JP2715265B2 - Cross-flow heat exchanger - Google Patents
Cross-flow heat exchangerInfo
- Publication number
- JP2715265B2 JP2715265B2 JP7054969A JP5496995A JP2715265B2 JP 2715265 B2 JP2715265 B2 JP 2715265B2 JP 7054969 A JP7054969 A JP 7054969A JP 5496995 A JP5496995 A JP 5496995A JP 2715265 B2 JP2715265 B2 JP 2715265B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- tube
- tank chamber
- heat exchanger
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0214—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
- F28F9/0217—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車のラジエー
タ等に使用される直交流熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-flow heat exchanger used for a radiator of an automobile.
【0002】[0002]
【従来の技術】冷却液の流動方向に対して空気の流動方
向が直交する、いわゆる直交流熱交換器は、図5に示す
ような構造のものである。すなわち、図中1はフィンチ
ューブ型の直交流熱交換器で、垂直方向に定間隔で並列
したフィン2,2間に冷却液通路用の偏平チューブ3が
水平方向に複数本並列状態で挿入固定されており、該偏
平チューブ3の上下開口端部には平板状のエンドプレー
ト4を介して上部タンク5及び下部タンク6が夫々装着
されている。2. Description of the Related Art A so-called cross-flow heat exchanger in which the flow direction of air is orthogonal to the flow direction of a cooling liquid has a structure as shown in FIG. More specifically, reference numeral 1 denotes a fin tube type cross-flow heat exchanger, in which a plurality of flat tubes 3 for a coolant passage are inserted and fixed in a horizontal state between fins 2 and 2 arranged in parallel at regular intervals in a vertical direction. An upper tank 5 and a lower tank 6 are attached to the upper and lower open ends of the flat tube 3 via flat end plates 4 respectively.
【0003】そして、この種の直交流熱交換器1には、
図6に示すように、空気Aの流動方向から見た場合、前
記偏平チューブ3が複数本配列されたものを上下又は左
右のタンクに接続され、夫々の偏平チューブ3によって
一方向に冷却液が流れる1パスタイプのものと、図7に
示すように、タンク5内に仕切壁7を設けて、冷却液が
互いに逆方向に流れる2パスタイプのものとに大別され
る。[0003] This type of cross-flow heat exchanger 1 includes:
As shown in FIG. 6, when viewed from the flow direction of the air A, a plurality of the flat tubes 3 arranged in a row are connected to upper and lower or left and right tanks. As shown in FIG. 7, a partition wall 7 is provided in the tank 5 so that the coolant flows in opposite directions to each other.
【0004】而して、前記図6に示す1パスタイプの直
交流熱交換器1は、上部タンク5の吸水口5aから注入
された冷却液Wは、偏平チューブ3内を流下して下部タ
ンク6の排水口6aから排出するよう循環させるとゝも
に、前記フィン2及び偏平チューブ3間に、矢印で示す
ように水平方向、すなわち、冷却液Wの流通方向に対し
て直交する方向から空気Aを通過させることにより、前
記偏平チューブ3内を流下する冷却液Wを冷却するもの
であるが、この1パスタイプの直交流熱交換器1は、図
7に示す2パスタイプのものと比較し、その性能が劣る
ことが知られている。[0006] In the one-pass type cross-flow heat exchanger 1 shown in FIG. 6, the cooling liquid W injected from the water suction port 5 a of the upper tank 5 flows down the flat tube 3 to the lower tank 5. When the air is circulated so as to be discharged from the drain port 6a of the cooling water 6, the air flows between the fin 2 and the flat tube 3 in a horizontal direction as indicated by an arrow, that is, in a direction orthogonal to the flowing direction of the cooling liquid W. A is used to cool the cooling liquid W flowing down the flat tube 3 by passing the A. The 1-pass type cross-flow heat exchanger 1 is compared with the 2-pass type heat exchanger shown in FIG. And its performance is known to be inferior.
【0005】すなわち、2パスタイプの熱交換器は、前
記図7に示すように、前記直交流熱交換器1を側面から
見た場合、空気Aの流動方向に対して複数本の偏平チュ
ーブ3A,3Bが前後に重なり合って立設しているとゝ
もに、上部タンク5内は仕切壁7により左右に2分割さ
れ、この分割された一方の上部タンク室5Aには吸水口
7aが、他方の上部タンク室5Bには排水口8aが夫々
設けられている。そして、前記分割された上部タンク室
5A,5B内にはそれぞれ偏平チューブ3A,3Bの上
端が各別に開口している。That is, as shown in FIG. 7, when the cross-flow heat exchanger 1 is viewed from the side, the two-pass type heat exchanger has a plurality of flat tubes 3A in the flow direction of the air A. , 3B are erected on top of each other, and the inside of the upper tank 5 is divided into two right and left by a partition wall 7. One of the divided upper tank chambers 5A has a water inlet 7a, and the other has a water inlet 7a. A drain port 8a is provided in each of the upper tank chambers 5B. The upper ends of the flat tubes 3A and 3B are respectively opened in the divided upper tank chambers 5A and 5B.
【0006】従って、一方の上部タンク室5Aの吸水口
7aから注入された冷却液Wは、一方の偏平チューブ3
A内を流下して下部タンク6に流入した後、該下部タン
ク室6から他方の偏平チューブ3B内を上昇して他方の
上部タンク室5Bに流入し、排水口8aから排出するよ
う循環する。すなわち、一方の偏平チューブ3A内を流
れる冷却液の流れ方向と、他方の偏平チューブ3B内を
流れる冷却液の流れ方向とは互いに逆向きである。Therefore, the coolant W injected from the water inlet 7a of the upper tank chamber 5A is supplied to the flat tube 3A.
After flowing down into the lower tank 6 and flowing into the lower tank 6, the liquid flows upward from the lower tank chamber 6 into the other flat tube 3B, flows into the other upper tank chamber 5B, and is circulated so as to be discharged from the drain port 8a. That is, the flow direction of the coolant flowing through one flat tube 3A and the flow direction of the coolant flowing through the other flat tube 3B are opposite to each other.
【0007】ここで、前記図7に示す2パスタイプの直
交流熱交換器1において、その冷却液Wの流れ方には、
図8に示すパターンのものと、図9に示すパターンのも
のの2つがある。先ず、図8に示すものは、いずれも複
数本の偏平チューブ3A,3Bからなる2組のパス群P
1,P2から構成され、吸水口7aから注入された冷却
液Wは一方のパス群P1の各チューブ3Aに分岐して流
下し、その下端で合流して冷却液Wの温度が混合された
後、他方のパス群P2の各チューブ3Bの下端で分岐し
て上昇し、その上端で合流して排水口8aから排出され
る。[0007] In the two-pass type cross-flow heat exchanger 1 shown in FIG.
There are two types, a pattern shown in FIG. 8 and a pattern shown in FIG. First, the two shown in FIG. 8 are two sets of path groups P each including a plurality of flat tubes 3A and 3B.
1 and P2, and the coolant W injected from the water inlet 7a branches off into each tube 3A of one of the path groups P1 and flows down, merges at the lower end thereof, and the temperature of the coolant W is mixed. At the lower end of each tube 3B of the other path group P2, it branches and rises, merges at its upper end, and is discharged from the drain 8a.
【0008】また図9に示すパターンのものは、吸水口
7aから注入された冷却液Wは、一方のパス群P1の各
チューブ3Aに分岐して流下した後、合流することなく
他方のパス群P2の各チューブ3Bの下端から各別に夫
々上昇し、その上端で合流して排水口8aから排出され
る。要するに、従来例の2パスタイプの熱交換器は、2
組のパス群P1,P2のチューブ3A,3Bを流れる冷
却液Wは、互いに逆向きの流れのものである。In the pattern shown in FIG. 9, the coolant W injected from the water inlet 7a branches off into each tube 3A of one path group P1, flows down, and then does not merge with the other path group. Each of the tubes 3B of P2 rises individually from the lower end thereof, merges at the upper end thereof, and is discharged from the drain 8a. In short, the conventional two-pass type heat exchanger is
The cooling liquids W flowing through the tubes 3A, 3B of the set of path groups P1, P2 have opposite flows.
【0009】[0009]
【発明が解決しようとする課題】而して、前記図7のよ
うな構成からなる2パスタイプの直交流熱交換器1は、
1パスタイプのものと比較して、熱通過ユニット(NT
U)が1では3%程度の温度効率が改善され、NTUが
2以上では5%程度の温度効率が改善されるが、この場
合でも5%程度の温度効率の改善で頭打ちとなってい
る。The two-pass type cross-flow heat exchanger 1 having the structure as shown in FIG.
Compared to the one-pass type, the heat passage unit (NT
When U) is 1, the temperature efficiency is improved by about 3%, and when NTU is 2 or more, the temperature efficiency is improved by about 5%. However, even in this case, the improvement in the temperature efficiency by about 5% has leveled off.
【0010】[0010]
【課題を解決するための手段】本発明は、直交流熱交換
器の温度効率の改良といった観点から、2パスタイプの
ものにおいて冷却液の流し方を改善することにより、温
度効率が最も良いとされる向流タイプ、すなわち、冷却
液の流動方向に対して空気の流動方向を逆向きに流す熱
交換器の温度効率に近いものを提供することを目的とし
たものであり、その要旨は、冷却液通路用のチューブに
直交方向から空気を流して冷却液を冷却する直交流熱交
換器において、空気の流動方向に対して前記冷却液通路
用のチューブを横列方向に前後二列に配設するとゝも
に、該前後2列のチューブの上下に設けた上部及び下部
タンクの内部を仕切壁により前後に仕切って前・後方側
タンク室を夫々形成し、前記後列側チューブの上下端を
前記上・下部タンクの後方側タンク室と、又前列側チュ
ーブの上下端を上・下部タンクの前方側タンク室と夫々
連続せしめるとゝもに、前記下部タンクの下部後方側タ
ンク室と上部タンクの上部前方側タンク室とを直結して
なり、上部タンクの上部後方側タンク室から前記後列側
チューブを経て前記下部後方側タンク室に入った冷却液
を前記上部前方側タンク室に導入し、該上部前方側タン
ク室から前記前列側チューブを経て前記下部前方側タン
ク室に流す構成としたことを特徴とする直交流熱交換器
にある。SUMMARY OF THE INVENTION According to the present invention, from the viewpoint of improving the temperature efficiency of a cross-flow heat exchanger, it is possible to improve the temperature efficiency by improving the flow of a coolant in a two-pass type. The purpose of the present invention is to provide a counter-current type that is close to the temperature efficiency of a heat exchanger that allows the flow direction of air to flow in the opposite direction to the flow direction of the coolant, the gist of which is: In a cross-flow heat exchanger that cools a coolant by flowing air from a direction orthogonal to a coolant passage tube, the coolant passage tubes are arranged in two front and rear rows in a horizontal direction with respect to a flow direction of the air. Then, the inside of the upper and lower tanks provided above and below the front and rear two rows of tubes are partitioned back and forth by partition walls to form front and rear tank chambers, respectively. Upper and lower tanks The rear tank chamber and the upper and lower ends of the front tube are connected to the front tank chambers of the upper and lower tanks, respectively, and the lower rear tank chamber of the lower tank and the upper front tank chamber of the upper tank are also connected. The cooling liquid that has entered the lower rear tank chamber via the rear row tube from the upper rear tank chamber of the upper tank is introduced into the upper front tank chamber, and the upper front tank chamber is connected to the upper front tank chamber. A cross-flow through the front tube to the lower front tank chamber.
【0011】[0011]
【発明の実施の形態】以下、本発明を図1乃至図4に示
す実施例により詳細に説明するに、図において、1はフ
ィンチューブ型の直交流熱交換器で、垂直方向に定間隔
で並列したフィン2に、複数本の冷却液通路用の偏平な
チューブ3が水平方向に並列状態で挿入固定されてい
る。すなわち、前記チューブ3は、前記直交流熱交換器
1の側面(空気Aの流動方向)から見た場合、複数本の
チューブ3A,3Bが横列方向に前後二列に配設されて
いる。そして、この後列側のチューブ3A及び前列側の
チューブ3Bの上下の開口端部は上下のエンドプレート
4,4に固定されており、その開口部はエンドプレート
4の上下に夫々形成した上部タンク5及び下部タンク6
内と夫々連通している。。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the embodiments shown in FIGS. 1 to 4. In the drawings, reference numeral 1 denotes a fin tube type cross-flow heat exchanger, which is arranged at regular intervals in the vertical direction. A plurality of flat tubes 3 for the coolant passages are inserted and fixed in the parallel fins 2 in the horizontal direction. That is, when the tubes 3 are viewed from the side surface (the flow direction of the air A) of the cross-flow heat exchanger 1, a plurality of tubes 3A and 3B are arranged in two front and rear rows in the row direction. Upper and lower end plates 4 and 4 of upper and lower end plates 4 and 4 are fixed to upper and lower end plates 4 and 4 of the rear row tube 3A and the front row tube 3B, respectively. And lower tank 6
They communicate with each other. .
【0012】また、上部タンク5内及び下部タンク6内
はそれぞれ仕切壁7及び8により左右に2分割されてお
り、上部タンク5の分割された上部後方側のタンク室5
A及び上部前方側のタンク室5B内には、夫々前記後列
側のチューブ3A及び前列側のチューブ3Bの上端が各
別に開口しているとゝもに、下部タンク6の前記分割さ
れた下部後方側のタンク室6A及び下部前方側のタンク
室6B内には、夫々前記後列側のチューブ3A及び前列
側のチューブ3Bの下端が各別にそれぞれ開口してい
る。The interior of the upper tank 5 and the interior of the lower tank 6 are divided into two parts by partition walls 7 and 8 respectively.
A and the upper front side of the tank chamber 5B, respectively, the upper end of the rear row side tube 3A and the front row side tube 3B are opened separately, respectively. The lower ends of the rear row tubes 3A and the front row tubes 3B are respectively opened in the tank chamber 6A on the side and the tank chamber 6B on the lower front side, respectively.
【0013】そして、上部タンク5の前記分割された上
部後方側のタンク室5A及び上部前方側のタンク室5B
にはそれぞれ吸水口9a及び11aが、又下部タンク6
の前記分割された下部後方側のタンク室6A及び下部前
方側のタンク室6Bにはそれぞれ排水口10a及び12
aが夫々設けれており、下部後方側のタンク室6Aに設
けた前記排水口10aは上部前方側のタンク室5Bに設
けた吸水口11aに直結されている。したがって、前記
後列側のチューブ3Aと前列側のチューブ3Bとはその
下端と上端とで直列に連結されていことになる。The divided upper rear tank chamber 5A and upper front tank chamber 5B of the upper tank 5 are divided.
Are provided with water inlets 9a and 11a, respectively.
The divided lower rear tank chamber 6A and lower front tank chamber 6B have drain ports 10a and 12a, respectively.
The drain port 10a provided in the lower rear tank chamber 6A is directly connected to the water intake port 11a provided in the upper front tank chamber 5B. Therefore, the rear tube 3A and the front tube 3B are connected in series at their lower ends and upper ends.
【0014】そこで、上部タンク5の上部後方側のタン
ク室5Aの吸水口9aから注入された冷却液Wは、後列
側のチューブ3A内を流下して下部タンク6の下部後方
側のタンク室6A内に流入する。そして、この部方後方
側のタンク室6Aの排水口10aから上部タンク5の上
部前方側のタンク室5B内にその吸水口11aから流入
し、前列側のチューブ3B内を流下して下部前方側のタ
ンク室6B内に入り、その排水口12aから排水する流
れ(並流)となる。Therefore, the coolant W injected from the water suction port 9a of the tank chamber 5A on the upper rear side of the upper tank 5 flows down in the tube 3A on the rear row side and the tank chamber 6A on the lower rear side of the lower tank 6 Flows into. Then, it flows into the tank chamber 5B on the upper front side of the upper tank 5 from the drain port 10a of the tank chamber 6A on the part rear side from the water suction port 11a, flows down the tube 3B on the front row side, and flows into the lower front side. And flows into the tank chamber 6B of the above (drainage) and drains from the drain port 12a (cocurrent).
【0015】冷却液Wが前記の経路を流動する過程にお
いて、前記フィン2及びチューブ3間に、図1の矢印で
示すように、水平方向から空気Aを通過させることによ
り、前記後列側のチューブ3A及び前列側のチューブ3
B内を夫々流下する冷却液Wを冷却するが、特に高温と
なっている冷却液が流下する後列側のチューブ3Aを見
た場合、そのチューブ3A内を流下する高温側流体の温
度と、このチューブ3A間を流動する空気の温度との差
がほぼ均一となる。In the course of the flow of the cooling liquid W through the above-mentioned path, the air A is passed from the horizontal direction between the fins 2 and the tubes 3 as shown by arrows in FIG. 3A and front row tube 3
The cooling liquid W flowing down in each of the tubes B is cooled. When the tube 3A in the rear row, in which the cooling liquid having a high temperature flows down, is seen, the temperature of the high-temperature side fluid flowing down the tube 3A and The difference from the temperature of the air flowing between the tubes 3A becomes substantially uniform.
【0016】すなわち、高温側流体が流下する後列側の
チューブ3Aと、これよりも低温の低温側流体が流下す
る前列側のチューブ3Bを、それぞれAとB及びCとD
のコアに2分割した図10の(イ)に示す説明図により
詳述すると、前列側の各コアC,Dは夫々同じ温度の空
気T1により冷却される。つぎに、この空気T1が前記
各コアC及びD間を通過することにより、夫々加温され
た空気T2及びT3により後列側の各コアA及びBを夫
々冷却することになるが、この時コアAはコアBより高
温(A>B)である。That is, tubes 3A in the rear row through which the high-temperature fluid flows down and tubes 3B in the front row through which the lower-temperature fluid flows lower are respectively denoted by A and B and C and D respectively.
More specifically, with reference to the explanatory diagram shown in FIG. 10A divided into two cores, the cores C and D in the front row are cooled by air T1 having the same temperature. Next, when the air T1 passes between the cores C and D, the cores A and B in the rear row are cooled by the heated airs T2 and T3, respectively. A is higher in temperature than core B (A> B).
【0017】而して、前列側のコアCはコアDより高温
であるため、コアCを通過した空気T2はコアDを通過
した空気T3より高温(T2>T3)となる。そのた
め、高温のコアAは高温の空気T2により、又低温のコ
アBは低温の空気T3により夫々冷却されることにな
る。その結果、図10の(ロ)の説明図に示すように、
コアA及びBの各温度と、これに接する空気T2及びT
3の温度との差hが、吸水口9aの側と排水口10aの
側の間でほぼ均一となり、それだけ温度効率が向上する
ことになる。Since the temperature of the core C in the front row is higher than that of the core D, the temperature of the air T2 passing through the core C is higher than the temperature of the air T3 passing through the core D (T2> T3). Therefore, the high-temperature core A is cooled by the high-temperature air T2, and the low-temperature core B is cooled by the low-temperature air T3. As a result, as shown in an explanatory diagram of FIG.
Each temperature of the cores A and B and air T2 and T
The difference h from the temperature of No. 3 becomes substantially uniform between the side of the water inlet 9a and the side of the drain port 10a, and the temperature efficiency is improved accordingly.
【0018】これに対し、図7に示す従来構造のもの
は、図11の(イ)に示すように、コアCを通過した高
温の空気T2(コアDを通過した空気T3より高温)が
コアAより低温のコアBを、又コアDを通過した低温の
空気T3がコアBより高温のコアAを夫々冷却すること
になるため、高温のコアAは低温の空気T3により、又
低温のコアBは高温の空気T2により夫々冷却されるこ
とになる。したがって、図11の(ロ)に示すように、
コアA及びBの各温度と、これに接する空気T3及びT
2の温度との差Hが、吸水口7a側では大きく、下部タ
ンク室6側で小さくなり、それだけ温度効率が悪くな
る。On the other hand, in the conventional structure shown in FIG. 7, as shown in FIG. 11A, the high-temperature air T2 passing through the core C (higher temperature than the air T3 passing through the core D) is applied to the core. Since the core B having a lower temperature than the core A and the cold air T3 having passed through the core D cool the core A having a higher temperature than the core B, the core A having a higher temperature is cooled by the air T3 having a lower temperature and the core having a lower temperature. B is cooled by the high-temperature air T2. Therefore, as shown in FIG.
Each temperature of the cores A and B and the air T3 and T
The difference H from the temperature 2 is large on the water suction port 7a side and small on the lower tank chamber 6 side, and the temperature efficiency deteriorates accordingly.
【0019】ここで、前記直列に連結するとゝもに並流
の2パス化した本発明に係る直交流熱交換器1の冷却液
Wの流れを、図2及び図3のパターンで示すと、先ず図
2に示すものは冷却水混合形で、複数本のチューブ3
A,3Bからなる2組のパス群P1,P2から構成され
ており、吸水口9aから上部後方側のタンク室5A内に
注入された冷却液Wは後列のパス群P1の各チューブ3
Aに分岐して流下し、その下端の下部後方側のタンク室
6A内で合流した後、前列のパス群P2の吸水口11a
から上部前方側のタンク室5B内に入り、ここからパス
群P2の各チューブ3Bに分岐して流下し、その下端の
下部前方側のタンク室6Bで合流してその排水口12a
から排水される。Here, the flow of the coolant W in the cross-flow heat exchanger 1 according to the present invention, which is formed into two passes in parallel when connected in series, is shown by the patterns of FIGS. First, the cooling water mixing type shown in FIG.
A and 3B are composed of two sets of path groups P1 and P2, and the coolant W injected into the upper rear tank chamber 5A from the water suction port 9a is supplied to each tube 3 of the rear path group P1.
A, branches down and flows down, merges in the tank room 6A on the lower rear side of the lower end, and then the water intake port 11a of the path group P2 in the front row
From above into the upper front tank chamber 5B, from which it branches off into each tube 3B of the path group P2, flows down, joins in the lower front tank chamber 6B at the lower end, and its drain port 12a.
Drained from
【0020】また、図3に示すパターンは冷却水非混合
形で、後列のパス群P1の吸水口9aから上部後方側の
タンク室5A内に注入された冷却液Wは、パス群P1の
各チューブ3Aに分岐して流下した後、下部後方側のタ
ンク室6A内で合流することなく、前列のパス群P2の
上部前方側のタンク室5Bに入る。そして、ここからパ
ス群P2の各チューブ3Bに各別に流下し、その下端の
下部前方側のタンク室6Bで合流して排水口12aから
排水される。要するに、前記いずれのものも、直列に連
結された両パス群P1及びP2の各チューブ3A,3B
内を一系統の冷却液Wが同一方向(並列的に下方向)に
流れるのである。The pattern shown in FIG. 3 is a cooling water non-mixing type, and the cooling liquid W injected into the tank room 5A on the upper rear side from the water suction port 9a of the path group P1 in the rear row is used for each pattern of the path group P1. After branching off to the tube 3A and flowing down, it enters the upper front tank chamber 5B of the path group P2 in the front row without merging in the lower rear tank chamber 6A. Then, it flows down to each tube 3B of the path group P2 separately from here, merges in the tank room 6B at the lower front side of the lower end thereof, and is drained from the drain port 12a. In short, each of the tubes 3A, 3B of the two path groups P1 and P2 connected in series.
One system of the cooling liquid W flows in the same direction (downward in parallel).
【0021】なお、前記実施例では、空気Aの流通方向
に対する後列側のチューブ3Aと前列側のチューブ3B
の連結は、外部において一方の下部後方側のタンク室6
Aの排水口10aと他方の上部前方側のタンク室5Bの
吸水口11aとを直結しているが、図4の実施例では、
直交流熱交換器1内部において、一方の下部後方側のタ
ンク室6Aと他方の上部前方側のタンク室5Bとを斜状
チューブ11で直結した構造のものである。In the above embodiment, the rear tube 3A and the front tube 3B in the flow direction of the air A are used.
Is connected to the lower one of the tank chambers 6 on the rear side.
Although the drain port 10a of A is directly connected to the water inlet port 11a of the tank chamber 5B on the upper front side on the other side, in the embodiment of FIG.
Inside the cross-flow heat exchanger 1, the tank chamber 6 </ b> A on one lower rear side and the tank chamber 5 </ b> B on the other upper front side are directly connected by an oblique tube 11.
【0022】従って、一方の上部後方側のタンク室5A
から後列側のチューブ3A内を流下した冷却液Wは、そ
の下部後方側のタンク室6Aから前記斜状チューブ11
内を上昇して他方の上部前方側のタンク室5B内に流入
した後、該タンク室5Bから他方の前列側のチューブ3
B内を流下して下部前方側のタンク室6B内に流入す
る。その他の点については前記実施例と同様である。Therefore, the tank chamber 5A on one upper rear side
The coolant W that has flowed down through the tube 3A on the rear row side from the tank chamber 6A on the lower rear side of the tube 3A
After flowing up into the other upper front tank chamber 5B, the other front tube 3
B flows down into the tank chamber 6B on the lower front side. The other points are the same as in the above embodiment.
【0023】而して、計算の結果、NTUが1では、冷
却液Wの流し方、すなわち、図7に示す従来のような冷
却液が互いに逆方向に流れるものと、本発明のように冷
却液が互いに同じ方向に流れるものとでは、温度効率に
よる差異は少ないが、NTUが2以上では、前者では5
%程度であるのに対して後者では6%以上となり、温度
効率が向上した。As a result of the calculation, when the NTU is 1, the flow of the coolant W, that is, the conventional coolant shown in FIG. There is little difference in temperature efficiency between liquids flowing in the same direction as each other.
%, Whereas in the latter case it was 6% or more, and the temperature efficiency was improved.
【0024】また、2パス間の冷却液の混合・非混合に
ついては、従来のものではその差が少ないが、本発明の
ものでは、非混合の方が混合の場合より1〜1.5%程
度熱効率が良くなっている。特に、本発明のもので非混
合の場合、温度効率の改善効果が大きく、NTUが5で
は7.8%の温度効率となり、その効果は顕著であっ
た。The difference between the mixing and non-mixing of the cooling liquid between the two passes is small in the conventional one, but in the present invention, the non-mixing is 1 to 1.5% more than the mixing in the mixing. The degree of thermal efficiency has improved. In particular, in the case of the non-mixture of the present invention, the effect of improving the temperature efficiency was large, and when NTU was 5, the temperature efficiency was 7.8%, which was remarkable.
【0025】[0025]
【発明の効果】本発明に係る直交流熱交換器は、上記の
ように、冷却液通路用のチューブに直交方向から空気を
流して冷却液を冷却する直交流熱交換器において、空気
の流動方向に対して前記冷却液通路用のチューブを横列
方向に前後二列に配設するとゝもに、該前後2列のチュ
ーブの上下に設けた上部及び下部タンクの内部を仕切壁
により前後に仕切って前・後方側タンク室を夫々形成
し、前記後列側チューブの上下端を前記上・下部タンク
の後方側タンク室と、又前列側チューブの上下端を上・
下部タンクの前方側タンク室と夫々連続せしめるとゝも
に、前記下部タンクの下部後方側タンク室と上部タンク
の上部前方側タンク室とを直結してなり、上部タンクの
上部後方側タンク室から前記後列側チューブを経て前記
下部後方側タンク室に入った冷却液を前記上部前方側タ
ンク室に導入し、該上部前方側タンク室から前記前列側
チューブを経て前記下部前方側タンク室に流す構成のも
のであるから、温度効率が格段に向上するといった効果
がある。As described above, the cross-flow heat exchanger according to the present invention is a cross-flow heat exchanger that cools a coolant by flowing air from a direction orthogonal to a tube for a coolant passage. The tubes for the coolant passages are arranged in two rows in the front and rear direction in the horizontal direction, and the insides of the upper and lower tanks provided above and below the two rows of tubes are partitioned forward and backward by partition walls. The front and rear tank chambers are respectively formed, and the upper and lower ends of the rear row tubes are connected to the rear tank chambers of the upper and lower tanks.
At the same time as being connected to the front tank chamber of the lower tank, respectively, the lower rear tank chamber of the lower tank and the upper front tank chamber of the upper tank are directly connected to each other. A structure in which the cooling liquid that has entered the lower rear tank chamber via the rear row tube is introduced into the upper front tank chamber, and flows from the upper front tank chamber to the lower front tank chamber via the front tube. Therefore, there is an effect that the temperature efficiency is remarkably improved.
【図1】本発明に係る直交流熱交換器の一実施例を示す
側面断面図である。FIG. 1 is a side sectional view showing one embodiment of a cross-flow heat exchanger according to the present invention.
【図2】直交流熱交換器の冷却液Wの流れ方の一例を示
すパターンである。FIG. 2 is a pattern showing an example of a flow of a coolant W in a cross-flow heat exchanger.
【図3】同じく冷却液Wの流れ方の他例を示すパターン
である。FIG. 3 is a pattern showing another example of how the coolant W flows.
【図4】直交流熱交換器の他実施例を示す側面断面図で
ある。FIG. 4 is a side sectional view showing another embodiment of the cross-flow heat exchanger.
【図5】汎用の直交流熱交換器の一部を切除した斜視図
である。FIG. 5 is a perspective view in which a part of a general-purpose cross-flow heat exchanger is cut away.
【図6】従來の直交流熱交換器の一実施例を示す側面断
面図である。FIG. 6 is a side sectional view showing one embodiment of a conventional cross-flow heat exchanger.
【図7】従来の直交流熱交換器の他実施例を示す側面断
面図である。FIG. 7 is a side sectional view showing another embodiment of the conventional cross-flow heat exchanger.
【図8】従来の直交流熱交換器の冷却液Wの流れ方の一
例を示すパターンである。FIG. 8 is a pattern showing an example of a flow of a coolant W in a conventional cross-flow heat exchanger.
【図9】同じく冷却液Wの流れ方の他例を示すパターン
である。FIG. 9 is a pattern showing another example of how the coolant W flows.
【図10】本発明に係る直交流熱交換器の作用説明図で
ある。FIG. 10 is an operation explanatory view of the cross-flow heat exchanger according to the present invention.
【図11】従来の直交流熱交換器の作用説明図である。FIG. 11 is a diagram illustrating the operation of a conventional cross-flow heat exchanger.
1 フィンチューブ型の直交流熱交換器 2 フィン 3 偏平チューブ 3A 後列側のチューブ 3B 前列側のチューブ 4 エンドプレート 5 上部タンク 5A 上部後方側タンク室 5B 上部前方側タンク室 6 下部タンク 6A 下部後方側タンク室 6B 下部前方側タンク室 7 仕切壁 8 仕切壁 9a 吸水口 10a 排水口 11a 吸水口 12a 排水口 W 冷却液 A 空気 DESCRIPTION OF SYMBOLS 1 Fin-tube type cross-flow heat exchanger 2 Fin 3 Flat tube 3A Back row tube 3B Front row tube 4 End plate 5 Upper tank 5A Upper rear tank chamber 5B Upper front tank chamber 6 Lower tank 6A Lower rear side Tank room 6B Lower front side tank room 7 Partition wall 8 Partition wall 9a Water intake port 10a Drain port 11a Water intake port 12a Drain port W Coolant A Air
Claims (1)
空気を流して冷却液を冷却する直交流熱交換器におい
て、空気の流動方向に対して前記冷却液通路用のチュー
ブを横列方向に前後二列に配設するとゝもに、該前後2
列のチューブの上下に設けた上部及び下部タンクの内部
を仕切壁により前後に仕切って前・後方側タンク室を夫
々形成し、前記後列側チューブの上下端を前記上・下部
タンクの後方側タンク室と、又前列側チューブの上下端
を上・下部タンクの前方側タンク室と夫々連続せしめる
とゝもに、前記下部タンクの下部後方側タンク室と上部
タンクの上部前方側タンク室とを直結してなり、上部タ
ンクの上部後方側タンク室から前記後列側チューブを経
て前記下部後方側タンク室に入った冷却液を前記上部前
方側タンク室に導入し、該上部前方側タンク室から前記
前列側チューブを経て前記下部前方側タンク室に流す構
成としたことを特徴とする直交流熱交換器。In a cross-flow heat exchanger for cooling a coolant by flowing air from a direction orthogonal to a tube for a coolant passage, the tube for a coolant passage is moved back and forth in a row direction with respect to a flow direction of the air. When arranged in two rows, the front and rear 2
The upper and lower tanks provided above and below the row of tubes are partitioned back and forth by partition walls to form front and rear tank chambers, respectively, and the upper and lower ends of the rear row tubes are rear tanks of the upper and lower tanks. The upper and lower ends of the upper and lower tanks are connected to the upper and lower tanks, respectively, and the lower rear tank chamber of the lower tank is directly connected to the upper front tank chamber of the upper tank. The cooling liquid that has entered the lower rear tank chamber through the rear tube from the upper rear tank chamber of the upper tank is introduced into the upper front tank chamber, and from the upper front tank chamber, A cross-flow heat exchanger, wherein the heat is passed through the lower tube to the lower front tank chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7054969A JP2715265B2 (en) | 1995-02-20 | 1995-02-20 | Cross-flow heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7054969A JP2715265B2 (en) | 1995-02-20 | 1995-02-20 | Cross-flow heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08226779A JPH08226779A (en) | 1996-09-03 |
JP2715265B2 true JP2715265B2 (en) | 1998-02-18 |
Family
ID=12985495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7054969A Expired - Fee Related JP2715265B2 (en) | 1995-02-20 | 1995-02-20 | Cross-flow heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2715265B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60222092T2 (en) * | 2001-02-05 | 2008-07-24 | Showa Denko K.K. | DUPLEX HEAT EXCHANGERS AND COOLING SYSTEM EQUIPPED WITH THIS HEAT EXCHANGER |
EP1554528A4 (en) * | 2002-10-24 | 2014-04-30 | Showa Denko Kk | Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device |
KR102342091B1 (en) * | 2015-01-20 | 2021-12-22 | 삼성전자주식회사 | Heat exchanger |
DE102018207902A1 (en) * | 2018-05-18 | 2019-11-21 | Mahle International Gmbh | Heat exchanger, in particular intercooler, for an internal combustion engine |
KR20240084182A (en) * | 2022-12-06 | 2024-06-13 | 한온시스템 주식회사 | Heat exchanger |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5840074A (en) * | 1981-09-01 | 1983-03-08 | Hisashi Gondo | Preparation of food |
JPS58107749A (en) * | 1981-12-22 | 1983-06-27 | Fujitsu Ltd | Correspondence automating system |
JPS592123A (en) * | 1982-06-29 | 1984-01-07 | Fujitsu Ltd | Telephone terminal equipment controlling system |
-
1995
- 1995-02-20 JP JP7054969A patent/JP2715265B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08226779A (en) | 1996-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3705859B2 (en) | Heat exchanger with distribution device | |
JPH09170851A (en) | Refrigerant evaporator | |
US20140374072A1 (en) | Kit for a heat exchanger, a heat exchanger core, and heat exchanger | |
WO2011058924A1 (en) | Vapor cooling heat exchanger | |
JP2715265B2 (en) | Cross-flow heat exchanger | |
JPH11157326A (en) | Heat exchanger | |
JP2900067B2 (en) | Water-cooled intercooler | |
KR101075164B1 (en) | Heat exchanger | |
JP2006200861A (en) | Multi-fluid heat exchanger | |
JPH0674609A (en) | Heat exchanger | |
KR20100027324A (en) | Integrated radiator | |
JP2000205787A (en) | Water heat exchanger | |
KR102624703B1 (en) | Cooling module for fuel cell vehicle | |
JP4547205B2 (en) | Evaporator | |
JP2006266114A (en) | Heat exchanging device | |
JPH10238343A (en) | Radiator for vehicle | |
JP2011149671A (en) | Ebullient cooling type heat exchanger | |
US6237680B1 (en) | Laminar flow radiator for motor vehicle | |
KR100705482B1 (en) | Heat exchanger | |
KR100917171B1 (en) | Heat-exchanger | |
KR101082475B1 (en) | Heat exchanger | |
RU2043592C1 (en) | Multi-path heat exchanger | |
KR0136374Y1 (en) | Heat exchanger | |
CN206504648U (en) | Heat exchanger and the dryer with it | |
JPS6269098A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |