JP2717972B2 - Method and apparatus for forming thin film - Google Patents

Method and apparatus for forming thin film

Info

Publication number
JP2717972B2
JP2717972B2 JP22711888A JP22711888A JP2717972B2 JP 2717972 B2 JP2717972 B2 JP 2717972B2 JP 22711888 A JP22711888 A JP 22711888A JP 22711888 A JP22711888 A JP 22711888A JP 2717972 B2 JP2717972 B2 JP 2717972B2
Authority
JP
Japan
Prior art keywords
gas
thin film
source
substrate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22711888A
Other languages
Japanese (ja)
Other versions
JPH0274029A (en
Inventor
純一 渡部
謙次 岡元
精威 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22711888A priority Critical patent/JP2717972B2/en
Publication of JPH0274029A publication Critical patent/JPH0274029A/en
Application granted granted Critical
Publication of JP2717972B2 publication Critical patent/JP2717972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概 要〕 原子層エピタキシ−法とそれに適用する装置に関し、 不純物含有の少ない高品質な薄膜を、しかも、高速に
成長させることを目的とし、 反応チャンバ内において同一方向に定常流れを有する
複数の原料ガスの間に、同一方向に定常流れを有する不
活性ガスを介在させ、被成長基板を該不活性ガスを横切
つて前記複数の原料ガスの流れの中に交互に移動させて
原子層エピタキシャル成長させるようにしたことを特徴
とし、 薄膜形成装置は、扇形の反応チャンバを主体とし、該
反応チャンバの要め部にオリフィス弁とターボ分子ポン
プを配置し、同チャンバの先端部の中央に不活性ガス導
入口の両側にそれぞれ原料ガス導入口を配置し、被成長
基板を前記チャンバ内の先端部と要め部の中間に位置さ
せて移動するように構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] An atomic layer epitaxy method and an apparatus applied to the same are directed to growing a high-quality thin film with a small amount of impurities at a high speed in the same direction in a reaction chamber. An inert gas having a steady flow in the same direction is interposed between a plurality of source gases having a steady flow in the same direction, and a substrate to be grown is alternated in the flow of the plurality of source gases across the inert gas. The thin film forming apparatus is mainly composed of a fan-shaped reaction chamber, and an orifice valve and a turbo-molecular pump are arranged at a necessary portion of the reaction chamber. Source gas inlets are arranged on both sides of the inert gas inlet at the center of the tip, and the substrate to be grown is moved while being positioned between the tip and the required portion in the chamber. Configured to.

〔産業上の利用分野〕[Industrial applications]

本発明は薄膜の形成方法とその装置に係り、特に原子
層エピタキシ−法とそれに適用する装置に関する。
The present invention relates to a method and an apparatus for forming a thin film, and more particularly, to an atomic layer epitaxy method and an apparatus applied thereto.

近年、単原子層レベルで成長を制御できる原子層エピ
タキシ−(ALE;Atomic Layer Epitaxy)法によつて高品
質な半導体薄膜を形成する方法が研究されており、その
将来性が期待されている。また、絶縁膜も高品位な膜質
のものが望まれて、不純物・膜欠陥などのない高耐圧・
無欠陥・長寿命な絶縁膜が要望されている。
In recent years, a method of forming a high-quality semiconductor thin film by an atomic layer epitaxy (ALE) method capable of controlling growth at a monoatomic layer level has been studied, and its future is expected. In addition, it is desired that the insulating film has a high quality and high quality.
There is a demand for a defect-free and long-life insulating film.

〔従来の技術〕[Conventional technology]

原子層エピタキシ−法は複数の異種原料ガスを交互に
切り換えて被成長基板面に導入し1原子層づつ形成する
方法で、通常の化学気相成長(CVD)法は原料ガスが被
成長基板の上部で反応して被着することが起こるが、原
子層エピタキシ−法は一層ずつ積層して確実に被成長基
板面で反応するためにCVD法に比べて高品質な薄膜が形
成できるとして注目されている方法である。
The atomic layer epitaxy method is a method in which a plurality of different source gases are alternately switched and introduced onto the surface of a substrate to be grown to form one atomic layer at a time. Atomic layer epitaxy is attracting attention because it can form a higher quality thin film than CVD, because it reacts on the surface of the substrate to be deposited by layering one layer at a time and reliably reacts on the substrate surface. That's the way you are.

第4図はその原子層エピタキシ−法を適用する従来の
薄膜形成装置の断面図を示しており、1は反応管,2は被
成長基板,3はオリフィス弁,4は真空ポンプ,5は原料ガス
Aの導入口,6は原料ガスBの導入口,7はバリアガスの導
入口,5V,6V,7Vはそれらの開閉バルブである。このよう
な薄膜形成装置は、バリアガスおよび原料ガスA,Bの切
り換えによつて被成長基板面を流れるガスの種類を切り
換えて1原子層づつ形成する方法が採られる。
FIG. 4 is a sectional view of a conventional thin film forming apparatus to which the atomic layer epitaxy method is applied, wherein 1 is a reaction tube, 2 is a substrate to be grown, 3 is an orifice valve, 4 is a vacuum pump, and 5 is a raw material. Reference numeral 6 denotes an inlet for the gas A, reference numeral 6 denotes an inlet for the source gas B, reference numeral 7 denotes an inlet for the barrier gas, and reference numerals 5V, 6V, and 7V denote their on-off valves. Such a thin film forming apparatus employs a method of forming one atomic layer at a time by switching the type of gas flowing on the surface of the substrate to be grown by switching between the barrier gas and the source gases A and B.

また、このような薄膜形成装置の他に、原料ガスA,B
を別々の仕切られたチャンバ内に流入させておき、被成
長基板をその両チャンバ間に移動させる方法を採る薄膜
形成装置も提案されている。
In addition to such a thin film forming apparatus, source gases A and B
A thin film forming apparatus adopting a method in which a substrate is allowed to flow into separate partitioned chambers and a substrate to be grown is moved between the two chambers.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、それらの方式による原子層エピタキシ−法
は原料ガスAと原料ガスBとの切り換えの間に流す遮蔽
用バリアガスの量と時間が不十分であつたり、また、ガ
スの淀みやすい部分(反応チャンバの壁面やガス導入口
近傍など)ができ、原料ガスが被成長基板面以外の部分
で反応して薄膜が異常成長し、そのように異常成長した
薄膜は剥離され易いためにガスの流れに乗つて被成長基
板面に達し、被成長基板面に形成される薄膜中で不純物
になる問題があり、そうして薄膜の品質が低下する。
However, in the atomic layer epitaxy method based on these methods, the amount and time of the shielding barrier gas flowing between the switching between the source gas A and the source gas B are insufficient, and the gas is apt to stagnate (reaction chamber). The raw material gas reacts on the part other than the surface of the substrate to be grown, and the thin film grows abnormally. Thus, there is a problem that the film reaches the growth substrate surface and becomes an impurity in the thin film formed on the growth substrate surface, and thus the quality of the thin film is deteriorated.

本発明はそのような問題点を軽減して、不純物含有の
少ない高品質な薄膜を、しかも、高速に形成することを
目的とした薄膜の形成方法とその装置を提案するもので
ある。
The present invention proposes a method and an apparatus for forming a thin film for the purpose of forming a high-quality thin film with a small amount of impurities at a high speed while reducing such problems.

〔課題を解決するための手段〕 その課題は、反応チャンバ内において同一方向に定常
流れを有する複数の原料ガスの間に、同一方向に定常流
れを有する不活性ガスを介在させ、被成長基板を該不活
性ガスを横切つて前記複数の原料ガスの流れの中に交互
に移動させて原子層エピタキシャル成長させるようにし
た薄膜の形成方法によつて解決される。
[Means for Solving the Problems] The problem is that an inert gas having a steady flow in the same direction is interposed between a plurality of source gases having a steady flow in the same direction in a reaction chamber, and a substrate to be grown is formed. The problem is solved by a method of forming a thin film in which the inert gas is alternately moved across the flow of the plurality of source gases to perform atomic layer epitaxial growth.

また、それを実施する薄膜形成装置として、第1図に
示す実施例図のように、扇形の反応チャンバ10の要め部
11にオリフィス弁OFとターボ分子ポンプVPを配置し、同
チャンバの先端部12の中央に不活性ガス導入口Ncの両側
にそれぞれ原料ガス導入口Na,Nbを配置し、被成長基板
Wを前記チャンバ内の先端部と要め部の中間に位置させ
て移動するように構成にする。
In addition, as a thin film forming apparatus for carrying out the process, as shown in the embodiment of FIG.
An orifice valve OF and a turbo-molecular pump VP are arranged at 11, source gas inlets Na and Nb are arranged at both sides of an inert gas inlet Nc at the center of the front end portion 12 of the same chamber, and the substrate W to be grown is It is configured so that it moves while being located in the middle of the tip part and the required part in the chamber.

〔作 用〕(Operation)

即ち、本発明は、複数の原料ガスの流れの間に不活性
ガスの流れを介在させ、これらを同一方向の定常流れと
して被成長基板を移動させて原子層エピタキシャル成長
させる。
That is, in the present invention, the flow of the inert gas is interposed between the flows of the plurality of source gases, and the flow of the inert gas is made the steady flow in the same direction to move the substrate to be grown to perform the atomic layer epitaxial growth.

それを実施するための装置は、例えば、扇形反応チャ
ンバの要め部にオリフィス弁とターボ分子ポンプなどの
排気系を配置し、扇先端部に原料ガス,不活性ガスの導
入口を設けてそれらの定常流れをつくり、被成長基板W
はその中間に位置させて定常流れの中を移動するような
構造にする。
For example, an exhaust system such as an orifice valve and a turbo-molecular pump is arranged at a required portion of a fan-shaped reaction chamber, and inlets for raw material gas and inert gas are provided at the tip of the fan. Substrate flow W
Is located in the middle, and has a structure that moves in a steady flow.

そうすれば、ガスの淀み部分で原料ガスが反応して異
常成長する問題もなくなり、且つ、ガス切り換えの必要
もないから、高品質な薄膜を高速に成長できる。
This eliminates the problem that the source gas reacts abnormally in the stagnation portion of the gas and eliminates the need for gas switching, so that a high-quality thin film can be grown at a high speed.

〔実施例〕〔Example〕

以下、図面を参照して実施例によつて詳細に説明す
る。
Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明の第1実施例にかかる薄膜形成装置の
概念図を示しており、第2図はその斜視図である。図中
の10は扇形の反応チャンバ,11はその要め部,12は扇先端
部,Wは被成長基板,OFはオリフィス,VPはターボ分子ポン
プ,Ncは不活性ガス導入口,NaはA原料ガス導入口,Nbは
B原料ガス導入口,Vc,Va,Vbはそれらの導入口に付属し
た開閉バルブである。本装置は不活性ガスを中央にして
両側に原料ガスを流して定常流れをつくり、被成長基板
Wを原料ガスの間に往復移動させて成長するような構成
である。被成長基板Wの移動機構は図示していないが、
例えば、移動区間にベルトを配置して、その上に被成長
基板Wを載置し、反応チャンバの外部からベローズ封止
を介してモータ駆動によつて左右に移動させる方法を用
いる。
FIG. 1 is a conceptual view of a thin film forming apparatus according to a first embodiment of the present invention, and FIG. 2 is a perspective view thereof. In the figure, reference numeral 10 denotes a fan-shaped reaction chamber, 11 denotes its essential part, 12 denotes a fan tip, W denotes a substrate to be grown, OF denotes an orifice, VP denotes a turbo molecular pump, Nc denotes an inert gas inlet, and Na denotes A. Source gas inlets, Nb are B source gas inlets, and Vc, Va, Vb are open / close valves attached to those inlets. The present apparatus has a configuration in which a source gas is caused to flow on both sides with an inert gas at the center to generate a steady flow, and the growth is performed by reciprocating the growth target substrate W between the source gases. Although the moving mechanism of the growth target substrate W is not shown,
For example, a method is used in which a belt is placed in a moving section, a substrate to be grown W is placed thereon, and the substrate is moved left and right by driving a motor from outside the reaction chamber via a bellows seal.

このような第1図に示す薄膜形成装置によつて、例え
ば、GaAs結晶薄膜を形成する場合を説明すると、まず、
ターボ分子ポンプVPによつて5×10-7Torrまで排気し、
被成長基板Wを300℃に加熱した後、最初に、中央の開
閉バルブVcを開けてAr(アルゴン)ガスを不活性ガス導
入口Ncから1000sccm流入し、反応チャンバ11内の圧力が
1Torrになるようにオリフィス弁OFを調整する。次に、
開閉バルブVa,Vbを開けてA反応ガス導入口Naから水素
(H2)をキャリアガスとしたトリエチルガリウム(Ga
(C2H5)ガスを50sccm流入し、且つ、B反応ガス導
入口NbからH2をキャリアガスとしたアルシン(AsH3)ガ
スを50sccm流入する。この時、中央のArガスの流れのた
めにH2+Ga(C2H5ガスとH2+Ga(C2H5ガスとは
混合せず、定常な流れがつくられる。
For example, a case of forming a GaAs crystal thin film by the thin film forming apparatus shown in FIG. 1 will be described.
Exhaust to 5 × 10 -7 Torr by turbo molecular pump VP,
After heating the growth target substrate W to 300 ° C., first, the central opening / closing valve Vc is opened, and Ar (argon) gas flows in at 1000 sccm from the inert gas inlet Nc, and the pressure in the reaction chamber 11 is reduced.
Adjust the orifice valve OF to 1 Torr. next,
Opening the opening / closing valves Va and Vb, triethylgallium (Ga) using hydrogen (H 2 ) as a carrier gas from the A reaction gas inlet Na.
(C 2 H 5 ) 3 ) A gas flows at 50 sccm, and an arsine (AsH 3 ) gas using H 2 as a carrier gas flows at 50 sccm from the B reaction gas inlet Nb. At this time, the H 2 + Ga (C 2 H 5 ) 3 gas and the H 2 + Ga (C 2 H 5 ) 3 gas are not mixed due to the flow of the central Ar gas, and a steady flow is created.

そのようにしてつくられた定常流れを乱さないよう
に、被成長基板Wを往復速度5秒の周期でArガスの流れ
を越えてH2+Ga(C2H5ガスとH2+Ga(C2H5ガス
との間を移動させる。その操作を500回繰り返して500分
子層からなるGaAs結晶薄膜を成長する。このような形成
法によれば、原料ガスを切り換える必要がないから、成
長速度が速くて薄膜が形成でき、しかも、異常成長がな
いために、成長したGaAs結晶薄膜は薄膜中に不純物の混
入が観察されず、高品質な薄膜が形成された。
The H 2 + Ga (C 2 H 5 ) 3 gas and the H 2 + Ga ( 3 ) gas flow over the Ar substrate at a reciprocating speed of 5 seconds so as not to disturb the steady flow thus produced. C 2 H 5 ) Move between 3 gases. This operation is repeated 500 times to grow a GaAs crystal thin film composed of 500 molecular layers. According to such a forming method, it is not necessary to switch the source gas, so that a thin film can be formed at a high growth rate, and since there is no abnormal growth, impurities in the grown GaAs crystal thin film are not mixed into the thin film. No high quality thin film was formed.

次に、第3図は本発明の第2実施例にかかる薄膜形成
装置の概念図を示しており、第1図と同一部材には同一
記号が付けてあるが、その他のSaはA原料ガス源容器,S
bはB原料ガス源容器,Ha,Hbはキャリアガス流入口であ
る。本装置は第1図で説明した構成の特徴の他に、A原
料ガス導入口Na,B原料ガス導入口Nbに直接開閉バルブを
設けず、A原料ガス源容器Sa,B原料ガス源容器Sbへのキ
ャリアガスの流入・停止によつて反応ガスの反応管への
流入・停止をおこなう装置で、開閉バルブVa,Vbは容器S
a,Sbより後のキャリアガス流入口側に設けてある。この
ような装置は腐食性の強い反応ガスを用いて薄膜を形成
する場合に使用される。例えば、Al2O3(アルミナ)は
従来のCVD法では十分な絶縁耐圧が得られず、そのため
に原子層エピタキシ−法が用いられているが、そのよう
なAl2O3薄膜の形成に使用して有効な装置である。
Next, FIG. 3 shows a conceptual diagram of a thin film forming apparatus according to a second embodiment of the present invention, and the same members as those in FIG. Source container, S
b is a B source gas source container, and Ha and Hb are carrier gas inflow ports. In addition to the features of the configuration described in FIG. 1, the present apparatus does not have direct opening / closing valves at the A raw material gas inlets Na and B raw gas inlets Nb, and the A raw material gas source containers Sa and B raw gas source containers Sb The reaction gas flows into and out of the reaction tube by flowing and stopping the carrier gas into the reaction tube.
It is provided on the carrier gas inlet side after a and Sb. Such an apparatus is used when a thin film is formed using a highly corrosive reaction gas. For example, Al 2 O 3 (alumina) cannot achieve a sufficient withstand voltage by the conventional CVD method. For this reason, an atomic layer epitaxy method is used, but it is used for forming such an Al 2 O 3 thin film. It is an effective device.

第3図に示す薄膜形成装置(II)によつてAl2O3薄膜
を形成する場合について説明すると、ターボ分子ポンプ
VPによつて5×10-4Torrまで排気し、被成長基板Wを30
0℃に加熱した後、最初に、中央の開閉バルブVcを開け
てArガスを不活性ガス導入口Ncから1000sccm流入し、反
応チャンバ11内の圧力が1Torrになるようにオリフィス
弁OFを絞る。次に、A原料ガス源容器SaにAlCl3(塩化
アルミニウム)を収容し、110℃に加熱して開閉バルブV
aを開け、また、B原料ガス源容器Sbに水を収容して開
閉バルブVbを開けて、キャリアガスとしてArガスをキャ
リアガス流入口Ha,Hbから流入してAr+AlCl3ガスとAr+
水蒸気の定常流れを形成する。この時、中央のArガスの
流れのためにAr+AlCl3ガスとAr+水蒸気ガスとは混合
されない。
The case where an Al 2 O 3 thin film is formed by the thin film forming apparatus (II) shown in FIG. 3 will be described.
By evacuation to 5 × 10 -4 Torr by VP, the substrate W
After heating to 0 ° C., first, the central opening / closing valve Vc is opened, Ar gas flows in at 1000 sccm from the inert gas inlet Nc, and the orifice valve OF is throttled so that the pressure in the reaction chamber 11 becomes 1 Torr. Next, AlCl 3 (aluminum chloride) is stored in the source gas source container Sa, heated to 110 ° C.
a is opened, water is stored in the B source gas source container Sb, and the opening / closing valve Vb is opened. Ar gas flows as carrier gas from the carrier gas inlets Ha and Hb, and Ar + AlCl 3 gas and Ar +
Form a steady stream of steam. At this time, Ar + AlCl 3 gas and Ar + water vapor gas are not mixed due to the flow of the Ar gas at the center.

かくしてつくられた定常流れを乱さないように、被成
長基板Wを往復速度5秒の周期でArガスの流れを越えて
Ar+AlCl3ガスとAr+水蒸気ガスとの間を移動させ、そ
の操作を3000回繰り返して2000分子層からなるアルミナ
多結晶薄膜を成長する。このようなアルミナ薄膜はガス
切り換えが不要のために成長速度が速く、しかも、被成
長基板面以外での異常成長がなく、従って、ピンホール
が観察されず、薄膜中に不純物粒子が見られず、絶縁耐
圧の高いアルミナ薄膜が得られる。
In order not to disturb the steady flow thus produced, the growth target W is moved over the Ar gas flow at a reciprocating speed of 5 seconds.
The operation is performed between Ar + AlCl 3 gas and Ar + water vapor gas, and the operation is repeated 3,000 times to grow an alumina polycrystalline thin film having 2,000 molecular layers. Such an alumina thin film has a high growth rate because gas switching is unnecessary, and has no abnormal growth except on the surface of the substrate to be grown. Therefore, no pinholes are observed and no impurity particles are found in the thin film. Thus, an alumina thin film having a high withstand voltage can be obtained.

このようなアルミナ薄膜はELパネルの絶縁層などに利
用して、その品質を向上させることができる。
Such an alumina thin film can be used for an insulating layer of an EL panel or the like to improve its quality.

〔発明の効果〕〔The invention's effect〕

以上の実施例の説明から明らかなように、本発明にか
かる薄膜の形成方法および装置によれば、異常成長が薄
膜中に含まれず、高品質な結晶薄膜,多結晶薄膜が得ら
れて、しかも、高速に形成できて製造コストを低下させ
ることができ、半導体装置その他の電子デバイスの発展
に大きく寄与するものである。
As is apparent from the above description of the embodiments, according to the method and apparatus for forming a thin film according to the present invention, a high-quality crystalline thin film and polycrystalline thin film can be obtained without abnormal growth contained in the thin film. It can be formed at high speed and can reduce the manufacturing cost, which greatly contributes to the development of semiconductor devices and other electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例にかかる薄膜形成装置の概
念図、 第2図は第1図の薄膜形成装置の斜視図、 第3図は本発明の第2実施例にかかる薄膜形成装置の概
念図、 第4図は従来の薄膜形成装置の概念図である。 図において、 10は扇形反応チャンバ、 11は要め部、 12は扇先端部、 VPはターボ分子ポンプ、 OFはオリフィス弁、 Wは被成長基板、 Ncは不活性ガス導入口、 NaはA原料ガス導入口、 NbはB原料ガス導入口、 Vc,Va,Vbは開閉バルブ、 SaはA原料ガス源容器、 SbはB原料ガス源容器、 Ha,Hbはキャリアガス流入口 を示している。
1 is a conceptual view of a thin film forming apparatus according to a first embodiment of the present invention, FIG. 2 is a perspective view of the thin film forming apparatus of FIG. 1, and FIG. 3 is a thin film forming apparatus according to a second embodiment of the present invention. FIG. 4 is a conceptual diagram of a conventional thin film forming apparatus. In the figure, 10 is a fan-shaped reaction chamber, 11 is a required part, 12 is a fan tip, VP is a turbo molecular pump, OF is an orifice valve, W is a substrate to be grown, Nc is an inert gas inlet, and Na is an A material. Gas inlet, Nb is B source gas inlet, Vc, Va, Vb are open / close valves, Sa is A source gas source container, Sb is B source gas source container, and Ha and Hb are carrier gas inlets.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−32531(JP,A) 特開 昭63−292620(JP,A) 特開 昭64−51395(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-32531 (JP, A) JP-A-63-292620 (JP, A) JP-A-64-51395 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応チャンバ(10)内において同一方向に
定常流れを有する複数の原料ガスの間に、同一方向に定
常流れを有する不活性ガスを介在させ、被成長基板
(W)を該不活性ガスを横切つて前記複数の原料ガスの
流れの中に交互に移動させて原子層エピタキシャル成長
させるようにしたことを特徴とする薄膜の形成方法。
An inert gas having a steady flow in the same direction is interposed between a plurality of source gases having a steady flow in the same direction in a reaction chamber, and a substrate to be grown (W) is placed in the reaction chamber. A method of forming a thin film, wherein an active gas is traversed alternately in a flow of the plurality of source gases to perform atomic layer epitaxial growth.
【請求項2】前記原料ガスの反応チャンバ(10)への流
入・停止を原料ガス源へのキャリアガスの流入・停止に
よつておこなうようにしたことを特徴とする請求項1記
載の薄膜の形成方法。
2. The thin film according to claim 1, wherein the flow of said source gas into and from said reaction chamber is stopped by the flow of a carrier gas into and from said source gas source. Forming method.
【請求項3】扇形の反応チャンバ(10)を主体とし、該
反応チャンバの要め部(11)にオリフィス弁(OF)とタ
ーボ分子ポンプ(VP)を配置し、同チャンバの先端部
(12)の中央に不活性ガス導入口(Nc)の両側にそれぞ
れ原料ガス導入口(Na,Nb)を配置し、被成長基板
(W)を前記チャンバ内の先端部と要め部の中間に位置
させて移動するように構成したことを特徴とする薄膜形
成装置。
3. An orifice valve (OF) and a turbo-molecular pump (VP) are arranged at a required portion (11) of the reaction chamber (10) as a main body, and a tip portion (12) of the chamber is formed. ), The source gas inlets (Na, Nb) are arranged on both sides of the inert gas inlet (Nc), respectively, and the substrate to be grown (W) is located between the front end and the required part in the chamber. A thin film forming apparatus characterized in that it is configured to move by moving.
JP22711888A 1988-09-09 1988-09-09 Method and apparatus for forming thin film Expired - Fee Related JP2717972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22711888A JP2717972B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22711888A JP2717972B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Publications (2)

Publication Number Publication Date
JPH0274029A JPH0274029A (en) 1990-03-14
JP2717972B2 true JP2717972B2 (en) 1998-02-25

Family

ID=16855759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22711888A Expired - Fee Related JP2717972B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Country Status (1)

Country Link
JP (1) JP2717972B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763222B2 (en) * 1991-12-13 1998-06-11 三菱電機株式会社 Chemical vapor deposition method, chemical vapor deposition processing system and chemical vapor deposition apparatus therefor
US5480818A (en) * 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers

Also Published As

Publication number Publication date
JPH0274029A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
JP3181171B2 (en) Vapor phase growth apparatus and vapor phase growth method
US5250148A (en) Process for growing GaAs monocrystal film
US5711813A (en) Epitaxial crystal growth apparatus
JP2712367B2 (en) Method and apparatus for forming thin film
JPH05102189A (en) Formation method of thin film, silicon thin film and formation method of silicon thin-film transistor
JP2717972B2 (en) Method and apparatus for forming thin film
JPS6291495A (en) Vapor growth method for thin semiconductor film
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JP2743471B2 (en) (III)-Vapor phase growth apparatus for Group V compound semiconductor
JP2743444B2 (en) (III)-Vapor phase growth apparatus for Group V compound semiconductor
JP3952556B2 (en) Molecular beam epitaxy system
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH01290221A (en) Semiconductor vapor growth method
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH02116120A (en) Crystal growth method
JPS6355193A (en) Apparatus for growing compound semiconductor crystal
JP3242333B2 (en) Compound semiconductor vapor phase growth apparatus and growth method using the same
JPS61260622A (en) Growth for gaas single crystal thin film
JPH02143419A (en) Method and apparatus for forming thin film by vapor growth
JPS60131968A (en) Vapor growth deposition device
JPH03211723A (en) Forming thin film by vapor phase epitaxy, manufacture of transistor, and apparatus for vapor phase epitaxy
JPH04162418A (en) Chemical vapor growth method
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPS63204718A (en) Organic metal vapor growth device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees