JP2006112731A - Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger - Google Patents

Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger Download PDF

Info

Publication number
JP2006112731A
JP2006112731A JP2004301499A JP2004301499A JP2006112731A JP 2006112731 A JP2006112731 A JP 2006112731A JP 2004301499 A JP2004301499 A JP 2004301499A JP 2004301499 A JP2004301499 A JP 2004301499A JP 2006112731 A JP2006112731 A JP 2006112731A
Authority
JP
Japan
Prior art keywords
heat transfer
diameter
small
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301499A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujino
宏和 藤野
Takayuki Takahashi
孝幸 高橋
Keiji Ashida
圭史 芦田
Haruo Nakada
春男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004301499A priority Critical patent/JP2006112731A/en
Publication of JP2006112731A publication Critical patent/JP2006112731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the heat exchanging performance of a small-diameter multitubular heat exchanger by using a heat transfer accelerating member. <P>SOLUTION: Cut and raised pieces 45a, 45b and 45c such as slits and louvers formed on a heat transfer fin 42 are formed into approximate squares, and a wide and large heat transfer area for sufficiently transferring heat to a central portion of the fin is secured, thus effective heat transfer acceleration is enabled without unreasonably impairing the efficiency of the fin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、細径多管式熱交換器の細径伝熱管ユニットの構造に関するものである。   The present invention relates to a structure of a small-diameter heat transfer tube unit of a small-diameter multi-tube heat exchanger.

最近では、例えば所定の間隔を置いて対向配置された入口タンクと出口タンクとの間に、管径dが0.2mm〜0.8mm程度の細径の断面円環状の複数のチューブを、当該各チューブ間のピッチLが上記チューブの管径dの1d〜2d程度となるように配置して外部流体が流通するコア部を形成するとともに、さらに上記コア部の複数のチューブを外部流体の流れ方向に正方形の碁盤目状に配置し、外部流体との接触効率を向上させた細径多管式の伝熱管構造を採用した熱交換器が提案されている(例えば特許文献1参照)。   Recently, for example, a plurality of tubes having an annular cross section with a small diameter of about 0.2 mm to 0.8 mm are provided between an inlet tank and an outlet tank that are arranged to face each other at a predetermined interval. A core portion through which an external fluid flows is formed by arranging the pitch L between the tubes to be about 1d to 2d of the tube diameter d of the tube, and further, the flow of the external fluid through the plurality of tubes of the core portion. There has been proposed a heat exchanger that employs a small-diameter multi-tube heat transfer tube structure that is arranged in a square grid pattern in the direction and has improved contact efficiency with an external fluid (see, for example, Patent Document 1).

このような細径多管式の熱交換器は、空気調和機などの熱交換器として一般的に使用されているフィン・アンド・チューブ型の熱交換器に比較して、より高性能で、より通風抵抗が小さいので、高効率の熱交換器として機能させることが可能である。   Compared to fin-and-tube heat exchangers that are generally used as heat exchangers such as air conditioners, such small-diameter multi-tube heat exchangers have higher performance, Since the ventilation resistance is smaller, it is possible to function as a highly efficient heat exchanger.

しかし、このような細径多管式熱交換器の構成の場合、コア部が細径伝熱管の集合体よりなるために伝熱管熱交部トータルとしての熱伝達率そのものは高いが、他方各伝熱管個々の伝熱面積が小さいために、一定レベル以上の高性能化を図るためには、より多数本の細径伝熱管が必要となる。その結果、構造が複雑で、組み立ても煩雑となる。   However, in the case of the configuration of such a small-diameter multi-tube heat exchanger, since the core portion is composed of an assembly of small-diameter heat transfer tubes, the heat transfer coefficient itself as a heat transfer tube heat exchanger is high, but each other Since the heat transfer area of each heat transfer tube is small, a larger number of small-diameter heat transfer tubes are required to achieve higher performance than a certain level. As a result, the structure is complicated and the assembly is complicated.

また、同細径の伝熱管群は、外部流体(空気)の流れ方向に多数本の流路を碁盤目状に設けて内部流体(水)を流すようになっているが、その流れ方向の位置によって各流路毎の熱交換量が異なるために偏流を生じやすく、特に空気調和機のように気液二相冷媒を流す場合にはその傾向が著しい。   In addition, the heat transfer tube group of the same small diameter is provided with a large number of flow paths in a grid pattern in the flow direction of the external fluid (air) to flow the internal fluid (water). Since the amount of heat exchange for each flow path varies depending on the position, drift tends to occur, and this tendency is particularly noticeable when a gas-liquid two-phase refrigerant is flowed as in an air conditioner.

したがって、自動車のラジエータのような相状態が変化しない冷却水を内部流体とする場合にはよいが、上記空気調和機などのように相状態が変化する冷媒を内部流体とする場合には、採用することが困難であった。   Therefore, it is good when the cooling water that does not change the phase state, such as an automobile radiator, is used as the internal fluid, but it is used when the refrigerant that changes the phase state, such as the air conditioner, is used as the internal fluid. It was difficult to do.

そこで、このような事情に基き、上述の細径の伝熱管の各管体部にフィンを付加するとともに、それら各管体部およびフィン部の仕様条件を偏流を生じにくいものに形成することによって、熱伝達率に加えて、伝熱面積をも有効に増大させ、空気調和機などにも有効に採用できるようにした細径多管式の熱交換器を提供することが考えられている。   Therefore, based on such circumstances, by adding fins to each tube body portion of the above-mentioned small-diameter heat transfer tube, the specification conditions of each tube body portion and fin portion are formed so as not to cause drift. In addition to the heat transfer coefficient, it has been considered to provide a small-diameter multi-tube heat exchanger that can effectively increase the heat transfer area and can be effectively used in an air conditioner or the like.

この伝熱フィンを備えた細径多管式熱交換器および同熱交換器を構成する細径伝熱管ユニットの構成の一例を図14〜図17に示す。   An example of the configuration of the small-diameter multi-tube heat exchanger provided with the heat transfer fins and the small-diameter heat transfer tube unit constituting the heat exchanger is shown in FIGS.

すなわち、先ず図14に示す細径多管式熱交換器1は、相互に所定の間隔を保って並設された冷媒分配機能を有する入口ヘッダ2Aおよび出口ヘッダ2Bと、該入口ヘッダ2Aと出口ヘッダ2Bの各々に接続され、その下部側に位置して長手方向に沿って多数本並設された細径伝熱管ユニット4,4・・・よりなる熱交部3とから構成されている。   That is, first, a small-diameter multitubular heat exchanger 1 shown in FIG. 14 includes an inlet header 2A and an outlet header 2B having a refrigerant distribution function arranged in parallel with each other at a predetermined interval, and the inlet header 2A and the outlet Each of the headers 2B is connected to each of the headers 2B and is composed of a heat exchange section 3 including a plurality of small-diameter heat transfer tube units 4, 4...

上記細径伝熱管ユニット4,4・・・は、例えば図15及び図16に示すように、その伝熱管(細径管)41が全体としてU状に曲成され、その上端側各開口端部41c,41dが上記入口ヘッダ2A、出口ヘッダ2Bの底部側各開口部に各々接続されるようになっている一方、同U状の伝熱管41の左右2本のストレートな管体部41a,41bには、それぞれ空気流の上流側と中流側、下流側に位置して各々所定の幅のフィン部42a,42b,42cが設けられている。これらフィン部42a,42b,42cは相互に連続して、上記U状の伝熱管41に対して1枚の伝熱フィン42を形成している。   As shown in FIGS. 15 and 16, for example, the small-diameter heat transfer tube units 4, 4,... While the portions 41c and 41d are connected to the respective openings on the bottom side of the inlet header 2A and the outlet header 2B, the two straight tube portions 41a on the left and right sides of the U-shaped heat transfer tube 41, 41b is provided with fin portions 42a, 42b, and 42c having predetermined widths respectively located on the upstream side, the middle stream side, and the downstream side of the air flow. These fin portions 42 a, 42 b, 42 c are continuous with each other to form one heat transfer fin 42 for the U-shaped heat transfer tube 41.

そして、該伝熱フィン42を備えた細径伝熱管ユニット4,4・・・は、それぞれ伝熱管41(管体部41a,41b)形成用の断面半円形状の凹溝部を有する左右対称構造の薄くて扁平な伝熱フィンプレート(貼り合わせ部材)4A,4Bを、例えば図16のように相互に対向させた状態で、接合して一体化することにより、上記U状の伝熱管41のストレートな管体部41a,41bの左右両側にフィン部42a,42b,42cが一体成形された細径伝熱管ユニット4,4・・・を構成している。   And the thin-diameter heat transfer tube units 4, 4. The thin and flat heat transfer fin plates (bonding members) 4A and 4B are joined and integrated in a state of facing each other as shown in FIG. The small-diameter heat transfer tube units 4, 4... Are formed by integrally forming the fin portions 42a, 42b, 42c on the left and right sides of the straight tube portions 41a, 41b.

このように構成された細径伝熱管ユニット4,4・・・が、例えば図17に示すように、、外部流体Fの流れ方向と平行に配列され、同配列状態において、各細径伝熱管ユニット4,4・・・上部のヘッダ2A,2Bへの接続用開口端部41c,41dに入口ヘッダ2A、出口ヘッダ2Bが接続されて、図14のような細径多管式熱交換器1が形成される。   The small-diameter heat transfer tube units 4, 4... Configured as described above are arranged in parallel with the flow direction of the external fluid F, for example, as shown in FIG. The inlet header 2A and the outlet header 2B are connected to the open ends 41c and 41d for connection to the upper headers 2A and 2B of the units 4, 4..., And the small diameter multitubular heat exchanger 1 as shown in FIG. Is formed.

以上のような構成によれば、本来伝熱率の高い細径の伝熱管41の管体部4141a,41bの両側に、さらに伝熱面積拡大用の伝熱フィン42(フィン部42a,42b,42c)が付加されることから、細径伝熱管の管体部41a,41b、41a,41b・・・による熱伝達率の良さに加えて、伝熱面積も大きく増大して、全体としての熱交換性能が大きく向上し、空気調和機等冷凍装置用の熱交換器としての使用条件にも適したものとなる。   According to the configuration as described above, the heat transfer fins 42 (fin portions 42a, 42b, fins 42a, 42b, etc.) for further expanding the heat transfer area are provided on both sides of the tube portions 4141a, 41b of the small-diameter heat transfer tube 41, which originally has a high heat transfer rate. 42c) is added, in addition to the good heat transfer coefficient by the tube portions 41a, 41b, 41a, 41b... The exchange performance is greatly improved, and it is suitable for use conditions as a heat exchanger for a refrigerating apparatus such as an air conditioner.

特開2001−116481号公報(明細書第1−3頁、図1−4)Japanese Patent Laid-Open No. 2001-116481 (Specification, page 1-3, FIG. 1-4)

ところで、このような細径多管式熱交換器の熱交換性能を、さらに高性能化しようとする場合、例えば図18〜図20に示すように、伝熱フィン42のフィン部42b,42c部分にスリット(又はルーバー)などよりなる多数の切り起し片45a,45a・・・、45b,45b・・・を設けることが考えられる。   By the way, when it is going to improve the heat exchange performance of such a small diameter multi-tube heat exchanger further, as shown, for example in FIGS. 18-20, fin part 42b, 42c part of the heat-transfer fin 42 It is conceivable that a large number of cut and raised pieces 45a, 45a,..., 45b, 45b.

しかし、内部流体が流れる前後2本の管体部41a,41bに挟まれた伝熱フィン42b部分は熱源の位置が両端側になるため、図示のように、外部流体Fの流動方向に対して垂直に延びる上下方向に長いスリット(又はルーバー)等の切り起し片45a,45a・・・、45b,45b・・・を多数設置した場合、管体部41a,41bからの熱が伝熱フィン42bの中央部まで伝わらず、フィン効率が低下し、十分な促進効果が得られない問題がある。   However, the heat transfer fins 42b sandwiched between the two front and rear tube portions 41a and 41b through which the internal fluid flows are located at both ends, so that the flow direction of the external fluid F is as shown in the figure. When a large number of cut-and-raised pieces 45a, 45a,..., 45b, 45b, etc., such as vertically extending slits (or louvers) extending vertically, heat from the tube portions 41a, 41b is transferred to the heat transfer fins. There is a problem that the fin efficiency is lowered without being transmitted to the central portion of 42b, and a sufficient promotion effect cannot be obtained.

この問題は、もちろん管体部41a,41b外側のフィン部42a,42cでも程度の差はあれ、同様である。   This problem is similar to some extent even in the fin portions 42a and 42c outside the tube portions 41a and 41b.

本願発明は、このような問題を解決するためになされたもので、伝熱フィン部分に設置するスリット、ルーバー等の切り起し片を略正方形として、フィン中央部まで熱が伝わるフィン連続部分を多く確保することによって、フィン効率を不当に低下させることなく、伝熱促進を可能とした細径多管式熱交換器の細径伝熱管ユニットを提供することを目的とするものである。   The present invention was made in order to solve such problems. The slits, louvers, and other cut-and-raised pieces installed in the heat transfer fin portion are substantially square, and the fin continuous portion where heat is transferred to the fin central portion is provided. It is an object of the present invention to provide a small-diameter heat transfer tube unit of a small-diameter multitubular heat exchanger that can promote heat transfer without unduly reducing fin efficiency by ensuring a large amount.

本願発明は、該目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the object, the present invention includes the following problem solving means.

(1) 第1の課題解決手段
本願発明の第1の課題解決手段は、内部流体と外部流体Fとの間で熱交換を行わせる細径の管体部41a,41bと該管体部41a,41bの両側に設けられた伝熱フィン42a,42b,42cよりなる複数の細径伝熱管ユニット4,4・・・を、外部流体Fの流れる方向と平行に所定の間隔を保って並設してなる細径伝熱管式熱交換器の細径伝熱管ユニットであって、上記伝熱フィン42a,42b,42cのフィン面に略正方形の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けたことを特徴としている。
(1) First Problem Solving Means The first problem solving means of the present invention is a small-diameter tube body portion 41a, 41b that allows heat exchange between the internal fluid and the external fluid F, and the tube body portion 41a. , 41b, a plurality of small-diameter heat transfer tube units 4, 4... Composed of heat transfer fins 42a, 42b, 42c are arranged in parallel with a predetermined interval parallel to the direction in which the external fluid F flows. A thin heat transfer tube unit of the heat transfer tube type heat exchanger formed as described above, wherein the fin surfaces of the heat transfer fins 42a, 42b, 42c are substantially square cut and raised pieces 45a, 45a,. 45b ..., 45c, 45c ... are provided.

このように、伝熱フィン42a,42b,42cのフィン面に設けられる切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を略正方形のものにすると、フィン面が連続する各切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・間の隙間領域が多くなり、フィン幅に応じ、その中央部又は外周まで確実に管体部41a,41bからの熱が伝導する熱伝導領域を広くかつ均一に確保することができる。   Thus, when the cut-and-raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... provided on the fin surfaces of the heat transfer fins 42a, 42b, 42c are substantially square, The gap area between each of the raised and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... with continuous fin surfaces increases, and depending on the fin width, the center part or the outer periphery is surely secured. In addition, it is possible to ensure a wide and uniform heat conduction region through which heat from the tube portions 41a and 41b is conducted.

したがって、伝熱フィン42a,42b,42cのフィン効率自体を低下させることなく、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の前縁効果による有効な伝熱促進機能を十分に発揮させることができる。   Therefore, without reducing the fin efficiency itself of the heat transfer fins 42a, 42b, 42c, it is effective due to the leading edge effect of the cut and raised pieces 45a, 45a, ..., 45b, 45b ..., 45c, 45c ... The heat transfer promoting function can be fully exhibited.

(2) 第2の課題解決手段
本願発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成され、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該貼り合される2枚の伝熱フィンプレート4A,4Bの両方を同一の位置で一体に切り起すことにより形成されていることを特徴としている。
(2) Second Problem Solving Means The second problem solving means of the present invention is that, in the configuration of the first problem solving means described above, the small-diameter heat transfer tube unit 4 has a groove portion for forming the tube portions 41a and 41b. Are formed by bonding the two heat transfer fin plates 4A and 4B having the cut and raised pieces 45a, 45a, ..., 45b, 45b, ..., 45c, 45c, ... The two heat transfer fin plates 4 </ b> A and 4 </ b> B are integrally cut and raised at the same position.

このように、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成されており、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該貼り合される2枚の伝熱フィンプレート4A,4Bの両方を同一の位置で切り起すことにより形成されていると、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の形成加工が容易であるとともに、通路断面積が小さくなる管体部41a,41b、41a,41b・・・部分で側方に曲がって流れる縮流の一部が、同切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の内側部分に形成された開口を介して対向する隣側の通路に効果的にバイパスして流れるようになり、より流通抵抗が小さくなる。   In this way, the small-diameter heat transfer tube unit 4 is formed by bonding the two heat transfer fin plates 4A and 4B having the recessed groove portions for forming the tube portions 41a and 41b. 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are formed by cutting and raising both of the two heat transfer fin plates 4A, 4B to be bonded at the same position. , 45b, 45b..., 45c, 45c... Are easy to form, and the tube sections 41a, 41b have a small passage cross-sectional area. 41a, 41b... Part of the contracted flow that bends and flows laterally at the portion is formed inside the cut and raised pieces 45a, 45a..., 45b, 45b. Opposing through the formed opening Effectively becomes to flow by bypassing the next side of the passage, more flow resistance is reduced.

そのため、さらに有効に熱交換性能の向上を図ることができる。   Therefore, the heat exchange performance can be improved more effectively.

(3) 第3の課題解決手段
本願発明の第3の課題解決手段は、上記第1の課題解決手段の構成において、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成され、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該貼り合わされる2枚の伝熱フィンプレート4A,4B内の何れか一方側のみを切り起すことにより形成されていることを特徴としている。
(3) Third Problem Solving Means The third problem solving means of the present invention is that, in the configuration of the first problem solving means described above, the small-diameter heat transfer tube unit 4 has a groove portion for forming the tube portions 41a and 41b. Are formed by bonding two heat transfer fin plates 4A and 4B each having the following, and the cut and raised pieces 45a, 45a..., 45b, 45b..., 45c, 45c. It is formed by cutting and raising only one of the two heat transfer fin plates 4A and 4B.

このように、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成されており、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該貼り合される2枚の伝熱フィンプレート4A,4B内の何れか一方側のみを切り起すことにより形成されていると、多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を形成して伝熱促進機能を向上させた時にも、伝熱フィン42a,42b,42cの伝熱面積そのものを全く縮小させなくて済む。   In this way, the small-diameter heat transfer tube unit 4 is formed by bonding the two heat transfer fin plates 4A and 4B having the recessed groove portions for forming the tube portions 41a and 41b. 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are formed by cutting and raising only one of the two heat transfer fin plates 4A, 4B to be bonded together. .., 45b, 45b..., 45c, 45c... To improve the heat transfer promotion function, the heat transfer fin 42a. , 42b, 42c need not be reduced at all.

また縮小させないだけでなく、むしろ切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けた分だけ、伝熱面積が拡大される。   Moreover, not only does it reduce, but rather the heat transfer area is expanded by the amount of cut and raised pieces 45a, 45a..., 45b, 45b.

したがって、よりフィン効率の低下を招くことなく、より有効に熱交換性能を向上させることができる。   Therefore, the heat exchange performance can be more effectively improved without causing a decrease in fin efficiency.

(4) 第4の課題解決手段
本願発明の第4の課題解決手段は、上記第1の課題解決手段の構成において、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成され、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該貼り合される2枚の伝熱フィンプレート4A,4Bの各々を異なる位置で切り起すことにより形成されていることを特徴としている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first problem solving means, the small-diameter heat transfer tube unit 4 has a groove portion for forming the tube portions 41a and 41b. Are formed by bonding the two heat transfer fin plates 4A and 4B having the cut and raised pieces 45a, 45a, ..., 45b, 45b, ..., 45c, 45c, ... Each of the two heat transfer fin plates 4A, 4B is formed by cutting and raising at different positions.

このように、細径伝熱管ユニット4が、管体部41a,41b形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成されており、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該貼り合される2枚の伝熱フィンプレート4A,4Bの各々を異なる位置で切り起すことにより形成されていると、上記第3の課題解決手段の場合と同様、多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を形成して伝熱促進機能を向上させた時にも、伝熱フィン42a,42b,42cの伝熱面積そのものを全く縮小させなくて済む。   In this way, the small-diameter heat transfer tube unit 4 is formed by bonding the two heat transfer fin plates 4A and 4B having the recessed groove portions for forming the tube portions 41a and 41b. 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are formed by cutting and raising each of the two heat transfer fin plates 4A, 4B to be bonded together at different positions. As in the case of the third problem solving means, a large number of cut and raised pieces 45a, 45a..., 45b, 45b. Even when it is improved, the heat transfer area itself of the heat transfer fins 42a, 42b, 42c does not have to be reduced at all.

また縮小させないだけでなく、むしろ切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けた分だけ、伝熱面積が拡大される。   Moreover, not only does it reduce, but rather the heat transfer area is expanded by the amount of cut and raised pieces 45a, 45a..., 45b, 45b.

したがって、よりフィン効率の低下を招くことなく、より有効に熱交換性能を向上させることができる。   Therefore, the heat exchange performance can be more effectively improved without causing a decrease in fin efficiency.

しかも、該構成の場合、伝熱促進用の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該伝熱フィン42a,42b,42cの両面側に設けられることになるので、その伝熱促進効果が、さらに大きく向上する。   In addition, in the case of this configuration, the cut-and-raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... for heat transfer promotion are on both sides of the heat transfer fins 42a, 42b, 42c. Therefore, the heat transfer promoting effect is further greatly improved.

(5) 第5の課題解決手段
本願発明の第5の課題解決手段は、上記第1の課題解決手段の構成において、細径伝熱管ユニット4が、管体部41a,41bと該管体部41a,41bの両側にカシメ固定された1枚板構造の伝熱フィンプレート42A,42B,42Cよりなり、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該伝1枚板構造の伝熱フィンプレート42A,42B,42Cを切り起すことにより形成されていることを特徴としている。
(5) Fifth Problem Solving Means According to a fifth problem solving means of the present invention, in the configuration of the first problem solving means, the small-diameter heat transfer tube unit 4 includes tube portions 41a and 41b and the tube portions. It consists of heat transfer fin plates 42A, 42B, and 42C having a single plate structure that are caulked and fixed to both sides of 41a and 41b, and cut and raised pieces 45a, 45a, ..., 45b, 45b, ..., 45c, 45c ... · Is characterized by being formed by cutting and raising the heat transfer fin plates 42A, 42B, 42C of the single transfer plate structure.

このように、細径伝熱管ユニット4が、管体部41a,41bと該管体部41a,41bの両側にカシメ固定された1枚板構造の伝熱フィンプレート42A,42B,42Cよりなり、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該1枚板構造の伝熱フィンプレート42A,42B,42Cを切り起すことにより形成されていると、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の形成加工が容易であるとともに、通路断面積が小さくなる各管体部41a,41b、41a,41b・・・と隣合う部分で側方に曲がって流れる縮流の一部が、同切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の内側に形成された開口を介して対向する隣側の通路に効果的にバイパスして流れるようになり、より流通抵抗が小さくなる。そのため、さらに有効に熱交換性能の向上を図ることができる。   Thus, the small-diameter heat transfer tube unit 4 is composed of the heat transfer fin plates 42A, 42B, and 42C having a single plate structure that is fixed to both sides of the tube portions 41a and 41b and the tube portions 41a and 41b. The cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are formed by cutting and raising the heat transfer fin plates 42A, 42B, 42C of the single plate structure. , 45b, 45b..., 45c, 45c... Are easy to form and each tube body portion 41a, 41b has a small passage cross-sectional area. 41a, 41b,..., 45b, 45b, 45c, 45c,... Through the opening formed inside Effectively becomes to flow by bypassing the next side of the passage opposite, more flow resistance is reduced. Therefore, the heat exchange performance can be improved more effectively.

(6) 第6の課題解決手段
本願発明の第6の課題解決手段は、上記第1,第2,第3,第4又は第5の課題解決手段の構成において、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、スリットであることを特徴としている。
(6) Sixth Problem Solving Means Sixth problem solving means of the present invention is the cut and raised pieces 45a, 45a in the first, second, third, fourth or fifth problem solving means. ..., 45b, 45b ..., 45c, 45c ... are characterized by being slits.

このように、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、スリットである場合、同スリットによって、上記第1,第2,第3,第4又は第5の各課題解決手段の作用が有効に実現される。   Thus, when the cut and raised pieces 45a, 45a,..., 45b, 45b..., 45c, 45c. The operation of the fourth or fifth problem solving means is effectively realized.

(7) 第7の課題解決手段
本願発明の第7の課題解決手段は、上記第1,第2,第3,第4又は第5の課題解決手段の構成において、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、ルーバーであることを特徴としている。
(7) Seventh Problem Solving Means Seventh problem solving means of the present invention is the cut and raised pieces 45a, 45a in the first, second, third, fourth or fifth problem solving means. ..., 45b, 45b ..., 45c, 45c ... are louvers.

このように、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、ルーバーである場合、同ルーバーによって、上記第1,第2,第3,第4又は第5の各課題解決手段の作用が有効に実現される。   In this way, when the cut and raised pieces 45a, 45a,..., 45b, 45b..., 45c, 45c. The operation of the fourth or fifth problem solving means is effectively realized.

(8) 第8の課題解決手段
本願発明の第8の課題解決手段は、上記第1,第2,第3,第4,第5,第6又は第7の課題解決手段の構成において、熱交換器が空気調和機等冷凍装置用のもので、内部流体がR32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒であることを特徴としている。
(8) Eighth Problem Solving Means The eighth problem solving means of the present invention is the configuration of the first, second, third, fourth, fifth, sixth or seventh problem solving means. The exchanger is for a refrigeration apparatus such as an air conditioner, and the internal fluid is a mixed refrigerant containing 50 wt% or more of R32, a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant.

上記第1,第2,第3,第4,第5,第6又は第7の課題解決手段の構成によれば、フィン効率が向上して、有効に伝熱性能、伝熱効率が向上する。   According to the configuration of the first, second, third, fourth, fifth, sixth or seventh problem solving means, the fin efficiency is improved, and the heat transfer performance and the heat transfer efficiency are effectively improved.

そのため、熱交換器が空気調和機等冷凍装置用のもので、内部流体がR32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒である細径多管式熱交換器の細径伝熱管ユニットにも適したものとなる。 Therefore, the heat exchanger is for a refrigeration apparatus such as an air conditioner, and the internal fluid is a mixed refrigerant containing 50 wt% or more of R32, or a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant. It is also suitable for a small-diameter heat transfer tube unit of a heat exchanger.

以上の結果、本願発明によると、内部流体が流れる管体部からの熱が伝導する領域を十分に確保することができフィン効率を不当に低下させることなく、切り起し片による有効な伝熱促進が可能となる。   As a result of the above, according to the present invention, it is possible to secure a sufficient area for conducting heat from the tube portion through which the internal fluid flows, and to effectively transfer heat by the cut and raised pieces without unduly reducing the fin efficiency. Promotion becomes possible.

また、貼り合わせた伝熱フィンプレートの片側又は両側に、片側のプレートのみを切り起すことによりスリットを設置するようにした場合、前縁効果による伝熱促進に加え、伝熱面積自体の増加も期待できるため、その相乗効果で、さらに熱交換器の性能が向上する。   In addition, when slits are installed by cutting and raising only one plate on one or both sides of the bonded heat transfer fin plate, in addition to promoting heat transfer due to the leading edge effect, the heat transfer area itself also increases. Since it can be expected, the synergistic effect will further improve the performance of the heat exchanger.

(最良の実施の形態1)
先ず図1および図6は、本願発明を実施するに際しての最良の実施の形態1に係る細径伝熱管ユニットを採用して構成した細径多管式熱交換器の全体的な構成を示している。
(Best Embodiment 1)
First, FIG. 1 and FIG. 6 show the overall configuration of a small-diameter multi-tube heat exchanger constructed by adopting the small-diameter heat transfer tube unit according to the best embodiment 1 for carrying out the present invention. Yes.

また図2〜図5、図7は、同細径多管式熱交換器を構成している細径伝熱管ユニットの全体および要部の構造を示している。   2 to 5 and 7 show the overall structure of the small-diameter heat transfer tube unit constituting the thin multi-tube heat exchanger and the structure of the main part.

すなわち、先ず図1に示す細径多管式熱交換器1は、相互に所定の間隔を保って並設された冷媒分配機能を有する入口ヘッダ2Aおよび出口ヘッダ2Bと、該入口ヘッダ2Aと出口ヘッダ2Bの各々に接続され、その下部側に位置して長手方向に沿って多数本並設された細径伝熱管ユニット(フィン付細径伝熱管)4,4・・・よりなる熱交部3とから構成されている。   That is, first, a small-diameter multitubular heat exchanger 1 shown in FIG. 1 includes an inlet header 2A and an outlet header 2B having a refrigerant distribution function arranged in parallel with each other at a predetermined interval, and the inlet header 2A and the outlet A heat exchange section composed of thin heat transfer tube units (fined heat transfer tubes with fins) 4, 4... Connected to each of the headers 2 </ b> B and arranged on the lower side along the longitudinal direction. 3.

上記細径伝熱管ユニット4,4・・・は、例えば図2に示すように、その伝熱管(細径管)41が全体としてU状に曲成され、その上端側各開口端部41c,41dが上記入口ヘッダ2A、出口ヘッダ2Bの底部側各開口部に各々接続されるようになっている一方、同U状の伝熱管41の左右2列のストレートな管体部41a,41bには、それぞれその左右両側に位置して各々所定の幅のフィン部42a,42b,42cが設けられている(フィン部42bは、両管体部41a,41bに共通)。これらストレートな2本の管体部41a,41b両側のフィン部42a,42b、42b,42cは相互に連続して、上記U状の伝熱管41に対する1枚の伝熱フィン42を形成している。   As shown in FIG. 2, for example, the small-diameter heat transfer tube units 4, 4... 41d is connected to the respective openings on the bottom side of the inlet header 2A and the outlet header 2B, while the straight tube body portions 41a and 41b of the left and right rows of the U-shaped heat transfer tube 41 are connected to each other. In addition, fin portions 42a, 42b, and 42c having predetermined widths are provided on both the left and right sides (the fin portion 42b is common to both tube portions 41a and 41b). The two fin portions 42a, 42b, 42b, 42c on both sides of the straight tube portions 41a, 41b are continuous with each other to form one heat transfer fin 42 for the U-shaped heat transfer tube 41. .

そして、該伝熱フィン42を備えた細径伝熱管ユニット4,4・・・は、それぞれ伝熱管41(管体部41a,41b)形成用の断面半円形状の凹溝部を有する左右対称構造の薄くて扁平な縦長長方形状の伝熱フィンプレート(貼り合わせ部材)4A,4Bを、例えば図6から図3に示すように、相互に対向させた状態で接合して一体化することにより形成され、それによって上記U状の伝熱管41のストレートな管体部41a,41bの左右両側にフィン部42a,42b,42cが一体成形された細径伝熱管ユニット4,4・・・を構成している。   The small-diameter heat transfer tube units 4, 4... Having the heat transfer fins 42 each have a left-right symmetric structure having a semi-circular groove having a semicircular cross section for forming the heat transfer tubes 41 (tube portions 41 a, 41 b). These are formed by joining thin and flat vertically-long rectangular heat transfer fin plates (bonding members) 4A and 4B, for example, as shown in FIGS. Thus, small-diameter heat transfer tube units 4, 4... In which fin portions 42a, 42b, 42c are integrally formed on the left and right sides of the straight tube portions 41a, 41b of the U-shaped heat transfer tube 41 are configured. ing.

このように構成された細径伝熱管ユニット4,4・・・は、例えば図1、図6に示すように、、外部流体Fの流れ方向と平行に所定のフィンピッチで多数枚並設して配列され、同配列状態において、各細径伝熱管ユニット4,4・・・上部のヘッダ2A,2Bへの接続用開口端部41c,41d、41d,41c・・・に入口ヘッダ2A、出口ヘッダ2Bが接続されて、最終的に図1のような細径多管式熱交換器1が形成される。   The small-diameter heat transfer tube units 4, 4... Configured in this way are arranged in parallel at a predetermined fin pitch in parallel with the flow direction of the external fluid F, as shown in FIGS. In the same arrangement state, each small-diameter heat transfer tube unit 4, 4... Has an inlet header 2A and an outlet at the opening end portions 41c, 41d, 41d, 41c. The header 2B is connected, and finally a thin multi-tube heat exchanger 1 as shown in FIG. 1 is formed.

このような構成によれば、本来伝熱率の高い細径の伝熱管41の管体部41a,41b両側に、さらに伝熱面積拡大用の伝熱フィン42のフィン部42a,42b,42cが付加されることから、細径の伝熱管41,41・・・の管体部41a,41bによる熱伝達率の良さに加えて、伝熱面積も大きく増大して、全体としての熱交換性能が大きく向上し、空気調和機等冷凍装置用の熱交換器としての使用条件にも適したものとなる。   According to such a configuration, the fin portions 42a, 42b, and 42c of the heat transfer fins 42 for further expanding the heat transfer area are provided on both sides of the tube portions 41a and 41b of the small-diameter heat transfer tube 41 that originally has a high heat transfer rate. In addition to the good heat transfer coefficient by the tube portions 41a, 41b of the small-diameter heat transfer tubes 41, 41..., The heat transfer area is greatly increased, and the overall heat exchange performance is improved. It greatly improves and is suitable for use conditions as a heat exchanger for a refrigerating apparatus such as an air conditioner.

ところで、このような構成の場合、上記図1、図6のように多数枚の細径伝熱管ユニット4,4・・・を並設して熱交部3を構成するに際し、そのまま各細径伝熱管ユニット4,4・・・を同じ状態で各々並設したのでは、隣合う伝熱管41,41・・・の管体部41a,41b、41a,41b・・・同士が相互に近接して、通風抵抗が増大するので、フィンピッチにも限界が生じる。   By the way, in the case of such a configuration, when the heat exchange section 3 is configured by arranging a plurality of small-diameter heat transfer tube units 4, 4... As shown in FIGS. If the heat transfer tube units 4, 4... Are arranged side by side in the same state, the tube portions 41a, 41b, 41a, 41b... Of the adjacent heat transfer tubes 41, 41. As a result, the ventilation resistance increases, so that the fin pitch is limited.

他方、この問題を解決するために、単純に外部流体Fの流れる前後方向(上下流方向)に交互に位置をずらして、全体として千鳥構造に配列したのでは、その分熱交部3の寸法が大きくなり、コンパクト性に欠けるとともに、ヘッダ2A,2Bとの接続用開口端部41c,41d、41d,41c・・・の位置が合わなくなる。   On the other hand, in order to solve this problem, the positions of the heat exchangers 3 are simply shifted in the front-rear direction (upstream / downstream direction) in which the external fluid F flows and arranged in a staggered structure as a whole. Is not compact, and the positions of the opening end portions 41c, 41d, 41d, 41c,... For connection to the headers 2A, 2B are not aligned.

また、上述のように各細径伝熱管ユニット4,4・・・を千鳥構造に配列した場合、伝熱管41,41・・・の管体部41a,41b,41a,41b・・・同士は相互に並設方向に隣り合わないとしても、管体部41a,41b、41a,41b・・・と伝熱フィン42のフィン部42a,42b,42cのフィン面とが並設方向に隣接することになるので、やはりフィン面間同士の部分よりも外部流体Fの流れる通路間隔が狭くなる。   Further, when the small-diameter heat transfer tube units 4, 4... Are arranged in a staggered structure as described above, the tube portions 41a, 41b, 41a, 41b. The tube portions 41a, 41b, 41a, 41b... And the fin surfaces of the fin portions 42a, 42b, 42c of the heat transfer fins 42 are adjacent to each other in the juxtaposed direction even if they are not adjacent to each other in the juxtaposed direction. Therefore, the passage interval through which the external fluid F flows is also narrower than the portion between the fin surfaces.

また、以上のような細径多管式熱交換器の熱交換性能を、さらに高性能化しようとする場合、前述の図18〜図20に示すように、上下方向に長く、相互の間隔が狭いスリットやルーバーなどの切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けることが考えられる。   Moreover, when it is going to improve the heat exchange performance of the above-mentioned small-diameter multi-tube heat exchanger as described above, as shown in FIGS. It is conceivable to provide cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... such as narrow slits and louvers.

しかし、内部流体が流れるU状の伝熱管41の管体部41a,41bに挟まれたフィン部42b部分は熱源の位置が両端側になるため、外部流体Fの流動方向に垂直に上下方向に長いスリット45a,45a・・・を設置した場合、それらの間の上下間隙間が小さく、また隙間の数も非常に少なくなる。そのため、管体部41a,41bからの熱がフィン部42bの中央部まで伝わらず、フィン効率が低下し、十分な促進効果が得られない問題がある。もちろん、この問題は、大小の差はあるものの、管体部41a,41b側のフィン部42a,42c部分でも同様である。   However, the fin portions 42b sandwiched between the tube portions 41a and 41b of the U-shaped heat transfer tube 41 through which the internal fluid flows are located at both ends, so the vertical direction is perpendicular to the flow direction of the external fluid F. When long slits 45a, 45a,... Are installed, the gap between them is small, and the number of gaps is very small. Therefore, there is a problem that heat from the tube portions 41a and 41b is not transmitted to the central portion of the fin portion 42b, fin efficiency is lowered, and a sufficient promotion effect cannot be obtained. Of course, this problem is the same in the fin portions 42a and 42c on the tube body portions 41a and 41b side, although there is a difference in size.

そこで、この実施の形態では、先ず図3〜図5に示すように、上述したU状の伝熱管41の前後2本のストレートな管体部41a,41bの内の何れか一方側(図2の例では、下流側)の管体部41bを、他方側の管体部41aのように、その上端側開口端部41cから真っ直ぐ下方に直線的に延設するのではなく、伝熱フィン42の中央部側(フィン部42b側)に一旦所定幅aだけクランク状に内側に曲成した上で下方に延設することにより、つまりクランク状の曲成部Rを形成することにより、U状の伝熱管41のストレートな管体部41a,41bの何れか一方側が全体として伝熱フィン42の左右何れか一方側に偏位した形で設けられるように構成する。   Therefore, in this embodiment, as shown in FIGS. 3 to 5, first, one of the two straight tube portions 41a and 41b before and after the U-shaped heat transfer tube 41 (FIG. 2). In this example, the tube portion 41b on the downstream side is not linearly extended straight downward from the upper end side opening end portion 41c like the tube portion 41a on the other side, but instead of the heat transfer fin 42. By forming a crank-shaped bent portion R by forming the crank-shaped bent portion R in the center portion side (fin portion 42b side) once bent inward in a crank shape by a predetermined width a. Any one of the straight tube portions 41a and 41b of the heat transfer tube 41 is provided so as to be displaced to the left or right side of the heat transfer fin 42 as a whole.

そして、このように構成された各細径伝熱管ユニット4,4・・・を、例えば図1,図6に示すように、その左右方向の位置を交互に逆にして並設することにより、上記細径伝熱管ユニット4,4・・・の各伝熱管41,41・・・のストレートな管体部41a,41b、41a,41b・・・同士が、41a,41b、41b,41a、41a,41b、41b,41aの関係で並設され、それぞれ外部流体Fの上流側と下流側に所定寸法位置がずれて、全体として千鳥形状の配置となるように、外部流体Fの流れ方向に対して平行に配設する。   And, by arranging the small-diameter heat transfer tube units 4, 4... Configured in this way, for example, as shown in FIGS. The straight tube portions 41a, 41b, 41a, 41b,... Of each of the heat transfer tubes 41, 41,... Of the small-diameter heat transfer tube units 4, 4 ... are 41a, 41b, 41b, 41a, 41a. , 41b, 41b, and 41a are arranged side by side, and the predetermined dimension positions are shifted on the upstream side and the downstream side of the external fluid F, respectively, so that the arrangement of the staggered shape as a whole is made with respect to the flow direction of the external fluid F. Arranged in parallel.

この結果、細径伝熱管ユニット4,4・・・の各々を、外部流体Fの流れる前後方向に位置をずらすまでもなく、外部流体Fの流れの方向と平行に隣合う細径伝熱管ユニット4,4の伝熱管41,41・・・の各管体部41a,41b、41b,41a、41a,41b、41b,41a・・・が外部流体Fの流れ方向の上流と下流に所定寸法確実に偏位し、それら相互の間隔も広くなるので、外部流体Fの流路抵抗が小さくなり、伝熱管41,41・・・の各管体部41a,41b、41b,41a、41a,41b、41b,41a・・・および伝熱フィン42(フィン部42a,42b,42c)、42(42a,42b,42c)・・・の表面を外部流体Fが均一かつスムーズに流れるようになる。   As a result, it is not necessary to shift the position of each of the small-diameter heat transfer tube units 4, 4... In the front-rear direction of the external fluid F, and the small-diameter heat transfer tube units adjacent in parallel to the flow direction of the external fluid F. The tube portions 41a, 41b, 41b, 41a, 41a, 41b, 41b, 41a,... Of the four, four heat transfer tubes 41, 41,. , And the distance between them increases, so that the flow resistance of the external fluid F is reduced, and the tube portions 41a, 41b, 41b, 41a, 41a, 41b of the heat transfer tubes 41, 41. ... and the heat transfer fins 42 (fin portions 42a, 42b, 42c), 42 (42a, 42b, 42c), ..., the external fluid F flows uniformly and smoothly.

したがって、熱交部3の拡大を図ることなく、有効に熱交換性能を向上させることができる。   Therefore, the heat exchange performance can be effectively improved without enlarging the heat exchanger 3.

そして、この実施の形態では、さらに、その場合において、上記伝熱フィン42,42・・・の各フィン部42a,42b,42c、42a,42b,42c・・・部分には、例えば図2,図3に示すように上下方向に短かく、相互の間の隙間領域が広い多数の略正方形状のスリットよりなる切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が設けられている。   In this embodiment, the fin portions 42a, 42b, 42c, 42a, 42b, 42c... Of the heat transfer fins 42, 42. As shown in FIG. 3, the cut and raised pieces 45a, 45a,..., 45b, 45b,. ... are provided.

該切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、フィン部42aに1列、フィン部42bに4列、フィン部42cに3列設けられており、フィン部42b,42c部分では、1列毎に交互に千鳥状に位置をずらせて配列されている。   The cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are provided in one row in the fin portion 42a, four rows in the fin portion 42b, and three rows in the fin portion 42c. The fin portions 42b and 42c are alternately arranged in a staggered manner for each row.

そして、この実施の形態の場合、これらの各切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、上記相互に貼り合される2枚の伝熱フィンプレート4A,4Bの両方を同一の位置で一体に切り起すことにより形成されていて、同切り起し部の内側には、当該フィン部42a,42b,42c各々の左右両面側に貫通した開口部が形成されている(貼り合わせ時において内側に入る切り起し片の幅Y2は、外側の切り起し片の幅Y1よりも少し小さくなっている)。 In the case of this embodiment, each of these cut and raised pieces 45a, 45a,..., 45b, 45b..., 45c, 45c. The fin plates 4A and 4B are formed by integrally cutting and raising both of them at the same position, and the inside of the cutting and raising part has openings penetrating the left and right sides of each of the fin parts 42a, 42b and 42c. parts are formed (width Y 2 of the cut-and-raised pieces entering the interior during bonding is a little smaller than the width Y 1 of the outer cut-and-raised piece).

したがって、上記通路断面積が小さくなる各伝熱管41,41・・・の管体部41a,41b、41a,41b・・・部分で側方に曲がって流れる縮流の一部は、同スリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・形成部の開口を介して対向する隣側の通路に効果的にバイパスして流れるようになり、より流通抵抗が小さくなるとともに、同多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の前縁効果により、伝熱促進機能が大きく向上する。   Therefore, a part of the contracted flow that bends and flows sideways at the tube portions 41a, 41b, 41a, 41b,... Of the heat transfer tubes 41, 41,. 45a, 45a ..., 45b, 45b ..., 45c, 45c ... through the opening of the forming part, effectively bypassing and flowing to the adjacent passage, The flow resistance is further reduced, and the heat transfer promoting function is greatly improved by the leading edge effect of the large number of cut and raised pieces 45a, 45a..., 45b, 45b.

しかも、以上の構成では、上記伝熱フィン42a,42b,42cのフィン面に設けられるスリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、略正方形のものとなっていて管体部41a,41b間およびそれらの両側においてフィン面が、相互に連続する各切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・上下間の隙間領域が広く、かつ多くなり、フィン部42a,42b,42c各々のフィン幅に応じ、その中央部又は外周まで確実に管体部41a,41bからの熱が伝導する熱伝導領域を広くかつ均一に確保することができる。   In addition, in the above configuration, the cut-and-raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... of the slit structure provided on the fin surfaces of the heat transfer fins 42a, 42b, 42c are provided. , 45 b, 45 b, 45 c, 45 c, 45 b, 45 b, 45 c, 45 b, 45 b, 45 b, 45 b, 45 b, 45 b, 45 b, 45 b, 45 b, 45 b 45c: The gap area between the upper and lower sides is widened and increased, and heat from the tube parts 41a, 41b is surely conducted to the center or outer periphery according to the fin width of each of the fin parts 42a, 42b, 42c. A wide and uniform heat conduction region can be secured.

つまり、同構成では、例えば図7に示すように、各フィン部42a,42b,42cの多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の周囲に、均等に多数の連続するフィン面が残されることになり、それらが各管体部41a,41bからの有効な伝熱通路となる。そして、同伝熱通路を介して、図7中に破線の矢印で示したように、管体部41a,41bからの熱が均一かつ効果的に伝導される。   That is, in the same configuration, as shown in FIG. 7, for example, a large number of cut and raised pieces 45a, 45a..., 45b, 45b. A large number of continuous fin surfaces are left in the periphery, and these become effective heat transfer paths from the tube portions 41a and 41b. Then, heat from the tube portions 41a and 41b is conducted uniformly and effectively through the heat transfer passage, as indicated by broken arrows in FIG.

したがって、伝熱フィン42のフィン部42a,42b,42cのフィン効率自体を低下させることなく、多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の前縁効果による有効な伝熱促進機能を、より十分に発揮させることができる。   Therefore, without reducing the fin efficiency itself of the fin portions 42a, 42b, 42c of the heat transfer fin 42, a large number of cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... The effective heat transfer promoting function due to the leading edge effect can be more fully exhibited.

その結果、熱交部3の熱交換性能も大きく向上する。   As a result, the heat exchange performance of the heat exchanger 3 is also greatly improved.

(変形例)
なお、以上の説明では、伝熱促進用の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・としてスリット構造のものを採用したが、これは例えばルーバー構造のものであってもよい。
(Modification)
In the above description, the slit structure is adopted as the cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... for promoting heat transfer. It may be of a structure.

このように、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、ルーバーである場合、同ルーバーによって、上記スリットの場合と同様の作用が有効に実現される。   Thus, when the cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are louvers, the same action as in the case of the slit is effectively performed by the louvers. Realized.

(最良の実施の形態2)
次に図8および図9は、本願発明を実施するに際しての最良の実施の形態2に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Mode 2)
Next, FIGS. 8 and 9 show the structure of the small-diameter heat transfer tube unit of the small-diameter multitubular heat exchanger according to the second preferred embodiment for carrying out the present invention.

この構成では、上記最良の実施の形態1の細径伝熱管ユニット4,4・・・の伝熱フィン42,42・・・に設けたのと同様の伝熱促進用のスリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を、上述のように、相互に貼り合わされる2枚の伝熱フィンプレート4A,4Bの内の何れか一方側プレートのみを切り起すことにより形成したことを特徴としている。   In this configuration, a slit structure for promoting heat transfer similar to that provided in the heat transfer fins 42, 42... Of the small-diameter heat transfer tube units 4, 4. .., 45b, 45b..., 45c, 45c..., As described above, one of the two heat transfer fin plates 4A and 4B bonded together. It is characterized by being formed by cutting and raising only the side plate.

このように、細径伝熱管ユニット4,4・・・が、伝熱管41,41・・・の管体部41a,41b、41a,41b・・・形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成されており、上記スリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該貼り合される2枚の伝熱フィンプレート4A,4B内の何れか一方側プレートのみを切り起すことにより形成されていると、多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を形成して伝熱促進機能を向上させようとした時にも、伝熱フィン42のフィン部42a,42b,42cの伝熱面積そのものを全く縮小させなくて済む。   In this way, the small-diameter heat transfer tube units 4, 4... Have two grooves having the groove portions 41 a, 41 b, 41 a, 41 b, etc. for forming the heat transfer tubes 41, 41. The heat fin plates 4A and 4B are bonded to each other, and the cut and raised pieces 45a, 45a,..., 45b, 45b,. Are formed by cutting and raising only one of the two heat transfer fin plates 4A and 4B, a plurality of cut and raised pieces 45a, 45a,. When the heat transfer promotion function is improved by forming 45c, 45c..., The heat transfer area itself of the fin portions 42a, 42b, 42c of the heat transfer fin 42 does not have to be reduced at all.

また縮小させないだけでなく、むしろ切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けた分だけ、伝熱面積が拡大される。   Moreover, not only does it reduce, but rather the heat transfer area is expanded by the amount of cut and raised pieces 45a, 45a..., 45b, 45b.

したがって、よりフィン効率の低下を招くことなく、より有効に熱交換性能を向上させることができる。   Therefore, the heat exchange performance can be more effectively improved without causing a decrease in fin efficiency.

(最良の実施の形態3)
次に図10および図11は、本願発明を実施するに際しての最良の実施の形態3に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Mode 3)
Next, FIGS. 10 and 11 show the structure of the small-diameter heat transfer tube unit of the small-diameter multitubular heat exchanger according to the third preferred embodiment when the present invention is carried out.

この構成では、上記最良の実施の形態2の細径伝熱管ユニット4,4・・・の伝熱フィン42,42・・・に設けたのと同様の伝熱フィンプレート4A,4Bの片面側プレートにより形成される伝熱促進用のスリット45a,45a・・・、45b,45b・・・、45c,45c・・・を、相互に貼り合される2枚の伝熱フィンプレート4A,4Bの各々を異なる位置で切り起すことにより、その両面側に形成したことを特徴としている。   In this configuration, one side of the heat transfer fin plates 4A, 4B similar to those provided in the heat transfer fins 42, 42,... Of the thin-diameter heat transfer tube units 4, 4,. The heat transfer promotion slits 45a, 45a ..., 45b, 45b ..., 45c, 45c ... formed by the plates of the two heat transfer fin plates 4A, 4B bonded to each other. Each is formed on both sides by cutting and raising at different positions.

このように、細径伝熱管ユニット4,4・・・が、伝熱管41,41・・・の管体部41a,41b・・・形成用の凹溝部を有する2枚の伝熱フィンプレート4A,4Bを貼り合わせることにより形成されており、上記スリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該貼り合される2枚の伝熱フィンプレート4A,4Bの各々を異なる位置で切り起すことにより、その両面側に形成されていると、多数の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を形成して伝熱促進機能を向上させようとした時にも、上記最良の実施の形態2の場合と同様に、伝熱フィン42のフィン部42a,42b,42cの伝熱面積そのものを縮小させなくて済む。   As described above, the small-diameter heat transfer tube units 4, 4... Have two heat transfer fin plates 4A having the groove portions 41a, 41b. , 4B, and the cut and raised pieces 45a, 45a,..., 45b, 45b,. When the heat transfer fin plates 4A and 4B are cut and raised at different positions so as to be formed on both sides thereof, a large number of cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, When the heat transfer promotion function is improved by forming 45c ..., the heat transfer area of the fin portions 42a, 42b, 42c of the heat transfer fin 42 is the same as in the case of the second embodiment. You don't have to reduce it.

また縮小させないだけでなく、むしろ切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・を設けた分だけ、伝熱面積が拡大される。   Moreover, not only does it reduce, but rather the heat transfer area is expanded by the amount of cut and raised pieces 45a, 45a..., 45b, 45b.

したがって、よりフィン効率の低下を招くことなく、より有効に熱交換性能を向上させることができる。   Therefore, the heat exchange performance can be more effectively improved without causing a decrease in fin efficiency.

しかも、該構成の場合、上記伝熱促進用の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該伝熱フィン42のフィン部42a,42b,42cの両面側に設けられることになるので、その伝熱促進効果も、さらに大きく向上する。   Moreover, in the case of this configuration, the heat transfer promoting cut and raised pieces 45a, 45a..., 45b, 45b..., 45c, 45c. , 42c are provided on both sides, and the heat transfer promotion effect is further greatly improved.

(変形例)
なお、以上の説明では、伝熱促進用の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・としてスリット構造のものを採用したが、これは例えばルーバー構造のものであってもよい。
(Modification)
In the above description, the slit structure is adopted as the cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... for promoting heat transfer. It may be of a structure.

このように、切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、ルーバーである場合、同ルーバーによって、上記スリットの場合と同様の作用が有効に実現される。   Thus, when the cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... are louvers, the same action as in the case of the slit is effectively performed by the louvers. Realized.

(最良の実施の形態4)
次に図12は、本願発明を実施するに際しての最良の実施の形態4に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Fourth Embodiment)
Next, FIG. 12 shows the structure of the small-diameter heat transfer tube unit of the small-diameter multi-tube heat exchanger according to the best embodiment 4 for carrying out the present invention.

この構成では、上記最良の実施の形態1の細径伝熱管ユニット4,4・・・の伝熱フィン42,42・・・に設けたのと同様の伝熱フィンプレート4A,4Bの片面側に形成される伝熱促進用のスリット45a,45a・・・、45b,45b・・・、45c,45c・・・を、図示のようなワッフル構造のものに変更したことを特徴としている。   In this configuration, one side of the heat transfer fin plates 4A, 4B similar to those provided in the heat transfer fins 42, 42,... Of the thin-diameter heat transfer tube units 4, 4,. The heat transfer promoting slits 45a, 45a,..., 45b, 45b..., 45c, 45c.

このようなワッフル構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・によると、外部流体Fバイパス用の開口部が形成されるとともに、両面側で前縁効果が生じるので、上述の最良の実施の形態1〜3および最良の実施の形態4のものと、同様の作用効果を同時に得ることができる。   According to such waffle structure cut and raised pieces 45a, 45a,..., 45b, 45b..., 45c, 45c,. Since the leading edge effect occurs, the same effects as those of the above-described best embodiments 1 to 3 and best embodiment 4 can be obtained simultaneously.

(最良の実施の形態5)
次に図13は、本願発明を実施するに際しての最良の実施の形態5に係る細径多管式熱交換器の細径伝熱管ユニットの構造を示している。
(Best Mode 5)
Next, FIG. 13 shows the structure of the small-diameter heat transfer tube unit of the small-diameter multi-tube heat exchanger according to the best embodiment 5 for carrying out the present invention.

この構成では、上記最良の実施の形態1〜4と同様の細径伝熱管ユニット4,4・・・が、伝熱管41,41・・・の管体部41a,41b、41a,41b・・・と該管体部41a,41b、41a,41b・・・の両側カシメ部41e,41f、41e,41f・・・にカシメ固定された1枚板構造の伝熱フィンプレート42A,42B,42C、42A,42B,42C・・・よりなり、スリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・は、当該伝1枚板構造の熱フィンプレート42A,42B,42C、42A,42B,42C、・・・を切り起すことにより形成されていることを特徴としている。   In this configuration, the same small diameter heat transfer tube units 4, 4... As in the first to fourth embodiments described above are used as the tube portions 41 a, 41 b, 41 a, 41 b of the heat transfer tubes 41, 41. .. and heat transfer fin plates 42A, 42B, 42C having a single-plate structure that are caulked and fixed to the caulking portions 41e, 41f, 41e, 41f,... Of the tube portions 41a, 41b, 41a, 41b,. 42A, 42B, 42C, etc., and the cut and raised pieces 45a, 45a,..., 45b, 45b,. 42A, 42B, 42C, 42A, 42B, 42C,...

このように、細径伝熱管ユニット4,4・・・が、管体部41a,41b、41a,41b・・・と該管体部41a,41b、41a,41b・・・の両側に設けられたU状のカシメ部41e,41fにカシメ固定された1枚板構造の伝熱フィンプレート42A,42B,42C、42A,42B,42C・・・よりなり、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、当該1枚板構造の伝熱フィンプレート42A,42B,42C、42A,42B,42C・・・の一部を断裂的に切り起すことにより形成されていると、上記最良の実施の形態1〜4と同様の作用に加えて、伝熱促進部材であるスリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・の形成加工自体が容易であるとともに、通路断面積が小さくなる伝熱管41,41・・・の各管体部41a,41b、41a,41b・・・と隣合う部分で側方に曲がって流れる縮流の一部が、同スリット構造の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・により形成された開口部を介して対向する隣側の通路に効果的にバイパスして流れるようになり、より流通抵抗が小さくなる。   As described above, the small-diameter heat transfer tube units 4, 4,... Are provided on both sides of the tube portions 41a, 41b, 41a, 41b, and the tube portions 41a, 41b, 41a, 41b,. The heat transfer fin plates 42A, 42B, 42C, 42A, 42B, 42C,..., Which are fixed to the U-shaped crimping portions 41e, 41f, are cut and raised pieces 45a, 45a,. .., 45b, 45b,..., 45c, 45c... Ruptures part of the heat transfer fin plates 42A, 42B, 42C, 42A, 42B, 42C. If formed by this, in addition to the same effects as those of the first to fourth embodiments, the cut and raised pieces 45a, 45a,..., 45b, 45b,. ., 45c, 45c ... The process itself is easy, and the cross-sectional area of the heat transfer tubes 41, 41,... Is reduced, and the shrinkage that flows to the side at the portions adjacent to the tube portions 41a, 41b, 41a, 41b,. A part of the flow passes through the opening formed by the cut and raised pieces 45a, 45a..., 45b, 45b..., 45c, 45c. Bypassing effectively, the flow resistance is further reduced.

そのため、さらに有効に熱交換性能の向上を図ることができる。   Therefore, the heat exchange performance can be improved more effectively.

(変形例)
なお、以上の説明では、伝熱促進用の切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・としてスリット構造のものを採用したが、これは例えばルーバー構造のものでもよい。
(Modification)
In the above description, the slit structure is adopted as the cut and raised pieces 45a, 45a ..., 45b, 45b ..., 45c, 45c ... for promoting heat transfer. A structure may be used.

このように、上記切り起し片45a,45a・・・、45b,45b・・・、45c,45c・・・が、ルーバーである場合、同ルーバーによって、上記スリットの場合と同様の作用が有効に実現される。   Thus, when the cut and raised pieces 45a, 45a..., 45b, 45b..., 45c, 45c... Are louvers, the same action as in the case of the slits is effective by the louvers. To be realized.

本願発明の最良の実施の形態1に係る細径多管式熱交換器の全体的な構成を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an overall configuration of a thin multi-tubular heat exchanger according to the best embodiment 1 of the present invention. 同細径多管式熱交換器を構成する細径伝熱管ユニットの斜視図である。It is a perspective view of the small diameter heat exchanger tube unit which comprises the same small diameter multi-tube heat exchanger. 同細径伝熱管ユニットの貼り合わせ後の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure after bonding of the same small diameter heat exchanger tube unit. 同細径伝熱管ユニットの左右貼り合わせ部材(a),(b)の貼り合わせ前の対向面(接合面)の構造を左右に対比して示す図である。It is a figure which shows the structure of the opposing surface (bonding surface) before bonding of the right-and-left bonding members (a) and (b) of the same small-diameter heat transfer tube unit in comparison with right and left. 同細径多管式熱交換器の貼り合わせ前の構成を示す水平断面図である。It is a horizontal sectional view showing the composition before pasting of the same small diameter multi-tube heat exchanger. 同細径伝熱管ユニットよりなる熱交部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the heat exchanger part which consists of the same small diameter heat exchanger tube unit. 同細径伝熱管ユニットの要部の伝熱作用を示す拡大正面図である。It is an enlarged front view which shows the heat transfer effect | action of the principal part of the same small diameter heat exchanger tube unit. 本願発明の最良の実施の形態2に係る細径多管式熱交換器の細径伝熱管ユニットの構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 2 of this invention. 同細径伝熱管ユニットの貼り合わせ前の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure before bonding of the same small diameter heat exchanger tube unit. 本願発明の最良の実施の形態3に係る細径多管式熱交換器の細径伝熱管ユニットの構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 3 of this invention. 同細径伝熱管ユニットの貼り合わせ前の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure before bonding of the same small diameter heat exchanger tube unit. 本願発明の最良の実施の形態4に係る細径多管式熱交換器の細径伝熱管ユニットの要部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the principal part of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 4 of this invention. 本願発明の最良の実施の形態4に係る細径多管式熱交換器の細径伝熱管ユニットの要部の構成を示す一部切欠斜視図である。It is a partially notched perspective view which shows the structure of the principal part of the thin diameter heat exchanger tube unit of the thin diameter multitubular heat exchanger which concerns on the best Embodiment 4 of this invention. 従来の細径伝熱管ユニットを用いて構成した細径多管式熱交換器の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the thin diameter multitubular heat exchanger comprised using the conventional small diameter heat exchanger tube unit. 同細径多管式熱交換器を構成する細径伝熱管ユニットの構造を示す正面図である。It is a front view which shows the structure of the small diameter heat exchanger tube unit which comprises the same small diameter multi-tube heat exchanger. 同細径多管式熱交換器の細径伝熱管ユニットの要部の構成を示す水平断面図(図15のB−B)である。It is a horizontal sectional view (BB of Drawing 15) which shows the composition of the principal part of the thin diameter heat exchanger tube unit of the same small diameter multi-tube heat exchanger. 同細径多管式熱交換器の熱交部の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the heat exchange part of the same small diameter multi-tube heat exchanger. 従来の細径多管式熱交換器の細径伝熱管ユニットの改良検討例の要部の構成を示す一部切欠斜視図である。It is a partial notch perspective view which shows the structure of the principal part of the improvement examination example of the small diameter heat exchanger tube unit of the conventional small diameter multi-tube heat exchanger. 同細径伝熱管ユニットの要部である伝熱フィン面の構成を示す一部正面図である。It is a partial front view which shows the structure of the heat-transfer fin surface which is the principal part of the same small diameter heat-transfer tube unit. 同細径伝熱管ユニットの要部の構成を示す水平断面図(図19のC−C)である。It is a horizontal sectional view (CC of Drawing 19) showing the composition of the principal part of the same diameter heat exchanger tube unit.

符号の説明Explanation of symbols

1は細径多管式熱交換器、2Aは入口ヘッダ、2Bは出口ヘッダ、3は熱交部、4は細径伝熱管ユニット、41は細径伝熱管ユニット4のU状の伝熱管、41a,41bはU状の伝熱管41のストレートな管体部、42は伝熱フィン、42a,42b,42cはフィン部、45a,45b,45cはスリット、ルーバー等の切り起し片である。   1 is a thin multi-tube heat exchanger, 2A is an inlet header, 2B is an outlet header, 3 is a heat exchanger, 4 is a thin heat transfer tube unit, 41 is a U-shaped heat transfer tube of the thin heat transfer tube unit 4, 41a and 41b are straight tube portions of the U-shaped heat transfer tube 41, 42 is a heat transfer fin, 42a, 42b and 42c are fin portions, 45a, 45b and 45c are cut and raised pieces such as slits and louvers.

Claims (8)

内部流体と外部流体Fとの間で熱交換を行わせる細径の管体部(41a),(41b)と該管体部(41a),(41b)の両側に設けられた伝熱フィン(42a),(42b),(42c)よりなる複数の細径伝熱管ユニット(4),(4)・・・を、外部流体Fの流れる方向と平行に所定の間隔を保って並設してなる細径伝熱管式熱交換器の細径伝熱管ユニットであって、上記伝熱フィン(42a),(42b),(42c)のフィン面に略正方形の切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・を設けたことを特徴とする細径多管式熱交換器の細径伝熱管ユニット。   Narrow-diameter tube portions (41a) and (41b) for heat exchange between the internal fluid and the external fluid F, and heat transfer fins provided on both sides of the tube portions (41a) and (41b) ( A plurality of small-diameter heat transfer tube units (4), (4),... Composed of 42a), (42b), and (42c) are arranged in parallel with a predetermined interval in parallel with the direction in which the external fluid F flows. A small-diameter heat transfer tube unit of the small-diameter heat transfer tube heat exchanger, wherein the fin surfaces of the heat transfer fins (42a), (42b), (42c) have substantially square cut and raised pieces (45a), ( 45a) ..., (45b), (45b) ..., (45c), (45c) ..., a small diameter heat transfer tube unit of a small diameter multi-tube heat exchanger, 細径伝熱管ユニット(4)が、管体部(41a),(41b)形成用の凹溝部を有する2枚の伝熱フィンプレート(4A),(4B)を貼り合わせることにより形成され、切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、当該貼り合される2枚の伝熱フィンプレート(4A),(4B)の両方を同一の位置で一体に切り起すことにより形成されていることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   The small-diameter heat transfer tube unit (4) is formed by bonding two heat transfer fin plates (4A) and (4B) having concave grooves for forming the tube portions (41a) and (41b). The raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... are the two heat transfer fin plates to be bonded together ( 4. The small-diameter heat transfer tube unit of the small-diameter multi-tube heat exchanger according to claim 1, wherein both of 4A) and (4B) are integrally cut and raised at the same position. 細径伝熱管ユニット(4)が、管体部(41a),(41b)形成用の凹溝部を有する2枚の伝熱フィンプレート(4A),(4B)を貼り合わせることにより形成され、切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、当該貼り合わされる2枚の伝熱フィンプレート(4A),(4B)内の何れか一方側のみを切り起すことにより形成されていることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   The small-diameter heat transfer tube unit (4) is formed by bonding two heat transfer fin plates (4A) and (4B) having concave grooves for forming the tube portions (41a) and (41b). The raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... are the two heat transfer fin plates (4A) to be bonded together. ), (4B) is formed by cutting and raising only one of the sides, and the small diameter heat transfer tube unit of the small diameter multitubular heat exchanger according to claim 1. 細径伝熱管ユニット(4)が、管体部(41a),(41b)形成用の凹溝部を有する2枚の伝熱フィンプレート(4A),(4B)を貼り合わせることにより形成され、切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、当該貼り合される2枚の伝熱フィンプレート(4A),(4B)の各々を異なる位置で切り起すことにより形成されていることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   The small-diameter heat transfer tube unit (4) is formed by bonding two heat transfer fin plates (4A) and (4B) having concave grooves for forming the tube portions (41a) and (41b). The raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... are the two heat transfer fin plates to be bonded together ( 4. The small diameter heat transfer tube unit of the small diameter multitubular heat exchanger according to claim 1, wherein each of 4A) and (4B) is formed by cutting and raising at different positions. 細径伝熱管ユニット(4)が、管体部(41a),(41b)と該管体部(41a),(41b)の両側にカシメ固定された1枚板構造の伝熱フィンプレート(42A),(42B),(42C)よりなり、切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、当該伝1枚板構造の伝熱フィンプレート(42A),(42B),(42C)を切り起すことにより形成されていることを特徴とする請求項1記載の細径多管式熱交換器の細径伝熱管ユニット。   A heat transfer fin plate (42A) having a single plate structure in which the small-diameter heat transfer tube unit (4) is crimped and fixed to both sides of the tube portions (41a) and (41b) and the tube portions (41a) and (41b). ), (42B), (42C), and the cut and raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... The heat transfer fin plate (42A), (42B), (42C) of the said 1 sheet board structure is formed by cutting and raising, The small diameter multitubular heat exchanger of Claim 1 characterized by the above-mentioned. Small diameter heat transfer tube unit. 切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、スリットであることを特徴とする請求項1,2,3,4又は5記載の細径多管式熱交換器の細径伝熱管ユニット。   The cut and raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... are slits. A thin heat transfer tube unit of the thin multi-tube heat exchanger according to 2, 3, 4 or 5. 切り起し片(45a),(45a)・・・、(45b),(45b)・・・、(45c),(45c)・・・は、ルーバーであることを特徴とする請求項1,2,3,4又は5記載の細径多管式熱交換器の細径伝熱管ユニット。   The cut and raised pieces (45a), (45a) ..., (45b), (45b) ..., (45c), (45c) ... are louvers. A thin heat transfer tube unit of the thin multi-tube heat exchanger according to 2, 3, 4 or 5. 熱交換器が空気調和機等冷凍装置用のもので、内部流体がR32を50wt%以上含む混合冷媒、又はR32の単一冷媒、もしくはCO2冷媒等の高圧冷媒であることを特徴とする請求項1,2,3,4,5,6又は7記載の細径多管式熱交換器の細径伝熱管ユニット。 The heat exchanger is for a refrigeration apparatus such as an air conditioner, and the internal fluid is a mixed refrigerant containing 50 wt% or more of R32, a single refrigerant of R32, or a high-pressure refrigerant such as a CO 2 refrigerant. Item 8. A thin-diameter heat transfer tube unit of a thin-diameter multitubular heat exchanger according to item 1, 2, 3, 4, 5, 6 or 7.
JP2004301499A 2004-10-15 2004-10-15 Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger Pending JP2006112731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301499A JP2006112731A (en) 2004-10-15 2004-10-15 Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301499A JP2006112731A (en) 2004-10-15 2004-10-15 Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger

Publications (1)

Publication Number Publication Date
JP2006112731A true JP2006112731A (en) 2006-04-27

Family

ID=36381389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301499A Pending JP2006112731A (en) 2004-10-15 2004-10-15 Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger

Country Status (1)

Country Link
JP (1) JP2006112731A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243127A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2011185452A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel material
JP2011185453A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel device
CN104359342A (en) * 2014-10-24 2015-02-18 华南理工大学 Enhanced boiling microstructure on metal surface and preparation method thereof
WO2019026243A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2020101330A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP2020531777A (en) * 2017-08-22 2020-11-05 イノヒート スウェーデン アべ Heat transfer plate and heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243127A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2011185452A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel material
JP2011185453A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel device
CN104359342A (en) * 2014-10-24 2015-02-18 华南理工大学 Enhanced boiling microstructure on metal surface and preparation method thereof
WO2019026243A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
CN110998201A (en) * 2017-08-03 2020-04-10 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN110998201B (en) * 2017-08-03 2022-02-11 三菱电机株式会社 Heat exchanger and refrigeration cycle device
US11713926B2 (en) 2017-08-03 2023-08-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP2020531777A (en) * 2017-08-22 2020-11-05 イノヒート スウェーデン アべ Heat transfer plate and heat exchanger
JP7164893B2 (en) 2017-08-22 2022-11-02 イノヒート スウェーデン アべ Heat exchanger
JP2020101330A (en) * 2018-12-21 2020-07-02 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP7197900B2 (en) 2018-12-21 2022-12-28 有限会社和氣製作所 Heat exchanger and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8910703B2 (en) Heat exchanger
JP4898300B2 (en) Evaporator
US7303003B2 (en) Heat exchanger
JP4946348B2 (en) Air heat exchanger
JP2006132920A (en) Heat exchanger
WO2008041698A1 (en) Heat exchanger
JP2006170598A (en) Heat exchanger
JP2008170041A (en) Heat exchanger
EP1239252A1 (en) Stacked-Type, Multi-Flow Heat Exchangers
JP2007298260A (en) Heat exchanger
JP2006170600A (en) Heat exchanger
JP4760542B2 (en) Heat exchanger
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
JP2006170601A (en) Evaporator
JP2006112731A (en) Small-diameter heat transfer tube unit for small-diameter multitubular heat exchanger
WO2011049015A1 (en) Evaporator
JP4617148B2 (en) Heat exchanger
JP2006112732A (en) Small-diameter heat transfer tube unit of small-diameter multitubular heat exchanger
JP2001255093A (en) Evaporator
JP2005195318A (en) Evaporator
JP2005069670A (en) Heat exchanger and evaporator
JP2007187435A (en) Heat exchanger
JP2009113625A (en) Evaporator
JP2009299923A (en) Heat exchanger
JP2008025956A (en) Heat exchanger