JP2704451B2 - Stacked heat exchanger - Google Patents

Stacked heat exchanger

Info

Publication number
JP2704451B2
JP2704451B2 JP2170006A JP17000690A JP2704451B2 JP 2704451 B2 JP2704451 B2 JP 2704451B2 JP 2170006 A JP2170006 A JP 2170006A JP 17000690 A JP17000690 A JP 17000690A JP 2704451 B2 JP2704451 B2 JP 2704451B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
heat exchanger
flow path
inner fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2170006A
Other languages
Japanese (ja)
Other versions
JPH0460387A (en
Inventor
光夫 工藤
敏彦 福島
敬智 澤幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2170006A priority Critical patent/JP2704451B2/en
Publication of JPH0460387A publication Critical patent/JPH0460387A/en
Application granted granted Critical
Publication of JP2704451B2 publication Critical patent/JP2704451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調機等に用いられる積層形熱交換器に係
り、特に、カーエアコン用蒸発器として好適な積層形熱
交換器に関する。
Description: TECHNICAL FIELD The present invention relates to a laminated heat exchanger used for an air conditioner or the like, and particularly to a laminated heat exchanger suitable as an evaporator for a car air conditioner.

〔従来の技術〕[Conventional technology]

蒸発器として用いられている従来の積層形熱交換器
は、特開昭63−2149号公報に記載のように冷媒流路内に
突出したリブをもつ二枚の伝熱管板を突出したリブがX
字状に交差するように組合わせてジグザグ状の冷媒流路
を形成した偏平伝熱管と被冷却空気側伝熱フインとを交
互に多数積層した構造となつており、冷媒流路の両端部
には隣接する伝熱管を相互に連通させるように冷媒入
口,出口タンク部が設けられている。
A conventional laminated heat exchanger used as an evaporator has a rib protruding two heat transfer tube plates having ribs protruding into a refrigerant passage as described in JP-A-63-2149. X
It has a structure in which a number of flat heat transfer tubes and zig-zag refrigerant flow passages are formed so as to intersect in a cross shape, and a plurality of cooling air side heat transfer fins are alternately stacked. Is provided with a refrigerant inlet and an outlet tank so that adjacent heat transfer tubes communicate with each other.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

入口タンク部を介して各偏平伝熱管内に分岐して流入
した冷媒は管内を通る間に空気と熱交換して液冷媒が蒸
発する。蒸発気化したガス冷媒は、出口タンク部で、再
び、合流し外部に流出する。ところが、従来の熱交換器
では突出したリブを流路全体にわたりX字状に交差した
ジグザグな流路構造となつているため、流路が狭められ
て縮小拡大やジグザグに蛇行した流れとなり冷媒流路の
圧力損失が大きくなるという問題点があつた。これに対
して特願平1−275872号明細書に示すように、管内にイ
ンナフインを配置した熱交換器によれば冷媒はインナフ
インに沿つて真直ぐに流れるので圧力損失は大幅に低減
する。しかし、冷媒通路抵抗が小さいために冷媒が重力
方向に向つて下降流となる伝熱管内では密度の大きい液
冷媒が重力の作用によつて瞬時に落下するためインナフ
インとの接触時間が少なく、また周囲への拡散も殆んど
行なわれないため液冷媒のもつ冷却能力が充分発揮され
ないという問題があつた。
The refrigerant that has branched and flowed into each of the flat heat transfer tubes via the inlet tank portion exchanges heat with air while passing through the tubes, and the liquid refrigerant evaporates. The evaporated gas refrigerant merges again at the outlet tank and flows out. However, in the conventional heat exchanger, the protruding ribs have a zigzag flow path structure in which the protruding ribs intersect in an X-shape over the entire flow path. There is a problem that the pressure loss of the road becomes large. On the other hand, as disclosed in Japanese Patent Application No. 1-258782, according to the heat exchanger in which the inner fin is disposed in the pipe, the refrigerant flows straight along the inner fin, so that the pressure loss is greatly reduced. However, in the heat transfer tube where the refrigerant flows downward in the direction of gravity due to the low resistance of the refrigerant passage, the liquid refrigerant having a high density instantaneously drops by the action of gravity in the heat transfer tube, so that the contact time with the inner fin is short, and Since there is almost no diffusion to the surroundings, there is a problem that the cooling capacity of the liquid refrigerant cannot be sufficiently exhibited.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は、少なくとも冷
媒流路を密封するための接合リブ部を残して冷媒流路と
なるべきくぼみ部とこれに連なる入口,出口タンク部を
押し出して成形した伝熱板を二枚組合わせて形成される
上,下に複数回蛇行した冷媒流路内にインナフインを介
挿固着して偏平伝熱管を構成し、偏平伝熱管の入口,出
口タンク部がそれぞれ連通するように偏平伝熱管と空気
側伝熱フインとを交互に多数積層してなる積層形熱交換
器において、管内を流れる冷媒が重力方向に流下する通
路内に配置されたインナフインのフインピツチを上昇し
て流れる流路内に配置されたインナフインのフインピツ
チよりも小さく設定したものである。
In order to achieve the above object, the present invention relates to a transmission molded by extruding a hollow part to be a refrigerant flow path and an inlet / outlet tank part connected to the hollow part, at least leaving a joining rib part for sealing the refrigerant flow path. A flat heat transfer tube is formed by inserting and fixing an inner fin in the refrigerant flow path formed by combining two hot plates and meandering downward multiple times. The inlet and outlet tanks of the flat heat transfer tube communicate with each other. In a stacked heat exchanger in which a number of flat heat transfer tubes and air-side heat transfer fins are alternately stacked so that the refrigerant flowing in the tubes rises, the fin pitch of the inner fin arranged in the passage in which the refrigerant flows down in the direction of gravity rises. Is smaller than the fine pitch of the inner fins arranged in the flow path that flows through.

また、伝熱性能を向上させるため、管内に配置するイ
ンナフインとして、長手方向に沿つて所定のピツチで断
続した切り欠き部をもつインナフインとしたものであ
る。
Further, in order to improve the heat transfer performance, the inner fin arranged in the pipe is an inner fin having a cutout portion interrupted by a predetermined pitch along the longitudinal direction.

〔作用〕[Action]

重力の方向と同じ方向に冷媒が流下する伝熱管内に配
置されたインナフインのピツチを小さく設定してあるの
で、重力の作用によつて冷媒の液滴がインナフインの間
を瞬時に落下するのが妨げられ、液滴がインナフインと
接触する時間を長く保持できるので液冷媒のもつ冷却能
力を充分発揮できる。また、インナフインの長手方向に
断続的に設けた切り欠き部を介して液冷媒が流路を横切
る方向へも拡散できるようになるので、一層冷却能力が
向上する。
Since the pitch of the inner fin arranged in the heat transfer tube through which the refrigerant flows in the same direction as the direction of gravity is set to be small, the droplet of the refrigerant instantaneously falls between the inner fins by the action of gravity. As a result, the time during which the droplet contacts the inner fin can be maintained for a long time, so that the cooling capacity of the liquid refrigerant can be sufficiently exhibited. Further, since the liquid refrigerant can be diffused in the direction crossing the flow path through the cutout portion provided intermittently in the longitudinal direction of the inner fin, the cooling capacity is further improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第7図により
説明する。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明に係る積層形熱交換器の偏平伝熱管1
を構成する伝熱管板1aの流路くぼみ部2内にインナフイ
ン3を配置した平面図、第2図は偏平伝熱管板1aの斜視
図、第3図はインナフイン3の斜視図、第4図は偏伝熱
管板1bの斜視図、第5図はインナフイン3の要部斜視
図、第6図は積層形熱交換器の全体構成図、第7図は冷
媒の流し方を模式的に示す全体図である。
FIG. 1 shows a flat heat transfer tube 1 of a laminated heat exchanger according to the present invention.
Is a plan view in which the inner fins 3 are arranged in the channel recesses 2 of the heat transfer tube plate 1a, FIG. 2 is a perspective view of the flat heat transfer tube plate 1a, FIG. 3 is a perspective view of the inner fins 3, and FIG. FIG. 5 is a perspective view of a main part of the inner fin 3, FIG. 6 is an overall configuration diagram of a laminated heat exchanger, and FIG. 7 is an overall view schematically showing a flow of a refrigerant. It is.

伝熱管板1aは、密閉された流路を形成するための接合
リブ部40を素材平板の全周にわたつて残して冷媒流路と
なるべきU字形のくぼみ部2を押し出し、さらにこれよ
り深く入口タンク部4,出口タンク部5を押し出し成形し
た構造となつている。U字形流路の中間部には接合リブ
4に連なる流路仕切り部6が設けられている。U字形流
路の入口,出口タンク部にはそれぞれ連通孔a,bが打ち
抜かれており、反タンク側端部には積層して組立てたと
きに偏平伝熱管1の間隔を保持するための折り返し部7
が設けられている。入口タンク部4に連なる入口側冷媒
流路2a内に配置されているインナフイン3aのフインピツ
チPDは、出口側冷媒流路2b内に配置されているインナフ
イン3bのフインピツチPUよりも小さく、PD<PUとなるよ
うに設定されている。通常、PU=2.0mmに対してPD=1.0
〜1.5mm程度に設定するのが好ましい。また、インナフ
イン3には、第5図に示すように、フインの長手方向に
沿う所定のピツチの断続的な切り欠き部Cが設けられて
おり、この切り欠き部を介してフインを横切る方向へ冷
媒を流すことも可能である。伝熱管板1aに組合わされる
伝熱管板1bは、第4図に示すように、1aに対して鏡に映
したように対称な形状となつている。
The heat transfer tube plate 1a pushes out the U-shaped concave portion 2 which is to be a refrigerant flow passage while leaving the joining rib portion 40 for forming a closed flow passage over the entire circumference of the material flat plate, and further deepens the U-shaped depression portion. The inlet tank 4 and the outlet tank 5 are formed by extrusion. At the middle of the U-shaped flow path, a flow path partitioning portion 6 connected to the joining rib 4 is provided. Communication holes a and b are punched out at the inlet and outlet tank portions of the U-shaped flow passage, respectively, and the folded portions for maintaining the interval of the flat heat transfer tubes 1 when stacked and assembled at the end opposite to the tank side. Part 7
Is provided. Fuinpitsuchi P D of In'nafuin 3a disposed on the inlet side refrigerant passage 2a leading to the inlet tank portion 4 is smaller than Fuinpitsuchi P U of In'nafuin 3b disposed on the outlet side refrigerant passage 2b, P D <is set such that P U. Normally, P D = 1.0 for P U = 2.0 mm
It is preferably set to about 1.5 mm. As shown in FIG. 5, the inner fin 3 is provided with an intermittent cut-out portion C of a predetermined pitch along the longitudinal direction of the fin, and the cut-out portion extends in a direction crossing the fin. It is also possible to flow a refrigerant. As shown in FIG. 4, the heat transfer tube plate 1b combined with the heat transfer tube plate 1a has a symmetrical shape as shown in a mirror with respect to 1a.

第6図は本発明に係る積層形熱交換器の全体構成を示
す。伝熱管板1a,1bを組合わせて形成されるU字形冷媒
流路内にインサートフインを介挿固着して偏平伝熱管1
を構成する。この偏平伝熱管1の入口タンク部4a,出口
タンク部5が各各連通孔a,bを介して連通するように偏
平伝熱管1を多数積層し、隣接する偏平管1の間にでき
る空間部に被冷却空気側伝熱フイン8を介挿固着し、左
右両端に位置する偏平管にはサイドフイン8aを介してサ
イドプレート9を固着した構造となつている。被冷却空
気Aの下流側には入口ヘツダタンク4aが、上流側には出
口ヘツダタンク5aが配置されており、各々入口パイプ1
0,出口パイプ11が接続されている。
FIG. 6 shows the overall configuration of the laminated heat exchanger according to the present invention. A flat heat transfer tube 1 is inserted and fixed in a U-shaped refrigerant passage formed by combining the heat transfer tube plates 1a and 1b with an insert fin.
Is configured. A plurality of flat heat transfer tubes 1 are stacked so that the inlet tank portion 4a and the outlet tank portion 5 of the flat heat transfer tube 1 communicate through the respective communication holes a and b, and a space formed between the adjacent flat tubes 1 The heat transfer fins 8 to be cooled are inserted and fixed to the flat tubes, and side plates 9 are fixed to the flat tubes located at both left and right ends via side fins 8a. An inlet header tank 4a is disposed downstream of the cooled air A, and an outlet header tank 5a is disposed upstream thereof.
0, the outlet pipe 11 is connected.

入口パイプ10より入口ヘツダタンク4a内に流入した冷
媒は、第7図に示すように、これに連なる偏平伝熱管内
へ入口パイプに近いものから、順次、分岐して重力方向
に冷媒が矢印Dのように流下する入口側冷媒流路2a内に
流入する。冷媒流路2a内にはフインピツチがPD=1.0〜
1.5mm程度と目が詰つたインナフインが介挿されている
ので液冷媒は表面張力に基づく毛細管現象によりフイン
間に液滴となつて良く接触しながらガス冷媒に伴つて流
下するので液冷媒のもつ冷却能力を発揮することができ
る。また、インナフインには断続的な切り欠き部Cが設
けられているので冷媒液滴との接触が断続的となり、伝
熱性能がさらに向上すると共に切り欠き部を介して液冷
媒が流路幅方向に拡散するので液冷媒のもつ冷却能力が
一層よく発揮できる。流下した冷媒は流路下端のUター
ン部で屈曲反転して下流側冷媒流路2b内に流入する。下
流側冷媒流路2b内では、冷媒は矢印Uに示すように上昇
流となつており、密度の大きい液冷媒は重力に逆らうよ
うにガス冷媒によつて下から吹き上げられる。従つて重
力に逆らつて液冷媒を吹き上げる分だけ流動抵抗が大き
くなつてしまうが、ここに配置されているインナフイン
3bのフインピツチPUは約2mmと上流側流路2a内のインナ
フイン3aのフインピツチPDよりも大きく設定されている
ので流動抵抗の増加が抑えられる。また、冷媒ガスによ
つて吹き上げられる冷媒液滴の挙動は不安定であり、イ
ンナフインに設けられた切り欠部Cを介して冷媒流路を
横方向に拡散するのでインナフインとの接触が満偏無く
おこなわれ液冷媒のもつ冷却能力が一層効率良く発揮さ
れる。
As shown in FIG. 7, the refrigerant flowing into the inlet header tank 4a from the inlet pipe 10 is branched into a flat heat transfer tube connected to the inlet heat pipe 4a, and the refrigerant is sequentially branched in the direction of gravity as indicated by an arrow D in the direction of gravity. Flows into the inlet-side refrigerant flow path 2a flowing down as described above. In the refrigerant flow path 2a, a fine pitch is P D = 1.0 to
The liquid refrigerant flows down with the gas refrigerant while making good contact with the liquid droplets between the fins due to the capillary action based on the surface tension because the inner fin with a clogging of about 1.5 mm is inserted, so that the liquid refrigerant has The cooling capacity can be exhibited. In addition, since the notched portion C is provided on the inner fin, the contact with the coolant droplets is intermittent, so that the heat transfer performance is further improved and the liquid refrigerant flows through the notched portion in the width direction of the flow channel. Therefore, the cooling capacity of the liquid refrigerant can be more fully exhibited. The flowing-down refrigerant bends and reverses at the U-turn portion at the lower end of the flow path and flows into the downstream-side refrigerant flow path 2b. In the downstream-side refrigerant flow path 2b, the refrigerant flows upward as indicated by an arrow U, and the liquid refrigerant having a high density is blown up from below by the gas refrigerant so as to oppose gravity. Therefore, the flow resistance increases as much as the liquid refrigerant is blown up against the gravity, but the inner fins located here
Fuinpitsuchi P U and 3b is increased flow resistance is suppressed because it is larger than Fuinpitsuchi P D of In'nafuin 3a of about 2mm and the upstream flow channel 2a. In addition, the behavior of the refrigerant droplets blown up by the refrigerant gas is unstable, and diffuses laterally in the refrigerant flow path through the notch C provided in the inner fin, so that contact with the inner fin is evenly distributed. The cooling capacity of the liquid refrigerant is exhibited more efficiently.

第一の実施例の熱交換器における冷媒の流し方は第7
図に示すように、積層されている全ての偏平管内を流れ
る冷媒が一様に空気流Aに対して直交対向流を形成して
いるが、本発明による作動効果は、第8図に示すよう
に、偏平管を複数個の管群に区画し、少なくとも、出口
パイプ11に連接されている最下流の管群内を流れる冷媒
が空気流に対して直交対向流となるように冷媒パスを構
成しても変らない。
The flow of the refrigerant in the heat exchanger of the first embodiment is the seventh.
As shown in the figure, the refrigerant flowing in all of the laminated flat tubes uniformly forms an orthogonal counterflow with respect to the air flow A. The operation effect of the present invention is as shown in FIG. In addition, the flat tube is divided into a plurality of tube groups, and at least, a refrigerant path is formed so that the refrigerant flowing in the most downstream tube group connected to the outlet pipe 11 has an orthogonally opposed flow to the air flow. Even if it does not change.

前述の実施例は冷媒流路内に流路仕切り部6を一個所
設けU字形の冷媒流路を構成しているが、例えば、第9
図,第10図に示すように並行して二箇所以上に仕切り部
を設けることによりW字形に蛇行した冷媒流路を構成し
た熱交換器についても、本発明による作用効果は変らな
い。
In the above-described embodiment, one U-shaped refrigerant flow path is provided by providing one flow path partitioning portion 6 in the refrigerant flow path.
As shown in FIG. 10 and FIG. 10, the effect of the present invention does not change even in a heat exchanger having a refrigerant flow path meandering in a W shape by providing two or more partitions in parallel.

また、この実施例ではヘツダタンクを上方に配置して
いるが、下方に配置した熱交換器についても本発明によ
る作用効果は変らない。
Further, in this embodiment, the header tank is arranged at the upper side, but the operation and effect of the present invention do not change for the heat exchanger arranged at the lower side.

〔発明の効果〕〔The invention's effect〕

本発明によれば、重力の方向と同じ方向に冷媒が流下
する伝熱管内に配置されたインナフインのピツチを小さ
く設定してあるので、冷媒液滴の表面張力に基づく毛細
管作用によつてフイン間に液滴が保持されて、重力の作
用によつて冷媒の液滴がインナフイン間の瞬時に落下す
るのが妨げられ、液滴がインナフインと接触する時間を
長く保持できるので液冷媒のもつ冷却能力を充分発揮で
きる。また、インナフインの長手方向に断続的に設けた
切り欠き部を介して液冷媒が流路を横切る方向へも拡散
できるようになるので、一層冷却能力が向上する。
According to the present invention, the pitch of the inner fin arranged in the heat transfer tube in which the refrigerant flows down in the same direction as the direction of gravity is set to be small, so that the space between the fins is formed by the capillary action based on the surface tension of the refrigerant droplet. The droplets are held by the liquid refrigerant, which prevents the droplets of the refrigerant from instantaneously falling between the inner fins due to the action of gravity, and can keep the droplets in contact with the inner fins for a long time. Can be fully demonstrated. Further, since the liquid refrigerant can be diffused in the direction crossing the flow path through the cutout portion provided intermittently in the longitudinal direction of the inner fin, the cooling capacity is further improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の積層形熱交換器の平面図、
第2図は偏平伝熱管板の斜視図、第3図はインナフイン
の斜視図、第4図は偏平伝熱管板の斜視図、第5図はイ
ンナフインの要部斜視図、第6図は積層形熱交換器の斜
視図、第7図は冷媒の流し方を模式的に示す説明図、第
8図は本発明の第二の実施例の冷媒の流し方の説明図、
第9図は本発明に係る第三の実施例の偏平伝熱管の平面
図、第10図は本発明の第三の実施例の熱交換器を示す斜
視図である。 3a……インナフイン、3b……インナフイン。
FIG. 1 is a plan view of a laminated heat exchanger according to one embodiment of the present invention,
2 is a perspective view of the flat heat transfer tube plate, FIG. 3 is a perspective view of the inner heat transfer tube, FIG. 4 is a perspective view of the flat heat transfer tube plate, FIG. 5 is a perspective view of a main portion of the inner heat transfer tube, and FIG. FIG. 7 is a perspective view of the heat exchanger, FIG. 7 is an explanatory view schematically showing how the refrigerant flows, FIG. 8 is an explanatory view of the refrigerant flow of the second embodiment of the present invention,
FIG. 9 is a plan view of a flat heat transfer tube according to the third embodiment of the present invention, and FIG. 10 is a perspective view showing a heat exchanger of the third embodiment of the present invention. 3a …… Innafin, 3b …… Innafin.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも冷媒流路を密封するための接合
リブ部を残して冷媒流路となるべきくぼみ部とこれに連
なる入口,出口タンク部を押し出し成形した伝熱板を二
枚組合わせて形成される上下に複数回蛇行した冷媒流路
内にインナフインを介挿固着して偏平伝熱管を構成し、
前記偏平伝熱管の前記入口,出口タンク部がそれぞれ連
動するように前記偏平伝熱管と空気側伝熱フインとを交
互に多数積層してなる積層形熱交換器において、 管内を流れる前記冷媒が重力方向に流下する通路内に配
置された前記インナフインのフインピツチを上昇して流
れる冷媒流路内に配置されたインナフインのフインピツ
チよりも小さく設定したことを特徴とする積層形熱交換
器。
1. A combination of two heat transfer plates formed by extruding a hollow portion to be a refrigerant flow channel and an inlet / outlet tank portion connected to the hollow portion, at least leaving a joining rib portion for sealing the refrigerant flow channel. A flat heat transfer tube is formed by inserting and fixing the inner fin in the formed refrigerant flow path meandering up and down a plurality of times,
In the laminated heat exchanger in which a plurality of the flat heat transfer tubes and the air-side heat transfer fins are alternately stacked so that the inlet and the outlet tank portions of the flat heat transfer tubes are interlocked, the refrigerant flowing in the tubes has a gravity. A laminated heat exchanger wherein the fine pitch of the inner fin disposed in the passage flowing down in the direction is set smaller than the fine pitch of the inner fin disposed in the refrigerant flow path flowing upward.
JP2170006A 1990-06-29 1990-06-29 Stacked heat exchanger Expired - Lifetime JP2704451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170006A JP2704451B2 (en) 1990-06-29 1990-06-29 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170006A JP2704451B2 (en) 1990-06-29 1990-06-29 Stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPH0460387A JPH0460387A (en) 1992-02-26
JP2704451B2 true JP2704451B2 (en) 1998-01-26

Family

ID=15896844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170006A Expired - Lifetime JP2704451B2 (en) 1990-06-29 1990-06-29 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP2704451B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719453B2 (en) * 1995-12-20 2005-11-24 株式会社デンソー Refrigerant evaporator
BR9800780A (en) * 1997-02-28 1999-10-13 Denso Corp Refrigerant evaporator
JP3428373B2 (en) * 1997-05-30 2003-07-22 昭和電工株式会社 Stacked evaporator
DE102009050482B4 (en) * 2009-10-23 2011-09-01 Voith Patent Gmbh Heat exchanger plate and evaporator with such
CN102032830B (en) * 2010-11-27 2012-12-19 浙江银轮机械股份有限公司 Mixed type sawtooth staggered fin used for fin heat exchanger
JP6673159B2 (en) * 2016-11-24 2020-03-25 株式会社デンソー Cooling circuit

Also Published As

Publication number Publication date
JPH0460387A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US6378603B1 (en) Heat exchanger constructed by plural heat conductive plates
US6546998B2 (en) Tube structure of micro-multi channel heat exchanger
JP5096134B2 (en) Heat exchanger cross rib plate pair
US6272881B1 (en) Refrigerant evaporator and manufacturing method for the same
KR100497847B1 (en) Evaporator
JPH04155191A (en) Lamination type heat exchanger
JP4686062B2 (en) Evaporator
JP2704451B2 (en) Stacked heat exchanger
US5975200A (en) Plate-fin type heat exchanger
KR100220723B1 (en) Heat exchanger for air conditioner
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP2006170601A (en) Evaporator
US5934363A (en) Heat exchanger fin having an increasing concentration of slits from an upstream to a downstream side of the fin
JPH08334277A (en) Evaporator for room air conditioner
JPH0473599A (en) Heat exchanger
EP0803695B1 (en) Plate-fin heat exchanger
JP2005180714A (en) Heat exchanger and inner fin used by it
US1993872A (en) Radiator core
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JP2006112731A (en) Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger
JP2005069670A (en) Heat exchanger and evaporator
JPH0630680U (en) Stacked evaporator element
JPH02171591A (en) Laminated type heat exchanger
JP2001133076A (en) Heat exchanger
JP2005195317A (en) Heat exchanger