JP2719432B2 - Cryogenic refrigeration equipment - Google Patents

Cryogenic refrigeration equipment

Info

Publication number
JP2719432B2
JP2719432B2 JP2134564A JP13456490A JP2719432B2 JP 2719432 B2 JP2719432 B2 JP 2719432B2 JP 2134564 A JP2134564 A JP 2134564A JP 13456490 A JP13456490 A JP 13456490A JP 2719432 B2 JP2719432 B2 JP 2719432B2
Authority
JP
Japan
Prior art keywords
pulse tube
compressor
cryogenic refrigeration
temperature end
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2134564A
Other languages
Japanese (ja)
Other versions
JPH0428968A (en
Inventor
直樹 広
昌和 諸頭
和男 池上
正人 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2134564A priority Critical patent/JP2719432B2/en
Publication of JPH0428968A publication Critical patent/JPH0428968A/en
Application granted granted Critical
Publication of JP2719432B2 publication Critical patent/JP2719432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、パルスチューブを備えた極低温冷凍装置に
関する。
The present invention relates to a cryogenic refrigerator having a pulse tube.

(ロ) 従来の技術 本出願人が特願平1−341222号で出願した従来の極低
温冷凍装置では、コンプレッサーにパルスチューブを連
通し、このパルスチューブと前記コンプレッサーとの間
でガス状冷媒を往復移動し、このガス状冷媒をその往動
時に前記パルスチューブに流入して圧縮しながら高温端
部に到達させ、この高温端部から圧縮熱を放熱すること
で、その放熱分だけ極低温冷凍装置が冷却するように構
成している。且つ前記極低温冷凍装置では、前記パルス
チューブを延長して大型化することでガス状冷媒の圧縮
量を多くすると共に、前記パルスチューブの内部に、該
パルスチューブの中心軸と平行な通路部を区画形成する
ことで、圧縮冷媒の径方向外側への内部熱拡散を防止し
高温端部へ向かっての熱勾配を大きくして、高温端部の
温度を上昇して放熱量を増加させるように構成してい
る。
(B) Conventional technology In the conventional cryogenic refrigeration system filed by the applicant of the present invention in Japanese Patent Application No. 1-341222, a pulse tube is connected to a compressor, and gaseous refrigerant is passed between the pulse tube and the compressor. Reciprocatingly moves the gaseous refrigerant into the pulse tube at the time of its forward movement and causes it to reach the high-temperature end while compressing the heat. The device is configured to cool. In the cryogenic refrigeration apparatus, the pulse tube is extended and enlarged to increase the amount of compression of the gaseous refrigerant, and inside the pulse tube, a passage parallel to the central axis of the pulse tube is provided. By forming the compartment, the internal heat diffusion of the compressed refrigerant to the outside in the radial direction is prevented, the heat gradient toward the high-temperature end is increased, and the temperature of the high-temperature end is increased to increase the amount of heat radiation. Make up.

しかしながらこの種従来の極低温冷凍装置では、前記
パルスチューブを延長した分だけ装置が大型化する欠
点、また前記パルスチューブの内部に、区画形成手段と
しての多数の細管を設けた分だけ構造が複雑化する等の
欠点がある。
However, in this kind of conventional cryogenic refrigeration system, the size of the device is increased by the extension of the pulse tube, and the structure is complicated by the provision of a large number of thin tubes as compartment forming means inside the pulse tube. Disadvantages such as

(ハ) 発明が解決しようとする課題 本発明は前述の欠点を解消し、コンパクトで且つ冷凍
効率の高い極低温冷凍装置を提供するものである。
(C) Problems to be Solved by the Invention The present invention is to solve the above-mentioned disadvantages and to provide a cryogenic refrigeration apparatus that is compact and has high refrigeration efficiency.

(ニ) 課題を解決するための手段 本発明は、コンプレッサーを、蓄冷器、低温端部及び
パルスチューブに、順次連通し、このパルスチューブと
前記コンプレッサーとの間でガス状冷媒を往復移動させ
てなるものにおいて、 前記ガス状冷媒を水素ガス等で構成すると共に、 金属水素化物を収納した小容器を、前記パルスチュー
ブの高温端部に、水素フィルターを介して連通させたも
のである。
(D) Means for Solving the Problems The present invention provides a compressor in which a compressor is sequentially connected to a regenerator, a low-temperature end, and a pulse tube, and a gaseous refrigerant is reciprocated between the pulse tube and the compressor. In the present invention, the gaseous refrigerant is made of hydrogen gas or the like, and a small container containing a metal hydride is connected to a high-temperature end of the pulse tube via a hydrogen filter.

(ホ) 作用 本発明によれば、ガス状冷媒は、圧縮過程においてパ
ルスチューブから小容器に流入してここで金属水素化物
に対して平衡水素圧力が上昇して吸収されるようにな
り、また膨張過程において前記小容器から強制排気され
この小容器内が低圧化して金属水素化物から放出される
ようになり、よってガス状冷媒の吸収、放出量分だけパ
ルスチューブに吸排気量が加算され実質的に装置全体の
容積がアップされるようになり、従って、実質的容積の
アップ分だけ、パルスチューブを小型化できるようにな
る。
(E) Function According to the present invention, the gaseous refrigerant flows from the pulse tube into the small container in the compression process, where the equilibrium hydrogen pressure is increased with respect to the metal hydride and is absorbed. During the expansion process, the small vessel is forcibly exhausted and the inside of the small vessel is reduced in pressure and released from the metal hydride. Therefore, the volume of the entire apparatus can be increased, so that the pulse tube can be downsized by the substantial increase in volume.

また、前記小容器は前記パルスチューブから分離して
いるためこの小容器の圧縮生成熱が前記パルスチューブ
に伝達することを阻止できこの小容器から装置外へ効率
よく放熱できるようになり、従って、極低温冷凍装置は
前記放熱の効率化分だけ更に冷凍効率がアップする。
In addition, since the small container is separated from the pulse tube, the compression generated heat of the small container can be prevented from being transmitted to the pulse tube, and the heat can be efficiently radiated from the small container to the outside of the apparatus. In the cryogenic refrigeration system, the refrigeration efficiency is further improved by the heat radiation efficiency.

(ヘ) 実施例 次に本発明の一実施例について説明する。(F) Example Next, an example of the present invention will be described.

第1図において、(1)はコンプレッサーで、シリン
ダー(2)にピストン(3)を収納している。(4)は
コンプレッサー(1)に連通した予冷系熱交換器で、冷
却水により冷却される。(5)は予冷系熱交換器(4)
に連通した蓄冷器で、蓄冷材(6)を収納している。
(7)は蓄冷器(5)に連通した熱交換器態様の低温端
部、(8)は低温端部(7)に連通したステンレス鋼製
のパルスチューブで、圧縮過程においてガス状圧縮冷媒
を流入部(9)から高温端部(10)に向けて圧送する。
高温端部(10)は、パルスチューブ(8)内で発生した
圧縮熱により加熱され、その熱を冷却用空気等に放熱す
るように構成されている。
In FIG. 1, (1) is a compressor in which a piston (3) is housed in a cylinder (2). (4) is a pre-cooling system heat exchanger connected to the compressor (1) and cooled by cooling water. (5) is a pre-cooling heat exchanger (4)
The regenerator communicates with and stores a regenerator material (6).
(7) is a low temperature end of the heat exchanger mode connected to the regenerator (5), (8) is a stainless steel pulse tube connected to the low temperature end (7), and supplies gaseous compressed refrigerant in the compression process. It is pumped from the inlet (9) to the hot end (10).
The high-temperature end (10) is configured to be heated by compression heat generated in the pulse tube (8) and to radiate the heat to cooling air or the like.

而して前記極低温冷凍装置は、その高温端部(10)
に、水素フィルター(11)を介して小容器(12)をを連
通させると共に、この小容器(12)に金属水素化物(1
3)を収納してある。且つ前記ガス状冷媒を、水素ガス
を含む冷媒で構成してある。前記金属水素化物(13)
は、第2図に示すように、複数のフィン(14)(14)…
を連設し各フィン(14)(14)…間に前記ガス状冷媒を
流通させることで熱交換器態様に構成してある。また前
記小容器(12)は、その圧縮生成熱を、外部に装着した
放熱用熱交換器(15)の冷却水又は通風空気等に放熱す
るように構成してある。前記金属水素化物(13)は、第
3図において、縦軸に圧力(atm)を、横軸に水素吸収
量(wt/%)をそれぞれとって、PC曲線を示すように、
水素ガスが圧縮されこの金属水素化物(13)に対し平衡
圧力が高まり矢印A方向に移行する場合に水素ガスを吸
収し、また水素ガスが低圧化してこの金属水素化物(1
3)に対し平衡圧力が低下し矢印B方向に移行する場合
に水素ガスを放出する特性を有するものである。
Thus, the cryogenic refrigeration system has a hot end (10).
To a small vessel (12) via a hydrogen filter (11), and the small vessel (12)
3) is stored. Further, the gaseous refrigerant is constituted by a refrigerant containing hydrogen gas. The metal hydride (13)
Means a plurality of fins (14) (14) ... as shown in FIG.
Are connected to each other, and the gaseous refrigerant flows between the fins (14) (14)... To constitute a heat exchanger. Further, the small container (12) is configured to radiate the heat generated by the compression to cooling water or ventilation air of a heat-radiating heat exchanger (15) mounted outside. In FIG. 3, the metal hydride (13) takes a pressure (atm) on the vertical axis and a hydrogen absorption amount (wt /%) on the horizontal axis, and shows a PC curve as shown in FIG.
When hydrogen gas is compressed and the equilibrium pressure increases with respect to the metal hydride (13) and shifts in the direction of arrow A, the hydrogen gas is absorbed, and the hydrogen gas is reduced in pressure to reduce the metal hydride (1).
In contrast to 3), it has a characteristic of releasing hydrogen gas when the equilibrium pressure decreases and shifts in the direction of arrow B.

前記極低温冷凍装置では、圧縮過程においては、コン
プレッサー(1)のピストン(3)で圧縮されたガス状
冷媒は、予冷系熱交換器(4)、蓄冷器(5)及び低温
端部(7)を通る間に冷却してパルスチューブ(8)に
流入しこのパルスチューブ(8)の残留冷媒を圧縮して
その圧縮熱を高温端部(10)で放熱し、その後、膨張過
程においては、ピストン(3)が引き上げられ、ガス状
冷媒は、復帰移動してパルスチューブ(8)内で断熱膨
張し更に低温化して低温端部(7)及び蓄冷器(5)を
冷却しコンプレッサー(1)に戻るようになり、斯る往
復移動サイクルを繰り返すことにより、低温端部(7)
に150〜20K(−123〜253℃)の極低温が得られる。
In the cryogenic refrigeration apparatus, in the compression process, the gaseous refrigerant compressed by the piston (3) of the compressor (1) is supplied to the precooling heat exchanger (4), the regenerator (5), and the low-temperature end (7). ), Flows into the pulse tube (8), compresses the residual refrigerant in the pulse tube (8), and radiates the heat of compression at the high temperature end (10). The piston (3) is lifted, and the gaseous refrigerant returns to move and adiabatically expands in the pulse tube (8), further lowers the temperature, cools the low-temperature end (7) and the regenerator (5), and compresses the compressor (1). And by repeating such a reciprocating movement cycle, the low temperature end (7)
Very low temperature of 150-20K (-123-253 ° C).

また前記極低温冷凍装置では、ガス状冷媒は、圧縮過
程において前記小容器(12)の内部の金属水素化物(1
3)に対して平衡水素圧力が上昇して吸収されるように
なり、また膨張過程において前記小容器(12)から強制
排気されこの小容器(12)の内部が低圧化して金属水素
化物(13)から放出されるようになり、よってガス状冷
媒の吸収、放出分だけパルスチューブ(8)に吸排気量
が加算され実質的に装置全体の容積がアップされるよう
になり、従って、実質的容積のアップ分だけ、パルスチ
ューブ(8)を小型化できるようになる。
In the cryogenic refrigeration system, the gaseous refrigerant removes the metal hydride (1) inside the small vessel (12) during the compression process.
3), the equilibrium hydrogen pressure rises and is absorbed, and during the expansion process, the small vessel (12) is forcibly evacuated and the inside of the small vessel (12) is reduced in pressure to reduce the metal hydride (13). ), So that the amount of intake and exhaust is added to the pulse tube (8) by the amount of absorption and release of the gaseous refrigerant, so that the volume of the entire apparatus is substantially increased. The pulse tube (8) can be reduced in size by the increased volume.

(ト) 発明の効果 本発明は以上のように構成したから、ガス状冷媒は、
圧縮過程においてパルスチューブから小容器に流入して
ここで金属水素化物に対して平衡水素圧力が上昇して吸
収されるようになりまた膨張過程において前記小容器か
ら強制排気されこの小容器内が低圧化して金属水素化物
から放出されるようになり、このガス状冷媒の吸収、放
出量分だけパルスチューブに吸排気量が加算され実質的
に装置全体の容積がアップされるようになり、よって、
前記実質的容積のアップ分だけパルスチューブをコンパ
クトにでき、 また、前記小容器は前記パルスチューブから分離して
いるためこの小容器の圧縮生成熱が前記パルスチューブ
に直接伝達することを阻止できこの小容器から直接装置
外へ効率良く放熱できるようになり、この放熱の効率化
分だけ装置の冷凍効率をアップでき、 従って、コンパクトで且つ冷凍効率の高い極低温冷凍
装置を提供できる。
(G) Effects of the Invention Since the present invention is configured as described above, the gaseous refrigerant is
During the compression process, the gas flows into the small vessel from the pulse tube, where the equilibrium hydrogen pressure rises and is absorbed by the metal hydride. To be released from the metal hydride, the amount of absorption and release of the gaseous refrigerant, the amount of intake and exhaust is added to the pulse tube, and the volume of the entire apparatus is substantially increased.
The pulse tube can be made compact by the substantial volume increase, and since the small container is separated from the pulse tube, heat generated by compression of the small container can be prevented from being directly transmitted to the pulse tube. The heat can be efficiently radiated directly from the small container to the outside of the device, and the refrigeration efficiency of the device can be increased by the increased heat radiation efficiency. Therefore, a compact cryogenic refrigeration device having high refrigeration efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の概略的構成図、第2図は同
実施例の要部の概略的構成図、第3図は同実施例に備え
た金属水素化物における水素ガスの吸収、放出特性図で
ある。 (1)……コンプレッサー、(5)……蓄冷器、(7)
……低温端部、(9)……パルスチューブ、(10)……
高温端部、(11)……水素フィルター、(12)……小容
器、(13)……金属水素化物。
FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a main part of the embodiment, and FIG. 3 is absorption of hydrogen gas in a metal hydride provided in the embodiment. FIG. (1) ... compressor, (5) ... regenerator, (7)
…… Low temperature end, (9) …… Pulse tube, (10) ……
Hot end, (11) hydrogen filter, (12) small container, (13) metal hydride.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コンプレッサーを、蓄冷器、低温端部及び
パルスチューブに、順次連通し、このパルスチューブと
前記コンプレッサーとの間でガス状冷媒を往復移動させ
てなるものにおいて、 前記ガス状冷媒を水素ガス等で構成すると共に、 金属水素化物を収納した小容器を、前記パルスチューブ
の高温端部に、水素フィルターを介して連通させたこと
を特徴とする極低温冷凍装置。
1. A compressor in which a compressor is sequentially communicated with a regenerator, a low-temperature end and a pulse tube, and a gaseous refrigerant is reciprocated between the pulse tube and the compressor. A cryogenic refrigeration apparatus comprising a small container made of hydrogen gas or the like and containing a metal hydride, connected to a high-temperature end of the pulse tube via a hydrogen filter.
JP2134564A 1990-05-23 1990-05-23 Cryogenic refrigeration equipment Expired - Fee Related JP2719432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134564A JP2719432B2 (en) 1990-05-23 1990-05-23 Cryogenic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134564A JP2719432B2 (en) 1990-05-23 1990-05-23 Cryogenic refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0428968A JPH0428968A (en) 1992-01-31
JP2719432B2 true JP2719432B2 (en) 1998-02-25

Family

ID=15131284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134564A Expired - Fee Related JP2719432B2 (en) 1990-05-23 1990-05-23 Cryogenic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2719432B2 (en)

Also Published As

Publication number Publication date
JPH0428968A (en) 1992-01-31

Similar Documents

Publication Publication Date Title
JPH055568A (en) Pulse tube type refrigerator
CN114151989B (en) Superconducting magnet
JPS629827B2 (en)
JP2719432B2 (en) Cryogenic refrigeration equipment
JP3944854B2 (en) Thermoacoustic drive orifice type pulse tube cryogenic refrigerator
US3431746A (en) Pulse tube refrigeration process
JP2719433B2 (en) Cryogenic refrigeration equipment
US3719051A (en) Transportable refrigeration system
US3580003A (en) Cooling apparatus and process for heat-actuated compressors
JP2834897B2 (en) Refrigeration equipment
JPH04225755A (en) Cryogenic refrigerating device
JPH04121556A (en) Refrigeration arrangement for extremely low temperature
US3126348A (en) Gaseous medium for a hot-gas reciprocating apparatus
JPH05306846A (en) Stirling refrigerator
US7219501B2 (en) Cryocooler operation with getter matrix
JPH04110568A (en) Cryogenic freezer
JPH04320765A (en) Cryogenic freezer device
JPH06323658A (en) Refrigerator
JP2869207B2 (en) Stirling refrigerator
JPH0636452Y2 (en) Cryogenic refrigerator
JPH04184050A (en) Very low temperature freezer
JP2723342B2 (en) Cryogenic refrigerator
JPH03194364A (en) Cryostatic freezer
JPH03199854A (en) Very low temperature refrigerator
JP2600714B2 (en) Double tube refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees