JP2706628B2 - Silylcyclopentane derivative and method for producing the same - Google Patents

Silylcyclopentane derivative and method for producing the same

Info

Publication number
JP2706628B2
JP2706628B2 JP6282118A JP28211894A JP2706628B2 JP 2706628 B2 JP2706628 B2 JP 2706628B2 JP 6282118 A JP6282118 A JP 6282118A JP 28211894 A JP28211894 A JP 28211894A JP 2706628 B2 JP2706628 B2 JP 2706628B2
Authority
JP
Japan
Prior art keywords
group
ring
silylcyclopentane
general formula
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6282118A
Other languages
Japanese (ja)
Other versions
JPH0812679A (en
Inventor
一 男 鄭
昇 浩 延
奉 雨 李
準 秀 韓
Original Assignee
財団法人韓国科学技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人韓国科学技術研究院 filed Critical 財団法人韓国科学技術研究院
Publication of JPH0812679A publication Critical patent/JPH0812679A/en
Application granted granted Critical
Publication of JP2706628B2 publication Critical patent/JP2706628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規なシリルシクロペ
ンタン誘導体及びその製造方法に関するものである。本
発明の新規なシリルシクロペンタン誘導体は、新しい生
理活性物質を合成するための出発物質として極めて有用
で、1個の二重結合を有するため水素ケイ素化反応又は
アリルケイ素化反応により新しい有機ケイ素化合物及び
新しい有機ケイ素高分子化合物を製造するのに重要な出
発物質として使用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel silylcyclopentane derivative and a method for producing the same. The novel silylcyclopentane derivative of the present invention is extremely useful as a starting material for synthesizing a new physiologically active substance, and has a single double bond. And as an important starting material for preparing new organosilicon polymer compounds.

【0002】[0002]

【従来の技術】アリルシランはハロゲン置換の脂肪族炭
化水素、アルデヒト、ケトン、アセタール、ニトリル又
は酸クロリド等の種々の有機化合物のアリル化反応に有
用な化合物らである(I. Fleming, J. Dunogues and R.
Smithers: “Organic Reaction”, Vol.37, Chap.2, Wi
ley, New York, 1989, pp57-575)。サクライらはアリル
シランとα,β−不飽和ケトンとを四塩化チタンのよう
なルイス酸触媒の存在下で反応させて水で処理すれば、
共役付加反応により、シリル基が除去されてアリル基が
置換されたカルボニル化合物を得ることができることを
見出した。
2. Description of the Related Art Allylsilane is a compound useful for the allylation reaction of various organic compounds such as halogen-substituted aliphatic hydrocarbons, aldehydes, ketones, acetals, nitriles and acid chlorides (I. Fleming, J. Dunogues). and R.
Smithers: “Organic Reaction”, Vol.37, Chap.2, Wi
ley, New York, 1989, pp57-575). Sakurai et al. Reacted allylsilane with an α, β-unsaturated ketone in the presence of a Lewis acid catalyst such as titanium tetrachloride and treated with water.
It has been found that a carbonyl compound in which a silyl group is removed and an allyl group is substituted can be obtained by a conjugate addition reaction.

【0003】[0003]

【化3】 Embedded image

【0004】この反応はサクライ反応と呼ばれている
〔A. Hosomi and H. Sakurai: J. Am.Chem. Soc., 99,
1673(1977) 〕が、この反応では副産物としてシリル基
の除去されない化合物も生成することが報告されている
〔R. Pardo, J. P. Zahra andM. Santelli: Terahedron
Lett., 4557(1977) 〕。
This reaction is called the Sakurai reaction [A. Hosomi and H. Sakurai: J. Am. Chem. Soc., 99,
1673 (1977)], but it has been reported that this reaction also produces as a by-product a compound from which the silyl group is not removed [R. Pardo, JP Zahra and M. Santelli: Terahedron.
Lett., 4557 (1977)].

【0005】しかしながら、最近Knolker と共同研究者
らは、サクライ反応とは相違して、大きな側鎖を有する
ケイ素原子を持つ諸種のアリルシランとα,β−不飽和
ケトンとを四塩化チタンのようなルイス酸触媒の存在下
で反応させると、〔3+2〕付加環化反応により、シリ
ル基の置換した五員環化合物を主生成物として合成でき
ることを見出した。
However, recently, Knolker and co-workers reported that unlike the Sakurai reaction, various allylsilanes having silicon atoms with large side chains and α, β-unsaturated ketones, such as titanium tetrachloride. It has been found that when the reaction is carried out in the presence of a Lewis acid catalyst, a 5-membered ring compound substituted with a silyl group can be synthesized as a main product by a [3 + 2] cycloaddition reaction.

【0006】[0006]

【化4】 Embedded image

【0007】(上記式中、R11、R12及びR13は、各々
メチル基、フェニル基、t−ブチル基又はイソプロピル
基を表す)
(Wherein R 11 , R 12 and R 13 each represent a methyl group, a phenyl group, a t-butyl group or an isopropyl group)

【0008】この反応でR11、R12及びR13の官能基の
空間的大きさが大きいほど〔3+2〕付加環化反応が起
こりやすいとしている〔H. -J. Knolker and N. Foitzi
k, Anrew. Chem. Int. Ed. Engl., 32, 1081(1993); H.
-J. Knolker and R. Graf,Tetrahedron Lett, 34, 476
5(1993)〕。
In this reaction, it is stated that the larger the spatial size of the functional groups of R 11 , R 12 and R 13 , the more easily the [3 + 2] cycloaddition reaction occurs [H. -J. Knolker and N. Foitzi.
k, Anrew. Chem. Int. Ed. Engl., 32, 1081 (1993); H.
-J. Knolker and R. Graf, Tetrahedron Lett, 34, 476
5 (1993)].

【0009】[0009]

【発明が解決しようとする課題】本発明は、新規な生理
活性物質、新規な有機ケイ素化合物及び新規な有機ケイ
素高分子化合物の合成に有用な出発物質として使用する
ことのできる新規なシリルシクロペンタン誘導体を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a novel physiologically active substance, a novel organosilicon compound and a novel silylcyclopentane which can be used as a starting material useful for the synthesis of a novel organosilicon polymer compound. It is intended to provide a derivative.

【0010】[0010]

【課題を解決するための手段】本発明は、一般式(I)
で示されるシリルシクロペンタン誘導体である。
The present invention provides a compound represented by the general formula (I):
Is a silylcyclopentane derivative represented by

【0011】[0011]

【化5】 Embedded image

【0012】(式中、R1 及びR2 は各々水素原子又は
炭素数1〜8のアルキル基を表すか、あるいはR1 とR
2 とが一緒になって炭素数1〜4のアルキレン基を形成
する。R3 〜R9 は各々水素原子又はメチル基を表し、
10は炭素数1〜8のアルキル基、フェニル基、ハロフ
ェニル基、ベンジル基又は2−フェニルエチル基を表
す)
[0012] (wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, or R 1 and R
And 2 together form an alkylene group having 1 to 4 carbon atoms. R 3 to R 9 each represent a hydrogen atom or a methyl group;
R 10 represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, a halophenyl group, a benzyl group or a 2-phenylethyl group)

【0013】本発明の一般式(I)で示されるシリルシ
クロペンタン誘導体は、一般式(II)の共役ジエン化合
物をルイス酸触媒の存在下で一般式(III)のアリルシラ
ンと反応させることにより製造することができる。
The silylcyclopentane derivative represented by the general formula (I) of the present invention is produced by reacting a conjugated diene compound represented by the general formula (II) with an allylsilane represented by the general formula (III) in the presence of a Lewis acid catalyst. can do.

【0014】[0014]

【化6】 Embedded image

【0015】(式中、R1 、R2 、R3 、R4 、R5
6 、R7 、R8 、R9 及びR10は前記と同じ) なお、一般式(II)において、R1 とR2 が一緒になっ
て炭素数1〜4のアルキレン基を形成した共役ジエン化
合物は一般式(II´)で示され、これより得られるシリ
ルシクロペンタン誘導体は一般式(I´)で示される。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 ,
R 6 , R 7 , R 8 , R 9 and R 10 are the same as described above.) In the general formula (II), R 1 and R 2 are combined together to form an alkylene group having 1 to 4 carbon atoms. The diene compound is represented by the general formula (II ′), and the silylcyclopentane derivative obtained therefrom is represented by the general formula (I ′).

【0016】[0016]

【化7】 Embedded image

【0017】(式中R3 〜R10は前記と同じであり、n
は1〜4の整数を表す)
(Wherein R 3 to R 10 are the same as described above;
Represents an integer of 1 to 4)

【0018】本発明の方法は2個の二重結合が共役した
ジエン化合物を使用することにより、アリルケイ素化反
応では予期できなかった化合物であるシリルシクロペン
タン誘導体が得られるものである。この反応は反応中間
体として、先ずアリルシランがジエン化合物に付加した
中間体が生成し、この中間体が1,2−シリル移動
(1,2−Silyl Shift )反応を含む〔3+2〕付加環
化反応によりシクロペンタジエン誘導体を形成する。サ
クライ反応では五員環化合物を製造するために、空間的
大きさの大きいアリルシラン化合物を使用しなければな
らなかったのに比べ、本発明では空間的大きさの大きく
ないアリルシランでも反応が都合よく進行し、カルボニ
ル化合物でない直鎖型又は環型の共役ジエン化合物を使
用することで、簡便に炭化水素とシリル基を有する五員
環化合物を製造することのできる新しく進歩した製造方
法を提供するものである。
The process of the present invention uses a diene compound in which two double bonds are conjugated to obtain a silylcyclopentane derivative which is a compound that was unexpected in an allylsilation reaction. In this reaction, an intermediate in which allylsilane is added to a diene compound is generated as a reaction intermediate, and this intermediate is a [3 + 2] cycloaddition reaction including a 1,2-silyl shift (1,2-silyl shift) reaction. To form a cyclopentadiene derivative. In the Sakurai reaction, in order to produce a five-membered ring compound, an allylsilane compound having a large spatial size had to be used.In contrast, in the present invention, the reaction proceeds favorably even with an allylsilane having a small spatial size. By using a linear or cyclic conjugated diene compound that is not a carbonyl compound, a new and advanced production method capable of easily producing a five-membered ring compound having a hydrocarbon and a silyl group is provided. is there.

【0019】ルイス酸触媒としては、周期律表II〜V及
びVIII族元素のハロゲン化物が用いられるが、この中で
好ましいものはアルミニウムクロリド、チタニウムクロ
リド、スズクロリド、ボロンクロリド及びこれらの混合
物である。必要により亜鉛、ホウ素、チタン、鉄、鉛、
カドミウム、アンチモン等の塩化物を混合して使用する
ことができる。
As the Lewis acid catalyst, halides of elements of Groups II to V and VIII of the periodic table are used, and among them, aluminum chloride, titanium chloride, tin chloride, boron chloride and mixtures thereof are preferred. Zinc, boron, titanium, iron, lead,
A mixture of chlorides such as cadmium and antimony can be used.

【0020】一般式(II)又は(II´)の共役ジエン化
合物はルイス酸触媒で容易に重合させることができ、ま
たアリルシラン(III)は、それ自体のみでアリルケイ素
化反応を起こすことができるから、共役ジエン化合物と
アリルシラン(III)を所定のモル比で混合したものを、
予め触媒を混合した溶媒が入った反応槽に滴下して反応
させることが好ましい。
The conjugated diene compound of the general formula (II) or (II ') can be easily polymerized with a Lewis acid catalyst, and allylsilane (III) can cause an allylsilation reaction by itself. From, a mixture of a conjugated diene compound and allylsilane (III) at a predetermined molar ratio,
It is preferable that the reaction is performed by dropping into a reaction tank containing a solvent in which a catalyst has been previously mixed.

【0021】本発明で使用する溶媒の具体例としては、
ベンゼン、トルエン、キシレン、n−ヘキサン、メチレ
ンクロリド、クロロホルム、四塩化炭素等を挙げること
ができるが、好ましくはベンゼン、ヘキサン、メチレン
クロリド、クロロホルム及び四塩化炭素であり、特に好
ましくはメチレンクロリドである。アリルシラン(III)
の使用量は共役ジエン化合物(II)の使用量に対し0.
5〜20倍モルが好ましく、より好ましくは1〜10倍
モルであり、1倍モルが最も好ましい。反応温度は−4
0〜40℃が好ましいが、共役ジエン化合物の高分子化
反応が速い場合には、この使用量を増加するか反応温度
を低下させるのが好ましい。
Specific examples of the solvent used in the present invention include:
Benzene, toluene, xylene, n-hexane, methylene chloride, chloroform, carbon tetrachloride and the like can be mentioned, preferably benzene, hexane, methylene chloride, chloroform and carbon tetrachloride, particularly preferably methylene chloride. . Allylsilane (III)
Is used in an amount of 0.1 to the amount of the conjugated diene compound (II).
The molar amount is preferably 5 to 20 times, more preferably 1 to 10 times, and most preferably 1 time. Reaction temperature is -4
The temperature is preferably from 0 to 40 ° C., but when the polymerization reaction of the conjugated diene compound is fast, it is preferable to increase the amount used or to lower the reaction temperature.

【0022】[0022]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はこれに限定されるものではない。
なお、実施例において、核磁気共鳴(NMR)スペクト
ル分析に関し、次の記号を用いた。S:単一線、d:2
重線、t:3重線、q:4重線、p:5重線、m:多重
線。またピークの位置は内部基準物質にテトラメチルシ
ランを使用し、ppm で示した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
In the examples, the following symbols were used for nuclear magnetic resonance (NMR) spectrum analysis. S: single line, d: 2
Doublet, t: triplet, q: quadruple, p: quintuple, m: multiplet. The peak positions are shown in ppm using tetramethylsilane as the internal reference substance.

【0023】実施例1:3−(1−メチルビニル)−1
−トリメチルシリルシクロペンタンの製造 磁気撹拌機、還流コンデンサー及び滴下漏斗を装着した
50ml容の3口丸底フラスコ反応槽に、乾燥した窒素ガ
スを通させ、フラッシュ乾燥した。これにアルミニウム
クロリド0.25g(1.9mmol)とメチレンクロリド
10.0mlを入れ、滴下漏斗にはアリルトリメチルシラ
ン2.16g(18.9mmol)とイソプレン1.29g
(18.9mmol)を入れてよく混合した。反応槽を20
℃の水浴に漬け、反応物の温度が水浴の温度と同じにな
るよう数分間保持した後、磁気撹拌機で激しくかき混ぜ
ながら、滴下漏斗から反応物を約20分間かけて滴下し
た。滴下終了後、更に10分間撹拌して、ガスクロマト
グラフィで確認した結果、出発物質はほとんど反応した
ことを示した。次いで水5mlを反応槽に入れ、5分間撹
拌して、触媒の活性を完全に除去し、分別漏斗に移して
下層の有機物層を分離した後、無水硫酸マグネシウムで
乾燥した。乾燥した有機物層を真空蒸留し(22〜24
℃、0.6Torr)、3−(1−メチルビニル)−1−ト
リメチルシリルシクロペンタン0.87g(収率26
%)を得た。このもののNMR分析データを以下に示
す。1 H NMR(CDCl3, δ): 0.03(s, 9H, Si-Me3); 1.00-1.14
(m, 1H, ring-CH-SiMe3);1.24-1.50(m, 2H, ring-CH2);
1.62(t, 2H, ring-CH2); 1.75(s, 3H, -CH3); 1.76-1.
87(m, 2H, ring-CH2); 2.36-2.47(p, 1H, ring-CH); 4.
69(d, 2H, =CH2)
Example 1 3- (1-methylvinyl) -1
-Preparation of trimethylsilylcyclopentane Dry nitrogen gas was passed through a 50 ml 3-neck round bottom flask reaction vessel equipped with a magnetic stirrer, reflux condenser and dropping funnel, and flash dried. 0.25 g (1.9 mmol) of aluminum chloride and 10.0 ml of methylene chloride were added thereto, and 2.16 g (18.9 mmol) of allyltrimethylsilane and 1.29 g of isoprene were added to the dropping funnel.
(18.9 mmol) was added and mixed well. 20 reactors
Then, the mixture was kept in a water bath at a temperature of 0 ° C. and kept for several minutes so that the temperature of the reaction product became the same as the temperature of the water bath. After completion of the dropwise addition, the mixture was further stirred for 10 minutes and confirmed by gas chromatography. As a result, it was shown that the starting material had almost reacted. Then, 5 ml of water was put into the reaction vessel and stirred for 5 minutes to completely remove the activity of the catalyst, transferred to a separation funnel to separate a lower organic layer, and dried over anhydrous magnesium sulfate. The dried organic layer is subjected to vacuum distillation (22 to 24).
° C, 0.6 Torr), 0.87 g of 3- (1-methylvinyl) -1-trimethylsilylcyclopentane (yield 26
%). The NMR analysis data of this is shown below. 1 H NMR (CDCl 3, δ ): 0.03 (s, 9H, Si-Me 3); 1.00-1.14
(m, 1H, ring-CH-SiMe 3 ); 1.24-1.50 (m, 2H, ring-CH 2 );
1.62 (t, 2H, ring-CH 2 ); 1.75 (s, 3H, -CH 3 ); 1.76-1.
87 (m, 2H, ring-CH 2 ); 2.36-2.47 (p, 1H, ring-CH); 4.
69 (d, 2H, = CH 2 )

【0024】実施例2:3−ビニル−1−トリメチルシ
リルシクロペンタンの製造 i)ガラス製50ml容の密封チューブに、磁気撹拌子と
溶媒としてh−ヘキサン18.0ml及びアルミニウムク
ロリド0.44g(3.33mmol)を入れた後、この密
封チューブをドライアイス/アセトントラップで−78
℃に冷却し、更にアリルトリメチルシラン3.79g
(33.3mmol)を加えた。 ii)別に、金属製密封チューブに1,3−ブタジエン
1.80g(33.3mmol)を真空下で封入した。 iii)i)とii)を連結し、ii)の1,3−ブタジエンを
i)の密封チューブに真空下で移した後、連結コックを
閉め、磁気撹拌機でかき混ぜながら、密封チューブの温
度を−78℃から常温になるようドライアイス/アセト
ントラップを除去した。約3.5時間後にガスクロマト
グラフィで反応が終了したことを確認した後に、水5ml
を密封チューブに入れ、5分間撹拌し、触媒の活性を完
全に除去し、分別漏斗に移して上層の有機物層を分離し
た後、無水硫酸マグネシウムで乾燥した。乾燥した有機
物層を真空蒸留し、3−ビニル−1−トリメチルシリル
シクロペンタン2.23g(収率40%)を得た。この
もののNMR分析データを以下に示す。1 H NMR(CDCl3, δ): -0.03(s, 9H, Si-Me3); 1.00-1.14
(p, 1H, CH-SiMe3); 1.24-1.43(m, 2H, ring-CH2); 1.
50-1.66(m, 2H, ring-CH2); 1.75-1.87(m, 2H, ring-CH
2); 2.40-2.52(m, 1H, ring-CH); 4.70-5.00(m, 2H, =C
H2); 5.75-5.88(m, 1H, -CH=)
Example 2: Preparation of 3-vinyl-1-trimethylsilylcyclopentane i) In a 50 ml glass sealed tube, 18.0 ml of h-hexane and 0.44 g of aluminum chloride (3. 33 mmol), and the sealed tube was placed in a dry ice / acetone trap at −78.
℃, further 3.79 g of allyltrimethylsilane
(33.3 mmol) was added. ii) Separately, 1.80 g (33.3 mmol) of 1,3-butadiene was sealed in a metal sealed tube under vacuum. iii) After connecting i) and ii) and transferring the 1,3-butadiene of ii) to the sealed tube of i) under vacuum, close the connecting cock and stir the temperature of the sealed tube while stirring with a magnetic stirrer. The dry ice / acetone trap was removed from -78 ° C to room temperature. After confirming the reaction was completed by gas chromatography after about 3.5 hours, 5 ml of water was added.
Was placed in a sealed tube, and stirred for 5 minutes to completely remove the activity of the catalyst. The mixture was transferred to a separation funnel to separate the upper organic layer, and then dried over anhydrous magnesium sulfate. The dried organic layer was subjected to vacuum distillation to obtain 2.23 g (yield: 40%) of 3-vinyl-1-trimethylsilylcyclopentane. The NMR analysis data of this is shown below. 1 H NMR (CDCl 3, δ ): -0.03 (s, 9H, Si-Me 3); 1.00-1.14
(p, 1H, CH-SiMe 3 ); 1.24-1.43 (m, 2H, ring-CH 2 ); 1.
50-1.66 (m, 2H, ring-CH 2 ); 1.75-1.87 (m, 2H, ring-CH 2 )
2 ); 2.40-2.52 (m, 1H, ring-CH); 4.70-5.00 (m, 2H, = C
H 2 ); 5.75-5.88 (m, 1H, -CH =)

【0025】実施例3:3−(1−メチルビニル)−3
−メチル−1−トリメチルシリルシクロペンタンの製造 メチレンクロリドに代えて、n−ヘキサンを、またイソ
プレンに代えて2,3−ジメチル−1,3−ブタジエン
1.55g(18.9mmol)を使用した以外は、実施例
1と同様に実施して3−(1−メチルビニル)−3−メ
チル−1−トリメチルシリルシクロペンタン1.19g
(収率32%)を得た。1 H NMR(CDCl3, δ): -0.03(s, 9H, Si-Me3); 1.00-1.18
(m, 1H, ring-CH-SiMe3); 1.09(s, 3H, -CH3); 1.30-1.
60(m, 4H, ring-CH2); 1.76(s, 3H, -CH3); 1.76-1.90
(m, 2H, ring-CH2); 4.70-4.77(m, 2H, =CH2)
Example 3 3- (1-methylvinyl) -3
Preparation of -methyl-1-trimethylsilylcyclopentane Except that n-hexane was used instead of methylene chloride and 1.55 g (18.9 mmol) of 2,3-dimethyl-1,3-butadiene were used instead of isoprene. 1.19 g of 3- (1-methylvinyl) -3-methyl-1-trimethylsilylcyclopentane in the same manner as in Example 1.
(Yield 32%) was obtained. 1 H NMR (CDCl 3, δ ): -0.03 (s, 9H, Si-Me 3); 1.00-1.18
(m, 1H, ring-CH-SiMe 3 ); 1.09 (s, 3H, -CH 3 ); 1.30-1.
60 (m, 4H, ring-CH 2 ); 1.76 (s, 3H, -CH 3 ); 1.76-1.90
(m, 2H, ring-CH 2 ); 4.70-4.77 (m, 2H, = CH 2 )

【0026】実施例4:3−(2−メチルビニル)−1
−トリメチルシリルシクロペンタンの製造 イソプレンに代えて、1,3−ペンタジエン1.29g
(18.9mmol)を使用した以外は、実施例1と同様に
実施して3−(2−メチルビニル)−1−トリメチルシ
リルシクロペンタン1.20g(収率35%)を得た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 1.02-1.16
(p, 1H, CH-SiMe3); 1.23-1.42(m, 2H, ring-CH2); 1.5
1-1.68(m, 2H, ring-CH2); 1.73-1.85(m, 2H, ring-C
H2); 1.95(d, 2H, -CH3); 2.35-2.47(m, 1H, ring-CH);
5.55-5.62(m, 1H,=CH-); 5.75-5.83(m, 1H, -CH=)
Example 4: 3- (2-methylvinyl) -1
Preparation of trimethylsilylcyclopentane 1.29 g of 1,3-pentadiene instead of isoprene
Except that (18.9 mmol) was used, the procedure was carried out in the same manner as in Example 1 to obtain 1.20 g (yield 35%) of 3- (2-methylvinyl) -1-trimethylsilylcyclopentane. 1 H NMR (CDCl 3, δ ): -0.01 (s, 9H, Si-Me 3); 1.02-1.16
(p, 1H, CH-SiMe 3 ); 1.23-1.42 (m, 2H, ring-CH 2 ); 1.5
1-1.68 (m, 2H, ring-CH 2 ); 1.73-1.85 (m, 2H, ring-C
H 2 ); 1.95 (d, 2H, -CH 3 ); 2.35-2.47 (m, 1H, ring-CH);
5.55-5.62 (m, 1H, = CH-); 5.75-5.83 (m, 1H, -CH =)

【0027】実施例5:3−(2−エチルビニル)−1
−トリメチルシリルシクロペンタンの製造 イソプレンに代えて、1,3−ヘキサジエン1.55g
(18.9mmol)を使用した以外は、実施例1と同様に
実施して3−(2−エチルビニル)−1−トリメチルシ
リルシクロペンタン1.40g(収率38%)を得た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 0.93(t, 3
H, -CH2CH3); 1.02-1.16(p, 1H, CH-SiMe3); 1.23-1.42
(m, 2H, ring-CH2); 1.51-1.68(m, 2H, ring-CH2); 1.7
3-1.85(m, 2H, ring-CH2); 1.80-1.89(m, 2H, -CH2C
H3); 2.35-2.47(m, 1H, ring-CH); 5.50-5.57(m, 1H, =
CH-); 5.72-5.80(m, 1H, -CH=)
Example 5: 3- (2-ethylvinyl) -1
Preparation of trimethylsilylcyclopentane 1.55 g of 1,3-hexadiene instead of isoprene
Except that (18.9 mmol) was used, the procedure was carried out in the same manner as in Example 1 to obtain 1.40 g (yield 38%) of 3- (2-ethylvinyl) -1-trimethylsilylcyclopentane. 1 H NMR (CDCl 3 , δ): -0.01 (s, 9H, Si-Me 3 ); 0.93 (t, 3
H, -CH 2 CH 3 ); 1.02-1.16 (p, 1H, CH-SiMe 3 ); 1.23-1.42
(m, 2H, ring-CH 2 ); 1.51-1.68 (m, 2H, ring-CH 2 ); 1.7
3-1.85 (m, 2H, ring-CH 2 ); 1.80-1.89 (m, 2H, -CH 2 C
H 3 ); 2.35-2.47 (m, 1H, ring-CH); 5.50-5.57 (m, 1H, =
CH-); 5.72-5.80 (m, 1H, -CH =)

【0028】実施例6:4−メチル−3−(2−メチル
ビニル)−1−トリメチルシリルシクロペンタンの製造 イソプレンに代えて、2,4−ヘキサジエン1.55g
(18.9mmol)を使用した以外は、実施例1と同様に
実施して4−メチル−3−(2−メチルビニル)−1−
トリメチルシリルシクロペンタン1.56g(収率42
%)を得た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 0.83(d, 3
H, -CH3); 1.02-1.16(p, 1H, CH-SiMe3); 1.51-1.68
(m, 2H, ring-CH2); 1.95(d, 3H, -CH3); 1.63-1.76(m,
2H, ring-CH2); 1.80-1.93(m, 1H, ring-CH-); 2.35-
2.47(m, 1H, ring-CH); 5.55-5.62(m, 1H, =CH-); 5.75
-5.83(m, 1H, -CH=)
Example 6 Preparation of 4-methyl-3- (2-methylvinyl) -1-trimethylsilylcyclopentane Instead of isoprene, 1.55 g of 2,4-hexadiene
(18.9 mmol), except that 4-methyl-3- (2-methylvinyl) -1- was used.
1.56 g of trimethylsilylcyclopentane (yield 42
%). 1 H NMR (CDCl 3 , δ): -0.01 (s, 9H, Si-Me 3 ); 0.83 (d, 3
H, -CH 3 ); 1.02-1.16 (p, 1H, CH-SiMe 3 ); 1.51-1.68
(m, 2H, ring-CH 2 ); 1.95 (d, 3H, -CH 3 ); 1.63-1.76 (m,
2H, ring-CH 2 ); 1.80-1.93 (m, 1H, ring-CH-); 2.35-
2.47 (m, 1H, ring-CH); 5.55-5.62 (m, 1H, = CH-); 5.75
-5.83 (m, 1H, -CH =)

【0029】実施例7:4,4−ジメチル−3−(2,
2−ジメチルビニル)−1−トリメチルシリルシクロペ
ンタンの製造 イソプレンに代えて、2,5−ジメチル−2,4−ヘキ
サジエン2.08g(18.9mmol)を使用した以外
は、実施例1と同様に実施して4,4−ジメチル−3−
(2,2−ジメチルビニル)−1−トリメチルシリルシ
クロペンタン1.40g(収率33%)を得た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 0.85(s, 6
H, -CH3); 1.02-1.16(p,1H, CH-SiMe3); 1.51-1.68(m,
2H, ring-CH3); 1.63-1.76(m, 2H, ring-CH2);1.93(s,
6H, -CH3); 2.35-2.47(t, 1H, ring-CH); 5.75-5.83(m,
1H, -CH=)
Example 7: 4,4-dimethyl-3- (2,
Production of 2-dimethylvinyl) -1-trimethylsilylcyclopentane The same operation as in Example 1 was carried out except that 2.08 g (18.9 mmol) of 2,5-dimethyl-2,4-hexadiene was used instead of isoprene. 4,4-dimethyl-3-
1.40 g (yield 33%) of (2,2-dimethylvinyl) -1-trimethylsilylcyclopentane was obtained. 1 H NMR (CDCl 3 , δ): -0.01 (s, 9H, Si-Me 3 ); 0.85 (s, 6
H, -CH 3 ); 1.02-1.16 (p, 1H, CH-SiMe 3 ); 1.51-1.68 (m,
2H, ring-CH 3 ); 1.63-1.76 (m, 2H, ring-CH 2 ); 1.93 (s,
6H, -CH 3 ); 2.35-2.47 (t, 1H, ring-CH); 5.75-5.83 (m,
1H, -CH =)

【0030】実施例8:3−メチル−3−(2,2−ジ
メチルビニル)−1−トリメチルシリルシクロペンタン
の製造 イソプレンに代えて、2,3−ジメチル−2,4−ヘキ
サジエン1.81g(18.9mmol)を使用した以外
は、実施例1と同様に実施して3−メチル−3−(2,
2−ジメチルビニル)−1−トリメチルシリルシクロペ
ンタン1.11g(収率28%)を得た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 0.93(s, 3
H, -CH3); 1.02-1.16(p,1H, CH-SiMe3); 1.32-1.49(m,
2H, ring-CH2); 1.51-1.68(m, 2H, ring-CH2);1.63-1.7
6(m, 2H, ring-CH2); 1.93(s, 6H, -CH3); 5.75-5.83
(m, 1H, -CH=)
Example 8: Preparation of 3-methyl-3- (2,2-dimethylvinyl) -1-trimethylsilylcyclopentane In place of isoprene, 1.81 g of 2,3-dimethyl-2,4-hexadiene (18 3.9 mmol) was used, except that 3-methyl-3- (2,2) was used.
1.11 g (yield 28%) of 2-dimethylvinyl) -1-trimethylsilylcyclopentane was obtained. 1 H NMR (CDCl 3 , δ): -0.01 (s, 9H, Si-Me 3 ); 0.93 (s, 3
H, -CH 3 ); 1.02-1.16 (p, 1H, CH-SiMe 3 ); 1.32-1.49 (m,
2H, ring-CH 2 ); 1.51-1.68 (m, 2H, ring-CH 2 ); 1.63-1.7
6 (m, 2H, ring-CH 2 ); 1.93 (s, 6H, -CH 3 ); 5.75-5.83
(m, 1H, -CH =)

【0031】実施例9:7−トリメチルシリル−ビシク
ロ〔3.3.0〕オクタ−2−エンの製造 イソプレンに代えて、シクロペンタジエン1.25g
(18.9mmol)を使用した以外は、実施例1と同様に
実施して7−トリメチルシリル−ビシクロ〔3.3.
0〕オクタ−2−エン0.87g(収率26%)を得
た。1 H NMR(CDCl3, δ): -0.04(s, 9H, Si-Me3); 0.82-0.95
(m, 1H, -CH-SiMe3); 1.31-1.52(m, 4H, ring-CH2); 1.
92-2.01(m, 1H, ring-CH); 2.60-2.83(m, 2H, ring-C
H2); 2.20-2.28(br m, 1H, ring-CH); 5.41-5.46(m, 1
H, ring-CH=); 5.62-5.67(m, 1H, ring-CH=)
Example 9: Preparation of 7-trimethylsilyl-bicyclo [3.3.0] oct-2-ene 1.25 g of cyclopentadiene instead of isoprene
(18.9 mmol), except that 7-trimethylsilyl-bicyclo [3.3.
0] oct-2-ene (0.87 g, yield 26%). 1 H NMR (CDCl 3, δ ): -0.04 (s, 9H, Si-Me 3); 0.82-0.95
(m, 1H, -CH-SiMe 3 ); 1.31-1.52 (m, 4H, ring-CH 2 ); 1.
92-2.01 (m, 1H, ring-CH); 2.60-2.83 (m, 2H, ring-C
H 2 ); 2.20-2.28 (br m, 1H, ring-CH); 5.41-5.46 (m, 1
H, ring-CH =); 5.62-5.67 (m, 1H, ring-CH =)

【0032】実施例10:8−トリメチルシリル−ビシ
クロ〔4.3.0〕ノナ−2−エンの製造 イソプレンに代えて、1,3−シクロヘキサジエン1.
51g(18.9mmol)を使用した以外は、実施例1と
同様に実施して8−トリメチルシリル−ビシクロ〔4.
3.0〕ノナ−2−エン1.07g(収率29%)を得
た。1 H NMR(CDCl3, δ): -0.01(s, 9H, Si-Me3); 1.18(p, 1
H, -CH-SiMe3); 1.41-1.70(m, 6H, ring-CH2); 1.88-2.
08(m, 2H, ring-CH2); 2.10-2.21(m, 1H, ring-CH); 2.
45(br m, 1H, ring-CH); 5.60-5.75(m, 2H, ring-CH=)
Example 10: Preparation of 8-trimethylsilyl-bicyclo [4.3.0] non-2-ene Instead of isoprene, 1,3-cyclohexadiene 1.
Except that 51 g (18.9 mmol) was used, the same procedure as in Example 1 was carried out to give 8-trimethylsilyl-bicyclo [4.
3.0] Nona-2-ene (1.07 g, yield 29%) was obtained. 1 H NMR (CDCl 3 , δ): -0.01 (s, 9H, Si-Me 3 ); 1.18 (p, 1
H, -CH-SiMe 3 ); 1.41-1.70 (m, 6H, ring-CH 2 ); 1.88-2.
08 (m, 2H, ring-CH 2 ); 2.10-2.21 (m, 1H, ring-CH); 2.
45 (br m, 1H, ring-CH); 5.60-5.75 (m, 2H, ring-CH =)

【0033】実施例11:9−トリメチルシリル−ビシ
クロ〔5.3.0〕デカ−2−エンの製造 イソプレンに代えて、1,3−シクロヘプタジエン1.
78g(18.9mmol)を使用した以外は、実施例1と
同様に実施して9−トリメチルシリル−ビシクロ〔5.
3.0〕デカ−2−エン1.73g(収率44%)を得
た。1 H NMR(CDCl3, δ): 0.00(s, 9H, Si-Me3); 1.20-1.33
(m, 1H, ring-CH-SiMe3);1.50-1.84(m, 8H, ring-CH3);
1.85-2.05(m, 2H, ring-CH2); 2.03-2.14(m, 1H, ring
-CH); 2.35(br m, 1H, ring-CH); 5.55-5.70(m, 2H, ri
ng-CH=)
Example 11: Preparation of 9-trimethylsilyl-bicyclo [5.3.0] dec-2-ene Instead of isoprene, 1,3-cycloheptadiene 1.
Except that 78 g (18.9 mmol) was used, the same procedure as in Example 1 was carried out to give 9-trimethylsilyl-bicyclo [5.
3.0] 1.73 g of deca-2-ene (44% yield). 1 H NMR (CDCl 3, δ ): 0.00 (s, 9H, Si-Me 3); 1.20-1.33
(m, 1H, ring-CH-SiMe 3 ); 1.50-1.84 (m, 8H, ring-CH 3 );
1.85-2.05 (m, 2H, ring-CH 2 ); 2.03-2.14 (m, 1H, ring
-CH); 2.35 (br m, 1H, ring-CH); 5.55-5.70 (m, 2H, ri
ng-CH =)

【0034】実施例12:10−トリメチルシリル−ビ
シクロ〔6.3.0〕ウンデカ−2−エンの製造 イソプレンに代えて、1,3−シクロオクタジエン2.
04g(18.9mmol)を使用した以外は、実施例1と
同様に実施して10−トリメチルシリル−ビシクロ
〔5.3.0〕ウンデカ−2−エン1.93g(収率4
8%)を得た。1 H NMR(CDCl3, δ): 0.00(s, 9H, Si-Me3); 1.25-1.36
(m, 1H, ring-CH-SiMe3);1.43-1.80(m, 10H, ring-C
H2); 1.85-2.05(m, 2H, ring-CH2); 2.00-2.17(m, 1H,
ring-CH); 2.27(br m, 1H, ring-CH); 5.52-5.73(m, 2
H, ring-CH=)
Example 12: Preparation of 10-trimethylsilyl-bicyclo [6.3.0] undec-2-ene Instead of isoprene, 1,3-cyclooctadiene 2.
1.93 g of 10-trimethylsilyl-bicyclo [5.3.0] undec-2-ene (yield 4) was carried out in the same manner as in Example 1 except that 04 g (18.9 mmol) was used.
8%). 1 H NMR (CDCl 3, δ ): 0.00 (s, 9H, Si-Me 3); 1.25-1.36
(m, 1H, ring-CH-SiMe 3 ); 1.43-1.80 (m, 10H, ring-C
H 2 ); 1.85-2.05 (m, 2H, ring-CH 2 ); 2.00-2.17 (m, 1H,
ring-CH); 2.27 (br m, 1H, ring-CH); 5.52-5.73 (m, 2
H, ring-CH =)

【0035】実施例13:1−メチル−3−ビニル−1
−トリメチルシリルシクロペンタンの製造 アルミニウムクロリド0.25g(1.9mmol)と溶媒
としてメチレンクロリド10.0mlを使用し、またアリ
ルトリメチルシランに代えて2−メチルアリルトリメチ
ルシラン2.4g(18.9mmol)及び1,3−ブタジ
エン1.0g(18.9mmol)を使用した以外は、実施
例2と同様に実施して1−メチル−3−ビニル−1−ト
リメチルシリルシクロペンタン1.62g(収率47
%)を得た。1 H NMR(CDCl3, δ): 0.01(s, 9H, Si-Me3); 0.62(s, 3
H, CCH3-SiMe3); 1.22-1.42(m, 2H, ring-CH2); 1.51-
1.68(m, 2H, ring-CH2); 1.76-1.85(m, 2H, ring-CH2);
2.43-2.55(m, 1H, ring-CH); 4.69-4.99(m, 2H, =C
H2); 5.67-5.89(m, 1H,-CH=)
Example 13: 1-methyl-3-vinyl-1
Preparation of trimethylsilylcyclopentane 0.25 g (1.9 mmol) of aluminum chloride and 10.0 ml of methylene chloride as solvent, and 2.4 g (18.9 mmol) of 2-methylallyltrimethylsilane instead of allyltrimethylsilane and Except that 1.0 g (18.9 mmol) of 1,3-butadiene was used, 1.62 g of 1-methyl-3-vinyl-1-trimethylsilylcyclopentane was carried out in the same manner as in Example 2 (yield 47).
%). 1 H NMR (CDCl 3, δ ): 0.01 (s, 9H, Si-Me 3); 0.62 (s, 3
H, CCH 3 -SiMe 3 ); 1.22-1.42 (m, 2H, ring-CH 2 ); 1.51-
1.68 (m, 2H, ring-CH 2 ); 1.76-1.85 (m, 2H, ring-CH 2 );
2.43-2.55 (m, 1H, ring-CH); 4.69-4.99 (m, 2H, = C
H 2 ); 5.67-5.89 (m, 1H, -CH =)

【0036】実施例14:2−メチル−3−ビニル−1
−トリメチルシリルシクロペンタンの製造 2−メチルアリルトリメチルシランに代えて、クロチル
トリメチルシラン2.4g(18.9mmol)を使用した
以外は、実施例13と同様に実施して2−メチル−3−
ビニル−1−トリメチルシリルシクロペンタン1.62
g(収率47%)を得た。1 H NMR(CDCl3, δ): 0.02(s, 9H, Si-Me3); 1.33(d, 3
H, -CH3); 1.24-1.44(m,2H, ring-CH2); 1.78-1.87(m,
2H, ring-CH2); 1.95(t, 1H, ring-CH); 2.45-2.58(p,
1H, ring-CH); 4.70-5.02(m, 2H, =CH2); 5.65-5.86(m,
1H, -CH=)
Example 14: 2-methyl-3-vinyl-1
-Production of trimethylsilylcyclopentane The procedure of Example 13 was repeated except that 2.4 g (18.9 mmol) of crotyltrimethylsilane was used instead of 2-methylallyltrimethylsilane.
Vinyl-1-trimethylsilylcyclopentane 1.62
g (yield 47%) was obtained. 1 H NMR (CDCl 3, δ ): 0.02 (s, 9H, Si-Me 3); 1.33 (d, 3
H, -CH 3 ); 1.24-1.44 (m, 2H, ring-CH 2 ); 1.78-1.87 (m,
2H, ring-CH 2 ); 1.95 (t, 1H, ring-CH); 2.45-2.58 (p,
1H, ring-CH); 4.70-5.02 (m, 2H, = CH 2 ); 5.65-5.86 (m,
1H, -CH =)

【0037】実施例15:3−ビニル−1−(ジメチル
フェニルシリル)シクロペンタンの製造 2−メチルアリルトリメチルシランに代えて、アリルジ
メチルフェニルシラン3.6g(18.9mmol)を使用
した以外は、実施例13と同様に実施して3−ビニル−
1−(ジメチルフェニルシリル)シクロペンタン1.7
0g(収率37%)を得た。1 H NMR(CDCl3, δ): 0.32(s, 6H, Si-Me3); 1.32-1.46
(p, 1H, CH-SiMe3); 1.34-1.53(m, 2H, ring-CH2); 1.5
5-1.72(m, 2H,ring-CH2); 1.80-1.975(m, 2H, ring-C
H2); 2.55-2.63(m, 1H, ring-CH); 4.75-5.06(m, 2H, =
CH2); 5.80-5.93(m,1H, -CH=); 7.30-7.55(m, 5H, Ph)
Example 15: Preparation of 3-vinyl-1- (dimethylphenylsilyl) cyclopentane Except that 3.6 g (18.9 mmol) of allyldimethylphenylsilane was used instead of 2-methylallyltrimethylsilane. The same procedure as in Example 13 was followed to give 3-vinyl-
1- (dimethylphenylsilyl) cyclopentane 1.7
0 g (37% yield) was obtained. 1 H NMR (CDCl 3, δ ): 0.32 (s, 6H, Si-Me 3); 1.32-1.46
(p, 1H, CH-SiMe 3 ); 1.34-1.53 (m, 2H, ring-CH 2 ); 1.5
5-1.72 (m, 2H, ring-CH 2 ); 1.80-1.975 (m, 2H, ring-C
H 2 ); 2.55-2.63 (m, 1H, ring-CH); 4.75-5.06 (m, 2H, =
CH 2 ); 5.80-5.93 (m, 1H, -CH =); 7.30-7.55 (m, 5H, Ph)

【0038】実施例16:3−ビニル−1−(ベンジル
ジメチルシリル)シクロペンタンの製造 2−メチルアリルトリメチルシランに代えて、アリルベ
ンジルジメチルシラン3.9g(18.9mmol)を使用
した以外は、実施例13と同様に実施して3−ビニル−
1−(ベンジルジメチルシリル)シクロペンタン1.9
1g(収率39%)を得た。1 H NMR(CDCl3, δ): 0.00(s, 6H, Si-Me3); 1.05-1.19
(p, 1H, CH-SiMe3); 1.25-1.44(m, 2H, ring-CH2); 1.5
2-1.68(m, 2H, ring-CH2); 1.78-1.90(m, 2H, ring-C
H2); 2.12(s, 2H, -CH2-Ph); 2.41-2.53(m, 1H, ring-C
H); 4.71-5.02(m, 2H, =CH2); 5.65-5.78(m, 1H, -CH
=); 7.02-7.29(m, 5H, Ph)
Example 16: Preparation of 3-vinyl-1- (benzyldimethylsilyl) cyclopentane Except that 3.9 g (18.9 mmol) of allylbenzyldimethylsilane was used instead of 2-methylallyltrimethylsilane. The same procedure as in Example 13 was followed to give 3-vinyl-
1- (benzyldimethylsilyl) cyclopentane 1.9
1 g (yield 39%) was obtained. 1 H NMR (CDCl 3, δ ): 0.00 (s, 6H, Si-Me 3); 1.05-1.19
(p, 1H, CH-SiMe 3 ); 1.25-1.44 (m, 2H, ring-CH 2 ); 1.5
2-1.68 (m, 2H, ring-CH 2 ); 1.78-1.90 (m, 2H, ring-C
H 2 ); 2.12 (s, 2H, -CH 2 -Ph); 2.41-2.53 (m, 1H, ring-C
H); 4.71-5.02 (m, 2H, = CH 2 ); 5.65-5.78 (m, 1H, -CH
=); 7.02-7.29 (m, 5H, Ph)

【0039】実施例17:3−ビニル−1−〔(2−フ
ェニルエチル)ジメチルシリル〕シクロペンタンの製造 2−メチルアリルトリメチルシランに代えて、アリルジ
メチル(2−フェニルエチル)シラン4.1g(18.
9mmol)を使用した以外は、実施例13と同様に実施し
て3−ビニル−1−〔(2−フェニルエチル)ジメチル
シリル〕シクロペンタン1.32g(収率26%)を得
た。1 H NMR(CDCl , δ): -0.02(s, 6H, Si-Me3); 0.63(t, 2
H, Si-CH2-); 1.03-1.16(p, 1H, CH-SiMe3); 1.25-1.44
(m, 2H, ring-CH2); 1.52-1.68(m, 2H, ring-CH2); 1.7
8-1.90(m, 2H, ring-CH2); 2.30(t, 2H, -CH2-Ph); 2.4
1-2.53(m, 1H, ring-CH); 4.71-5.02(m, 2H, =CH2); 5.
65-5.78(m, 1H,-CH=); 7.12-7.40(m, 5H,Ph)
Example 17: Preparation of 3-vinyl-1-[(2-phenylethyl) dimethylsilyl] cyclopentane In place of 2-methylallyltrimethylsilane, 4.1 g of allyldimethyl (2-phenylethyl) silane was obtained. 18.
Except that 9 mmol) was used, 1.32 g (yield 26%) of 3-vinyl-1-[(2-phenylethyl) dimethylsilyl] cyclopentane was obtained in the same manner as in Example 13. 1 H NMR (CDCl, δ): -0.02 (s, 6H, Si-Me 3 ); 0.63 (t, 2
H, Si-CH 2- ); 1.03-1.16 (p, 1H, CH-SiMe 3 ); 1.25-1.44
(m, 2H, ring-CH 2 ); 1.52-1.68 (m, 2H, ring-CH 2 ); 1.7
8-1.90 (m, 2H, ring-CH 2 ); 2.30 (t, 2H, -CH 2 -Ph); 2.4
1-2.53 (m, 1H, ring-CH); 4.71-5.02 (m, 2H, = CH 2 ); 5.
65-5.78 (m, 1H, -CH =); 7.12-7.40 (m, 5H, Ph)

【0040】実施例18:3−ビニル−1−〔(4−フ
ルオロフェニル)ジメチルシリル〕シクロペンタンの製
造 2−メチルアリルトリメチルシランに代えて、アリル
(4−フルオロフェニル)ジメチルシラン3.9g(1
8.9mmol)を使用した以外は、実施例13と同様に実
施して3−ビニル−1−〔(4−フルオロフェニル)ジ
メチルシリル〕シクロペンタン1.52g(収率31
%)を得た。1 H NMR(CDCl3, δ): 0.16(s, 6H, Si-Me3); 1.16-1.30
(p, 1H, CH-SiMe3); 1.31-1.50(m, 2H, ring-CH2); 1.5
1-1.68(m, 2H, ring-CH2); 1.77-1.94(m, 2H, ring-C
H2); 2.53-2.61(m, 1H, ring-CH); 4.70-5.01(m, 2H, =
CH2); 5.82-5.95(m,1H, -CH=); 7.12-7.37(m, 4H, Ph)
Example 18: Preparation of 3-vinyl-1-[(4-fluorophenyl) dimethylsilyl] cyclopentane Instead of 2-methylallyltrimethylsilane, 3.9 g of allyl (4-fluorophenyl) dimethylsilane ( 1
Except that 8.9 mmol) was used, 1.52 g of 3-vinyl-1-[(4-fluorophenyl) dimethylsilyl] cyclopentane was obtained in the same manner as in Example 13 (yield 31).
%). 1 H NMR (CDCl 3, δ ): 0.16 (s, 6H, Si-Me 3); 1.16-1.30
(p, 1H, CH-SiMe 3 ); 1.31-1.50 (m, 2H, ring-CH 2 ); 1.5
1-1.68 (m, 2H, ring-CH 2 ); 1.77-1.94 (m, 2H, ring-C
H 2 ); 2.53-2.61 (m, 1H, ring-CH); 4.70-5.01 (m, 2H, =
CH 2 ); 5.82-5.95 (m, 1H, -CH =); 7.12-7.37 (m, 4H, Ph)

【0041】[0041]

【発明の効果】本発明の新規なシリルシクロペンタン誘
導体は、分子内に二重結合を有しているので、これを用
いて新規な生理活性質、新規な有機ケイ素化合物及び新
規な有機ケイ素高分子化合物の合成に有用である。
Since the novel silylcyclopentane derivative of the present invention has a double bond in the molecule, it can be used to produce a novel physiologically active substance, a novel organosilicon compound and a novel organosilicon compound. Useful for the synthesis of molecular compounds.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 韓 準 秀 大韓民国ソウル特別市城東区廣壮洞453 −1 三星アパート カ−501 (56)参考文献 欧州特許出願公開480528(EP,A) TETRAHEDRON LET T.,34〜30!(1993),4765. TETRAHEDRON,49〜44! (1993),9955−9972. ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Han-Soo, Korea 453-1, Gwangsang-dong, Seong-gu, Seoul, Korea Republic of Korea 501-56 (56) Reference European Patent Application Publication 480528 (EP, A) TETRAHEDRON LETT . , 34-30! (1993), 4765. TETRAHEDRON, 49-44! (1993), 9555-9972.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式(I)で示されるシリルシクロペ
ンタン誘導体。 【化1】 (式中、R1 及びR2 は各々水素原子又は炭素数1〜8
のアルキル基を表すか、あるいはR1 とR2 とが一緒に
なって炭素数1〜4のアルキレン基を形成する。R3
9 は各々水素原子又はメチル基を表し、R10は炭素数
1〜8のアルキル基、フェニル基、ハロフェニル基、ベ
ンジル基又は2−フェニルエチル基を表す)
1. A silylcyclopentane derivative represented by the general formula (I). Embedded image (Wherein, R 1 and R 2 each represent a hydrogen atom or a carbon number of 1 to 8)
Or R 1 and R 2 together form an alkylene group having 1 to 4 carbon atoms. R 3 ~
R 9 represents a hydrogen atom or a methyl group, and R 10 represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, a halophenyl group, a benzyl group or a 2-phenylethyl group.
【請求項2】 一般式(II)の共役ジエン化合物をルイ
ス酸触媒の存在下で一般式(III)のアリルシランと反応
させる一般式(I)のシリルシクロペンタン誘導体の製
造方法。 【化2】 (上記式中、R1 及びR2 は各々水素原子又は炭素数1
〜8のアルキル基を表すか、あるいはR1 とR2 が一緒
になって炭素数1〜4のアルキレン基を形成する。R3
〜R9 は各々水素原子又はメチル基を表し、R10は炭素
数1〜8のアルキル基、フェニル基、ハロフェニル基、
ベンジル基又は2−フェニルエチル基を表す)
2. A method for producing a silylcyclopentane derivative of the general formula (I), wherein a conjugated diene compound of the general formula (II) is reacted with an allylsilane of the general formula (III) in the presence of a Lewis acid catalyst. Embedded image (In the above formula, R 1 and R 2 each represent a hydrogen atom or a carbon atom 1
Represents an alkyl group of 88, or R 1 and R 2 together form an alkylene group having 1 to 4 carbon atoms. R 3
To R 9 each represent a hydrogen atom or a methyl group, and R 10 represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, a halophenyl group,
Represents a benzyl group or a 2-phenylethyl group)
【請求項3】 ベンゼン、ヘキサン、メチレンクロリ
ド、クロロホルム及び四塩化炭素からなる群から選択さ
れた溶媒中で反応させる請求項2のシリルシクロペンタ
ン誘導体の製造方法。
3. The method for producing a silylcyclopentane derivative according to claim 2, wherein the reaction is carried out in a solvent selected from the group consisting of benzene, hexane, methylene chloride, chloroform and carbon tetrachloride.
【請求項4】 ルイス酸触媒がアルミニウムクロリド、
チタニウムクロリド、スズクロリド、ボロンクロリド及
びこれらの混合物からなる群から選択されたルイス酸で
ある請求項2のシリルシクロペンタン誘導体の製造方
法。
4. The Lewis acid catalyst is aluminum chloride,
The method for producing a silylcyclopentane derivative according to claim 2, which is a Lewis acid selected from the group consisting of titanium chloride, tin chloride, boron chloride and a mixture thereof.
【請求項5】 一般式(III)のアリルシランの使用量が
一般式(II)の共役ジエン化合物の使用量に対し1〜1
0倍モルである請求項2のシリルシクロペンタン誘導体
の製造方法。
5. The use amount of the allylsilane of the general formula (III) is 1 to 1 with respect to the use amount of the conjugated diene compound of the general formula (II).
3. The method for producing a silylcyclopentane derivative according to claim 2, wherein the molar amount is 0-fold.
【請求項6】 反応温度が−40〜40℃である請求項
2のシクロペンタン誘導体の製造方法。
6. The method for producing a cyclopentane derivative according to claim 2, wherein the reaction temperature is -40 to 40 ° C.
JP6282118A 1994-06-25 1994-11-16 Silylcyclopentane derivative and method for producing the same Expired - Fee Related JP2706628B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR14747/1994 1994-06-25
KR1019940014747A KR0142145B1 (en) 1994-06-25 1994-06-25 Silylcyclo pentanes

Publications (2)

Publication Number Publication Date
JPH0812679A JPH0812679A (en) 1996-01-16
JP2706628B2 true JP2706628B2 (en) 1998-01-28

Family

ID=19386336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282118A Expired - Fee Related JP2706628B2 (en) 1994-06-25 1994-11-16 Silylcyclopentane derivative and method for producing the same

Country Status (2)

Country Link
JP (1) JP2706628B2 (en)
KR (1) KR0142145B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETT.,34〜30!(1993),4765.
TETRAHEDRON,49〜44!(1993),9955−9972.

Also Published As

Publication number Publication date
KR0142145B1 (en) 1998-07-01
JPH0812679A (en) 1996-01-16
KR960000901A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
Seki et al. Single-operation synthesis of vinylsilanes from alkenes and hydrosilanes with the aid of Ru3 (CO) 12
Shimizu et al. Synthesis and structure of polysilabridged and doubly bridged allenes
US20130274497A1 (en) Low molecular weight carbosilanes, precursors thereof, and methods of preparation
JP2706628B2 (en) Silylcyclopentane derivative and method for producing the same
Ishikawa et al. Silicon-carbon unsaturated compounds. 33. Regiochemistry in the photochemical formation of silenes from 1, 2, 2, 2-tetramethyl-, 1, 1, 2, 2-tetramethyl-, and 2-ethyl-1, 2, 2-trimethylphenylvinyldisilane
JP2823807B2 (en) Bis (dichloroorganosilyl) alkane derivative and method for producing the same
US20040106814A1 (en) Silicon ether compound, a method for the preparation thereof and use thereof
JPS6327351B2 (en)
JP2838342B2 (en) Method for producing tertiary hydrocarbon silyl compound
EP2788363B1 (en) Hydrolysable silanes
US5965762A (en) Chlorohydrosilane derivatives and their preparation method
US5068381A (en) Poly(silvinylene)s and a process for their preparation
JP3905340B2 (en) New preparation method of organometallic compounds
JP2625513B2 (en) Method for producing organosilicon compound
JP2815548B2 (en) Bis (silylpropyl) arene and production method thereof
KR0142143B1 (en) Ñò-silyolefins made by allysilation and process for preparing the same
JPH026488A (en) Omega-alkynylsilane compound
JPH0374676B2 (en)
JPH04283589A (en) Production of vinyl silane compounds
US5663397A (en) Cyclic silyl enol ethers and method of preparing the same
JP2736324B2 (en) Synthesis of silylcyanohydrin
JP4113281B2 (en) Method for producing cyclopentenone derivative
JPH0112757B2 (en)
Jung et al. Photochemical generation of a novel eight-membered-ring silene
JP2002012597A (en) Organic silicon compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees