JP2712698B2 - Method for producing C / C composite material by composite gas phase impregnation method - Google Patents

Method for producing C / C composite material by composite gas phase impregnation method

Info

Publication number
JP2712698B2
JP2712698B2 JP2016966A JP1696690A JP2712698B2 JP 2712698 B2 JP2712698 B2 JP 2712698B2 JP 2016966 A JP2016966 A JP 2016966A JP 1696690 A JP1696690 A JP 1696690A JP 2712698 B2 JP2712698 B2 JP 2712698B2
Authority
JP
Japan
Prior art keywords
gas
composite
composite material
producing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016966A
Other languages
Japanese (ja)
Other versions
JPH03223165A (en
Inventor
光弘 奥村
真 宇都宮
保雄 向後
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016966A priority Critical patent/JP2712698B2/en
Publication of JPH03223165A publication Critical patent/JPH03223165A/en
Application granted granted Critical
Publication of JP2712698B2 publication Critical patent/JP2712698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は強度、靭性に優れたC/C複合材の製造方法
に関するものである。
The present invention relates to a method for producing a C / C composite material having excellent strength and toughness.

[従来の技術] 炭素繊維は高い引っ張り強度を有しており、この性質
を利用して、炭素繊維と他の炭素質材料とを複合化した
炭素繊維強化炭素(以下C/Cと略称する)複合材があ
る。かかるC/C複合材は在来の炭素材料と比較して数倍
の強度を有し、炭素材料の持つ脆くて弱い材料というイ
メージを一変させるものであり、その高強度、耐熱、耐
摩耗性等の物性を生かしてエレクトロニクス産業、原子
力産業、航空宇宙産業等の分野で巾広い利用が期待され
ている素材である。
[Prior art] Carbon fiber has high tensile strength, and utilizing this property, carbon fiber reinforced carbon (hereinafter abbreviated as C / C) in which carbon fiber is combined with another carbonaceous material. There are composites. Such C / C composites have several times the strength of conventional carbon materials and change the image of carbon materials as brittle and weak materials, and their high strength, heat resistance and abrasion resistance It is a material that is expected to be widely used in fields such as the electronics industry, nuclear power industry, and aerospace industry, taking advantage of such physical properties.

この種の複合材の製造方法としては、例えば、セルロ
ースやポリアクリロニトリル系繊維を炭化して得る炭素
繊維のトウ、編織布、不織布などを熱硬化性樹脂によ
り、所要の形状に成形した後、不活性ガス雰囲気中で熱
処理を行って樹脂を炭化させ、必要なら冷却後、再度同
じ工程を繰り返して製造する方法が知られている(例え
ば炭素No.115,P.196〜208,(1983))。
As a method for producing this type of composite material, for example, a carbon fiber tow, a woven fabric, a nonwoven fabric, or the like obtained by carbonizing cellulose or polyacrylonitrile-based fibers is formed into a required shape with a thermosetting resin, and then formed. There is known a method in which a resin is carbonized by heat treatment in an active gas atmosphere, and if necessary, after cooling, the same process is repeated again (for example, carbon No. 115, pages 196 to 208, (1983)). .

この方法で得られたC/C複合材は耐衝撃性に優れてお
り、比較的安価であることもあって実用に供されてい
る。しかし、樹脂の熱処理による炭化工程で体積収縮が
非常に大きいことから、条件によっては繊維の抜けだし
や亀裂の発生、また残留気孔を完全に除去することは不
可能であり、このことにより強度、靭性が不十分であ
る。また、他の方法として、第4図に示すように、セル
ロースやポリアクリロニトリル系繊維を炭化して得る炭
素繊維のトウ、編織布、不織布などを簡単に成形してプ
リフォーム(13)とした後、ヒータ(14)を備えた、炉
(15)に入れて800〜2000℃に加熱し、そこへ炭化水素
ガスを導入口(16)から導入して炭素繊維表面で分解炭
化させ、炭素を該繊維表面に沈着せしめて固める方法が
知られている(以下この方法をCVD法と称する)。(1
7)はガス排出口である。
The C / C composite material obtained by this method is excellent in impact resistance, and is practically used because it is relatively inexpensive. However, since the volume shrinkage is extremely large in the carbonization step by the heat treatment of the resin, it is impossible to completely remove the fibers from falling out or cracking and the residual pores depending on the conditions. Insufficient toughness. As another method, as shown in FIG. 4, a carbon fiber tow, knitted woven fabric, non-woven fabric, etc. obtained by carbonizing cellulose or polyacrylonitrile fiber is easily formed into a preform (13). Into a furnace (15) equipped with a heater (14) and heated to 800 to 2000 ° C., where hydrocarbon gas is introduced from an inlet (16) to be decomposed and carbonized on the carbon fiber surface, and the carbon is removed. There is known a method of depositing and hardening on a fiber surface (hereinafter, this method is referred to as a CVD method). (1
7) is a gas outlet.

該CVD法で得るC/C複合材は上記方法により得られるC/
C複合材よりは機械的特性に優れているものの、反応ガ
スをプリフォーム(13)、即ち予備成形体内部へ十分に
含浸させることができず、成形体内部に残留気孔が多
く、強度特性が不十分であった。この原因としては下記
のことが考えられる。炭化水素ガスが反応容器内に継続
的に供給され、最初に容器内に供給されたガスがプリフ
ォーム(13)内に含浸され、熱分解により炭素質が堆積
する。しかしながら、反応後に発生するガスがその場に
滞留することにより、反応可能な新たな炭化水素ガスの
プリフォーム(13)内への含浸が妨げられるので、プリ
フォーム(13)内部と周りの容器内とでは大きな差のあ
る濃度勾配が生じる。加えて、通常はガスの導入口(1
6)側と排出口(17)側とでは、常に圧力勾配が生じて
いるため、ガスの流れは、この勾配に従った一定のもの
となり、プリフォーム(13)内部ではなく排出口(17)
側へ向かって流れていくことになる。これら二つの勾配
がプリフォーム(13)内部への炭化水素ガスの十分な含
浸を妨げ、プリフォーム(13)内部より外部へ炭素質の
堆積が集中し、不均質な分解堆積を招き、その結果、成
形体内部に残留気孔が多く、強度特性の低い成形体しか
得られなくなるからである。また、複合化に長時間を要
し、複雑な形状の成形体を効率よく製造することは困難
であった。また、改良法として炭素繊維のマットにピッ
チ類を含浸後、加熱炭化させ、さらに多孔質部分を熱分
解炭素で充填し、複合材を得るというプロセスが知られ
ている。しかし、これらの方法では依然として、マトリ
ックス炭素質の不均一による、強度面の不具合が生じ、
より優れた製造方法が要求されている。
The C / C composite material obtained by the CVD method is C / C obtained by the above method.
Although it has better mechanical properties than the C composite material, the reactive gas cannot be sufficiently impregnated into the preform (13), that is, the inside of the preform, and there are many residual pores in the inside of the preform and the strength properties are low. It was not enough. The following can be considered as a cause of this. Hydrocarbon gas is continuously supplied into the reaction vessel, the gas initially supplied into the vessel is impregnated into the preform (13), and carbonaceous material is deposited by thermal decomposition. However, since the gas generated after the reaction stays in place, impregnation of the new reactable hydrocarbon gas into the preform (13) is hindered, so that the inside of the preform (13) and the surrounding containers And a concentration gradient having a large difference is generated. In addition, the gas inlet (1
Since there is always a pressure gradient between the 6) side and the discharge port (17) side, the gas flow is constant according to this gradient, and is not the inside of the preform (13) but the discharge port (17).
It will flow toward the side. These two gradients prevent sufficient infiltration of the hydrocarbon gas into the preform (13), and the carbonaceous deposition concentrates from the inside of the preform (13) to the outside, resulting in heterogeneous decomposition and deposition. This is because there are many residual pores inside the molded product, and only a molded product having low strength characteristics can be obtained. In addition, it takes a long time to form a composite, and it is difficult to efficiently produce a molded article having a complicated shape. Further, as an improved method, a process is known in which a carbon fiber mat is impregnated with pitches, heated and carbonized, and the porous portion is filled with pyrolytic carbon to obtain a composite material. However, these methods still suffer from strength problems due to non-uniform matrix carbonaceous material,
There is a need for better manufacturing methods.

[発明が解決しようとする課題] 従来のC/C複合材の製造方法では炭素系繊維を出発原
料にして、それらの織物など所要の形状に成形された成
形体に対して、樹脂の含浸、焼成、または単一の加熱方
式、または原料ガスの供給方式によるCVDによって炭素
質の充填などを行うため、残留気孔による機械的性質の
不十分さ、製造時の低効率、また、成形体の形状、大き
さなどの制約を免れないという課題があった。
[Problems to be Solved by the Invention] In a conventional method for producing a C / C composite material, a carbon-based fiber is used as a starting material, and impregnation with a resin is performed on a molded article formed into a desired shape such as a woven fabric. Filling of carbonaceous material by sintering, single heating method, or CVD by source gas supply method, resulting in insufficient mechanical properties due to residual pores, low efficiency during production, and the shape of the compact However, there was a problem that constraints such as size were inevitable.

この発明は上記のような課題を解決するためになされ
たもので、複合型の気相含浸によって、成形体の残留気
孔をほぼ完全になくし、強度の改善を可能にするととも
に、高速の成形を可能にすることを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to almost completely eliminate the residual pores of the molded body, improve the strength, and achieve high-speed molding by the composite-type gas-phase impregnation. It is intended to make it possible.

[課題を解決するための手段] この発明に係る複合型気相含浸法によるC/C複合材の
製造方法は、炭素系繊維を強化材とし、炭化水素ガス及
びハロゲン元素を含む炭化水素ガスの少なくとも1種以
上からなる原料ガスを熱分解し、生成した炭素質を堆
積、充填してC/C複合材を製造するに際して、光あるい
は電磁波で励起し反応を促進する、及びガスを間欠供給
する手法の少なくともいずれかをさらに加えて施すよう
にしたものである。
[Means for Solving the Problems] A method for producing a C / C composite material by a composite gas-phase impregnation method according to the present invention is a method for producing a carbon-based fiber as a reinforcing material, using a hydrocarbon gas and a hydrocarbon gas containing a halogen element. In producing a C / C composite material by pyrolyzing at least one raw material gas and depositing and filling the generated carbonaceous material, it is excited by light or electromagnetic waves to accelerate the reaction, and intermittently supplies the gas. At least one of the methods is further added.

[作用] この発明における複合型気相含浸法によるC/C複合材
の製造方法は、炭素系繊維のトウ、または炭素系繊維を
主成分とする予備成形体を反応容器内に導入し、加熱す
るとともに炭化水素原料ガスを導入して分解反応を生じ
せしめ、さらに例えばマイクロ波を重畳して分解、及び
炭素質の堆積、充填を効率よく実現する。
[Action] In the method for producing a C / C composite material by the composite gas-phase impregnation method in the present invention, a tow of carbon-based fiber or a preform mainly composed of carbon-based fiber is introduced into a reaction vessel and heated. At the same time, a hydrocarbon raw material gas is introduced to cause a decomposition reaction, and further, for example, microwaves are superimposed to efficiently realize decomposition, and deposition and filling of carbonaceous material.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図はこの発明の製造方法を示す図である。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a manufacturing method of the present invention.

レーヨン、ポリアクリロニトリル、石油あるいは石炭
ピッチを原料とした炭素系繊維のトウ(1)(繊維数10
0〜20000本からなる繊維の束)を反応容器(3)に導入
し、原料ガスとして、メタン、エタン、プロパン、ベン
ゼンなどの炭化水素ガスを導入口(6)から供給し、熱
源の一つとしてまず繊維のトウ(1)に電極(4)を通
じて電流を流して、繊維のトウ自体を加熱する。(5)
はシール部であり、(7)はガス排出口である。この段
階で原料ガスの熱分解は進行して繊維のトウの空間に炭
素質が分解、堆積して行くが、充填効率は十分でない。
従って、さらに導波管(9)を通してマグネトロン
(8)で発生した2000〜3000MHzのマイクロ波の重畳を
行う。このとき水素プラズマを発生させるのが効果的で
あった。この段階で原料ガスの分解、堆積は著しく促進
され、複合材の完全な緻密化と高速の製造が可能とな
る。この実施例ではメタンの分圧を20〜200Torr、繊維
温度700〜1400℃としたが、マイクロ波重畳の効果で比
較的低温、即ち、700〜1000℃で良好な炭素質の充填が
できた。メタン分圧は40〜80Torrの範囲で特に良好な結
果が得られた。原料ガスとしては他の炭化水素でも同様
な結果が得られているが、ジクロルエチレンなどではさ
らに低温(700℃以下)でも同様の結果を得ている。従
来の方法で熱分解のみで製造した場合には、繊維のトウ
のように小さい体積の複合材であっても高温と長時間を
要していた。第2図は熱分解とマイクロ波の複合方式で
C/C複合材を製造した場合の炭素質充填量の反応時間に
対する変化を従来の熱分解単独によるC/C複合材製造時
の炭素質充填の反応時間に対する変化とを比較した結果
である。縦軸は炭素質充填量(任意スケール)、横軸は
反応時間(任意スケール)である。図の曲線(a)はこ
の発明に係る複合型気相含浸法によるC/C複合材の製造
方法のグラフ、曲線(b)は従来の製造方法の結果を示
す。従来の方式ではある程度分解、堆積が進行すると閉
塞した気孔ができ、充填が進まなくなる。一方、複合方
式では残留気孔がほぼゼロに到達するまで炭素質の充填
が行われる。この結果、得られたC/C複合材の曲げ強度
は炭素系繊維の体積率約50%の時、450MPa以上であっ
た。この複合方式は他の組合せによっても可能であり、
例えば反応容器の外部から高周波などによって加熱し、
さらに繊維の部分に光、あるいは電磁波で励起し反応を
促進する方法などがある。いずれの方法によっても繊維
のトウへの炭素質の充填は可能であった。特に、繊維へ
の直接通電による方法とマイクロ波の複合方式が簡便で
効率が良かった。第3図はこの発明の他の実施例として
なされたもので、原料ガスの供給を、通常の気相含浸法
において一般的に行われる継続的、定常的な供給ではな
く、間欠的に(パルス状に)行うものである。即ち、繊
維のトウ(1)を反応容器(3)に導入し、原料ガスを
反応容器(3)に導入する際に、リザーバタンク(11)
にガスを蓄積するなどしてガス圧力を高めて(制御し
て)おくとともに、反応容器(3)は排気系によって減
圧状態にする。その状態で、ガス導入ライン(6)のバ
ルブ(10)を開いて、リザーバタンク(11)に蓄積した
ガスを一気に放出し、反応容器内のガス圧力を一気に高
める。このようにしてガスを供給した後、一旦供給を停
止し、反応容器内が減圧状態になったところで、また反
応容器内にガスを一気に放出し、ガス圧力を一気に高め
る。これを繰り返し、ガスを間欠的(パルス状)に供給
することにより、反応容器内で原料ガスの圧力勾配、濃
度勾配が生じるのを防止できるので、繊維のトウ(1)
内部への炭素質の堆積が十分に、効率的に行われるた
め、炭素質の分解堆積はトウ(1)外部に集中すること
なく、トウ(1)全体に均質に行える。加えて、ガスの
供給停止期間に反応容器内が減圧状態にされる際に、ト
ウ(1)内部、近傍に滞留する反応後のガスが十分に排
気されるので、新たなガスがトウ(1)内部へ十分に含
浸される。ガスが予備成形体内部へ十分に含浸されるた
め、成形体内部の気孔が少ない、全体に均質な炭素質の
分解堆積が行える。さらにマグネトロン(8)で発生し
たマイクロ波によるガスの活性化を行い、分解、析出を
促進する。第3図で(12)は原料ガスボンベであり、
(9)は導波管、(7)はガス排出口、(2)は得られ
たC/C複合材を示す。この結果得られたC/C複合材は炭素
質組織の均一性がよく、強度劣化の原因となる欠陥の発
生を防ぐ効果がある。また、C/C複合材の製品の品質を
一定にし、歩留まりを向上させる。
Carbon fiber tow made from rayon, polyacrylonitrile, petroleum or coal pitch (1) (10 fibers
A bundle of 0 to 20,000 fibers) is introduced into the reaction vessel (3), and a hydrocarbon gas such as methane, ethane, propane, or benzene is supplied from the inlet (6) as a raw material gas. First, an electric current is applied to the fiber tow (1) through the electrode (4) to heat the fiber tow itself. (5)
Is a seal portion, and (7) is a gas outlet. At this stage, the thermal decomposition of the raw material gas proceeds to decompose and deposit carbonaceous material in the space of the fiber tow, but the filling efficiency is not sufficient.
Therefore, the microwave of 2000 to 3000 MHz generated by the magnetron (8) is further superimposed through the waveguide (9). At this time, it was effective to generate hydrogen plasma. At this stage, decomposition and deposition of the raw material gas are remarkably promoted, and complete densification and high-speed production of the composite material become possible. In this example, the partial pressure of methane was set to 20 to 200 Torr and the fiber temperature was set to 700 to 1400 ° C. However, the effect of the superimposed microwave enabled a good filling of carbonaceous material at a relatively low temperature, ie, 700 to 1000 ° C. Particularly good results were obtained when the methane partial pressure was in the range of 40 to 80 Torr. Similar results have been obtained with other hydrocarbons as the raw material gas, but similar results have been obtained with dichloroethylene and the like at lower temperatures (700 ° C. or lower). When manufactured only by pyrolysis in a conventional method, even a composite material having a small volume such as a fiber tow requires a high temperature and a long time. Fig. 2 shows the combined method of pyrolysis and microwave
It is the result which compared the change with respect to the reaction time of the carbonaceous filling amount at the time of producing a C / C composite material with the change with respect to the reaction time of the carbonaceous filling at the time of the conventional C / C composite material production by thermal decomposition alone. The vertical axis represents the carbonaceous content (arbitrary scale), and the horizontal axis represents the reaction time (arbitrary scale). The curve (a) in the figure shows a graph of a method for producing a C / C composite material by the composite gas-phase impregnation method according to the present invention, and the curve (b) shows the result of a conventional production method. In the conventional method, when decomposition and deposition progress to some extent, closed pores are formed, and the filling does not proceed. On the other hand, in the composite method, carbonaceous filling is performed until the residual pores reach almost zero. As a result, the bending strength of the obtained C / C composite material was 450 MPa or more when the volume ratio of the carbon fiber was about 50%. This combination scheme is also possible with other combinations,
For example, heating by high frequency from outside the reaction vessel,
Further, there is a method of exciting the fiber portion with light or electromagnetic waves to promote the reaction. The filling of the carbonaceous material into the fiber tow was possible by any of the methods. In particular, the method of direct energization to the fiber and the combined method of microwaves were simple and efficient. FIG. 3 shows another embodiment of the present invention, in which the supply of the raw material gas is performed intermittently (in a pulsed manner) instead of the continuous and steady supply generally performed in the ordinary gas phase impregnation method. In the form). That is, the fiber tow (1) is introduced into the reaction vessel (3), and the raw material gas is introduced into the reaction vessel (3).
The gas pressure is increased (controlled) by, for example, accumulating gas in the reactor, and the reaction vessel (3) is depressurized by an exhaust system. In this state, the valve (10) of the gas introduction line (6) is opened to release the gas accumulated in the reservoir tank (11) at a stretch, thereby increasing the gas pressure in the reaction vessel at a stretch. After the gas has been supplied in this manner, the supply is temporarily stopped, and when the pressure in the reaction vessel is reduced, the gas is released into the reaction vessel at once, and the gas pressure is increased at a stretch. By repeating this and supplying the gas intermittently (in a pulsed manner), it is possible to prevent a pressure gradient and a concentration gradient of the raw material gas from being generated in the reaction vessel.
Since the deposition of carbonaceous material inside is sufficiently and efficiently performed, the decomposition and deposition of carbonaceous material can be uniformly performed on the entire tow (1) without being concentrated outside the tow (1). In addition, when the inside of the reaction vessel is depressurized during the gas supply suspension period, the reacted gas remaining inside and near the tow (1) is sufficiently exhausted, so that new gas is discharged from the tow (1). ) Fully impregnated inside. Since the gas is sufficiently impregnated into the inside of the preform, the carbonaceous material can be decomposed and deposited with uniform pores in the inside of the preform. Further, the gas is activated by microwaves generated by the magnetron (8) to promote decomposition and precipitation. In FIG. 3, (12) is a raw material gas cylinder,
(9) shows a waveguide, (7) shows a gas outlet, and (2) shows the obtained C / C composite material. The resulting C / C composite material has good carbonaceous texture uniformity and has an effect of preventing the occurrence of defects that cause strength deterioration. In addition, the product quality of C / C composite material is kept constant and the yield is improved.

この実施例では炭素系の繊維のトウを出発原料とし
て、ロッド状のC/C複合材の製造に関して述べたが、例
えばここで得られたロッド状のC/C複合材を出発原料と
して、所要の形状に成形したプリフォーム、即ち、織物
や編物に成形した成形物に対して、炭素質を充填する製
造プロセスに於いても同様に実施でき、単一の加熱方式
あるいは励起方式、ガス供給方式によって製造した場合
に比べ、性能の向上が見られた。
In this example, the production of the rod-shaped C / C composite material was described using a carbon fiber tow as a starting material.However, for example, the rod-shaped C / C composite material obtained here was used as a starting material. A preform molded into the shape of the above, that is, a molded product formed into a woven or knitted material can be similarly carried out in a manufacturing process of filling carbonaceous material with a single heating method or an excitation method, a gas supply method. The performance was improved as compared with the case of manufacturing by the method described above.

原料ガスとしては上記炭化水素ガスの他に塩素などの
ハロゲン元素を含む炭化水素ガスが、単独、あるいは混
合して用いられる。
As the raw material gas, a hydrocarbon gas containing a halogen element such as chlorine in addition to the above-mentioned hydrocarbon gas is used alone or in combination.

[発明の効果] 以上のように、この発明によれば炭素系繊維を強化材
とし、炭化水素ガス及びハロゲン元素を含む炭化水素ガ
スの少なくとも1種以上からなる原料ガスを熱分解し、
生成した炭素質を堆積、充填してC/C複合材を製造する
に際して、光あるいは電磁波で励起し反応を促進する、
及びガスを間欠供給する手法の少なくともいずれかをさ
らに加えて施すことによって炭素質を完全致密に充填し
て高性能のC/C複合材を製造することができる。また、
この製造方法をとることによって強度と靭性に優れたC/
C複合材を安定に得ることができる効果がある。
[Effects of the Invention] As described above, according to the present invention, a carbon-based fiber is used as a reinforcing material, and a raw material gas composed of at least one of a hydrocarbon gas and a hydrocarbon gas containing a halogen element is thermally decomposed.
When depositing and filling the generated carbonaceous material to produce a C / C composite, it is excited by light or electromagnetic waves to accelerate the reaction,
By additionally adding at least one of a method of intermittently supplying gas and carbon, the carbonaceous material can be completely tightly packed to produce a high-performance C / C composite material. Also,
By adopting this manufacturing method, C /
There is an effect that a C composite material can be obtained stably.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の製造方法を示す説明図、第2図は炭
素質の充填速度の測定結果を示すグラフ、第3図はこの
発明の他の実施例を示す説明図、第4図は従来の製造方
法を示す説明図である。 図において、(1)は炭素系繊維トウ、(2)はC/C複
合材、(3)は反応容器、(4)は電極、(5)はシー
ル、(6)は原料ガス導入口、(7)はガス排出口、
(8)はマグネトロン、(9)は導波管、(10)はバル
ブ、(8)はマグネトロン、(9)は導波管、(10)は
バルブ、(11)はリザーバタンク、(12)は原料ガスボ
ンベ、(13)はプリフォーム、(14)はヒータ、(15)
は炉、(16)はガスを導入口、(17)ガス排出口であ
る。 なお、各図中同一符号は同一叉は相当部分を示す。
FIG. 1 is an explanatory view showing the production method of the present invention, FIG. 2 is a graph showing the measurement results of the filling rate of carbonaceous material, FIG. 3 is an explanatory view showing another embodiment of the present invention, and FIG. It is explanatory drawing which shows the conventional manufacturing method. In the figure, (1) is a carbon fiber tow, (2) is a C / C composite material, (3) is a reaction vessel, (4) is an electrode, (5) is a seal, (6) is a raw material gas inlet, (7) is a gas outlet,
(8) is a magnetron, (9) is a waveguide, (10) is a valve, (8) is a magnetron, (9) is a waveguide, (10) is a valve, (11) is a reservoir tank, (12) Is a raw material gas cylinder, (13) is a preform, (14) is a heater, (15)
Is a furnace, (16) is a gas inlet, and (17) is a gas outlet. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素系繊維を強化材とし、炭化水素ガス及
びハロゲン元素を含む炭化水素ガスの少なくとも1種以
上からなる原料ガスを熱分解し、生成した炭素質を堆
積、充填するC/C複合材の製造方法において、上記原料
ガスを熱分解し炭素質を堆積、充填する際に、光あるい
は電磁波で励起し反応を促進する、及びガスを間欠供給
する手法の少なくともいずれかを加えて施すようにした
ことを特徴とする複合型気相含浸法によるC/C複合材の
製造方法。
C / C for thermally decomposing a raw material gas comprising at least one of a hydrocarbon gas and a hydrocarbon gas containing a halogen element using carbon-based fibers as a reinforcing material, and depositing and filling the generated carbonaceous material. In the method for producing a composite material, when the raw material gas is thermally decomposed to deposit and fill carbonaceous material, the reaction is excited by light or electromagnetic waves to accelerate the reaction, and at least one of intermittent gas supply methods is applied. A method for producing a C / C composite material by a composite gas-phase impregnation method, characterized in that:
JP2016966A 1990-01-26 1990-01-26 Method for producing C / C composite material by composite gas phase impregnation method Expired - Fee Related JP2712698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016966A JP2712698B2 (en) 1990-01-26 1990-01-26 Method for producing C / C composite material by composite gas phase impregnation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016966A JP2712698B2 (en) 1990-01-26 1990-01-26 Method for producing C / C composite material by composite gas phase impregnation method

Publications (2)

Publication Number Publication Date
JPH03223165A JPH03223165A (en) 1991-10-02
JP2712698B2 true JP2712698B2 (en) 1998-02-16

Family

ID=11930840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016966A Expired - Fee Related JP2712698B2 (en) 1990-01-26 1990-01-26 Method for producing C / C composite material by composite gas phase impregnation method

Country Status (1)

Country Link
JP (1) JP2712698B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468357A (en) * 1994-12-27 1995-11-21 Hughes Missile Systems Company Densification of porous articles by plasma enhanced chemical vapor infiltration
JP2002211985A (en) * 2001-01-16 2002-07-31 National Institute For Materials Science METHOD FOR COATING SiC OR C FIBER WITH C OR SiC
CN109279908B (en) * 2018-10-30 2021-06-01 中南大学 Clamp for preparing ultrathin carbon/carbon composite material panel

Also Published As

Publication number Publication date
JPH03223165A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP3490087B2 (en) Vapor-phase chemical infiltration of substances into porous substrates at controlled surface temperatures
JP2722198B2 (en) Method for producing carbon / carbon composite material having oxidation resistance
US5217657A (en) Method of making carbon-carbon composites
US7938992B2 (en) CVI followed by coal tar pitch densification by VPI
US5597611A (en) Reinforced carbon composites
Vignoles Chemical vapor deposition/infiltration processes for ceramic composites
CN111511704B (en) Method and apparatus for depositing a coating on continuous fibers
KR20020066547A (en) Method for manufacturing carbon/silicon-carbide composite
JP2712698B2 (en) Method for producing C / C composite material by composite gas phase impregnation method
KR100198153B1 (en) A vacuum pressure impregnation carbonization for densifying c/c composite
US5846611A (en) Chemical vapor infiltration process of a material within a fibrous substrate with creation of a temperature gradient in the latter
JP3574133B2 (en) Chemical vapor infiltration of substances in fibrous substrates with temperature gradient
US5587203A (en) Method for preparing a carbon/carbon composite material
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
KR101589965B1 (en) Apparatus for densifying c/c composite material
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2669090B2 (en) Method for producing C / C composite material using C / C composite rod
JPS63295476A (en) Production of carbon fiber reinforced carbonaceous material
EP3174628A1 (en) Element for injecting fuel into a regenerator of a fluid catalytic cracking unit
JP5836050B2 (en) Method and apparatus for densifying porous structure
US3716332A (en) Carbonization of wool
JPH01272827A (en) Method for carrying out continuous graphitization treatment and apparatus therefor
JPH082976A (en) Production of carbon fiber/carbon-based composite material
JPH0657433A (en) Pulse cvi device
JP2002145675A (en) Production process of carbon-fiber-reinforced carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees