記加熱基板の年輪の中心位置に、冷却さ
れた突出部が設けられている請求項1に記載の年輪型反
射電気炉。
2. The annual ring-type reflection electric furnace according to claim 1, wherein a cooled projection is provided at a center position of the annual ring of the heating substrate.
【請求項3】前記熱反射凹部面は、二次曲線又は放物線
の曲率を有する曲面からなる請求項1又は2に記載の年
輪型反射電気炉。
3. The annual ring-type reflex electric furnace according to claim 1, wherein the heat reflecting concave surface is a curved surface having a quadratic curve or a parabolic curvature.
【請求項4】前記発熱体は螺旋線、丸棒、角板又は薄膜
を加熱基板の熱反射凹部内に円形状に形成したものであ
る請求項1、2又は3のいずれかに記載の年輪型反射電
気炉。
4. The annual ring according to claim 1, wherein the heating element is formed by forming a spiral wire, a round bar, a square plate, or a thin film in a circular shape in a heat reflecting recess of a heating substrate. Reflex electric furnace.
【請求項5】前記熱反射凹部内を真空にした請求項1、
2、3又は4のいずれかに記載の年輪型反射電気炉。
5. The method according to claim 1, wherein the inside of the heat reflecting recess is evacuated.
5. The annual ring type reflex electric furnace according to any one of 2, 3 and 4.
【請求項6】請求項1に記載の年輪型反射電気炉を使用
して被加熱物を加熱冷却するに際し、所定のヒートパタ
ーンを年輪の中心位置から外側方向に放射状に経時的に
シフトさせて、被加熱物を加熱乃至冷却することを特徴
とする加熱冷却制御方法。
6. When heating and cooling an object to be heated using the annual ring type reflection electric furnace according to claim 1, a predetermined heat pattern is shifted radially outward from the center position of the annual ring radially with time. And heating and cooling the object to be heated.
【請求項7】請求項6に記載の方法において、前記年輪
型反射電気炉の加熱基板の年輪の中心位置に、冷却され
た突出部を設け、これら2つの突出部の間に単結晶種子
を挿入し、この外周に育成結晶の原料を配置し、夫々の
発熱体を独立に温度制御することによって放射状に結晶
育成することを特徴とする単結晶製造方法。
7. The method according to claim 6, wherein a cooled projection is provided at a center position of the annual ring of the heating substrate of the annual ring type refractory electric furnace, and a single crystal seed is placed between the two projections. A method for producing a single crystal, comprising: inserting a raw material for growing a crystal on an outer periphery thereof; and independently controlling the temperature of each heating element to grow the crystal radially.
JP15391789A 1989-06-16 1989-06-16 Annual ring type refractory electric furnace and heating / cooling control method Expired - Fee Related JP2724749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15391789A JP2724749B2 (en) 1989-06-16 1989-06-16 Annual ring type refractory electric furnace and heating / cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15391789A JP2724749B2 (en) 1989-06-16 1989-06-16 Annual ring type refractory electric furnace and heating / cooling control method

Publications (2)

Publication Number Publication Date
JPH0320587A JPH0320587A (en) 1991-01-29
JP2724749B2 true JP2724749B2 (en) 1998-03-09

Family

ID=15572923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15391789A Expired - Fee Related JP2724749B2 (en) 1989-06-16 1989-06-16 Annual ring type refractory electric furnace and heating / cooling control method

Country Status (1)

Country Link
JP (1) JP2724749B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446695B1 (en) * 2001-10-17 2004-09-04 김병주 crucible type electrical resistance furnace
KR101280003B1 (en) * 2002-12-25 2013-07-05 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Light emitting element device, light receiving element device, optical apparatus, fluoride crystal, process for producing fluoride crystal and crucible

Also Published As

Publication number Publication date
JPH0320587A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US5116456A (en) Apparatus and method for growth of large single crystals in plate/slab form
CA1038268A (en) Growing single crystals in a crucible
US4264406A (en) Method for growing crystals
EP0325663A1 (en) Film forming apparatus
US20180057957A1 (en) Advanced crucible support and thermal distribution management
GB2279585A (en) Crystallising molten materials
JP2724749B2 (en) Annual ring type refractory electric furnace and heating / cooling control method
JP3662962B2 (en) Single crystal manufacturing method and apparatus
CN206219718U (en) A kind of growth apparatus of sapphire crystal
KR910006743B1 (en) Horizental bridgman monocrystal growing device
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JPH04349198A (en) Device for production large-diameter fluorite single crystal
JPS60155594A (en) Method for pulling up single crystal and apparatus therefor
KR20020071412A (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
JPH01290583A (en) Method for growing germanium single crystal
JP2864466B2 (en) Diamond production equipment
JPH01257146A (en) Heat retaining furnace for production of synthetic quartz ingot
CN106702490A (en) Growth equipment of sapphire crystal
JPS60195087A (en) Furnace for growing single crystal
JP2991585B2 (en) Single crystal growing apparatus and single crystal manufacturing method
JP2724751B2 (en) Thin atmosphere reflection electric furnace
RU1228526C (en) Method and apparatus for growing monocrystals of complex oxides from melt
JPH01290582A (en) Method for growing single crystal
KR20230119435A (en) Apparatus for growing silicon single crystal ingot
JP2004339053A (en) Method for producing optical fluoride crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees