JP2704230B2 - How to prevent hydrogen embrittlement during electroplating - Google Patents

How to prevent hydrogen embrittlement during electroplating

Info

Publication number
JP2704230B2
JP2704230B2 JP1105160A JP10516089A JP2704230B2 JP 2704230 B2 JP2704230 B2 JP 2704230B2 JP 1105160 A JP1105160 A JP 1105160A JP 10516089 A JP10516089 A JP 10516089A JP 2704230 B2 JP2704230 B2 JP 2704230B2
Authority
JP
Japan
Prior art keywords
hydrogen embrittlement
hydrogen
plating
treatment
electropolishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1105160A
Other languages
Japanese (ja)
Other versions
JPH02282494A (en
Inventor
繁春 松永
富士雄 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMONOSEKI MEKKI CO., LTD.
Original Assignee
SHIMONOSEKI MEKKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMONOSEKI MEKKI CO., LTD. filed Critical SHIMONOSEKI MEKKI CO., LTD.
Priority to JP1105160A priority Critical patent/JP2704230B2/en
Publication of JPH02282494A publication Critical patent/JPH02282494A/en
Application granted granted Critical
Publication of JP2704230B2 publication Critical patent/JP2704230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気メッキ時の水素ぜい性防止方法に係
り、より詳細には、高張力鋼等への電気メッキ時に生じ
る水素吸蔵による水素ぜい性を防止するための電気メッ
キ時の水素ぜい性防止方法に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method for preventing hydrogen embrittlement during electroplating, and more particularly, to a method for absorbing hydrogen generated during electroplating of high tensile strength steel or the like. The present invention relates to a method for preventing hydrogen embrittlement during electroplating for preventing embrittlement.

〔従来の技術〕[Conventional technology]

従来、電気メッキは、鉄鋼材料の防蝕対策として広範
囲な分野で使用されている。
Conventionally, electroplating has been used in a wide range of fields as a measure against corrosion of steel materials.

しかし、亜鉛メッキやカドニウムメッキ等は、メッキ
時に水素が発生し、該水素が素材である鉄鋼材料などの
金属中に混入し、該水素を吸蔵した金属をぜい化させる
ことが知られている。
However, it is known that zinc plating, cadmium plating, and the like generate hydrogen at the time of plating, and the hydrogen is mixed into a metal such as a steel material, which is a material, and forms a metal embedding the hydrogen. .

そこで、今日では、かかる水素ぜい性を、メッキ処理
後に、200℃×数時間の熱処理、すなわち、ベーキング
処理(脱水素熱処理)することで防止するようにしてい
る。すなわち、第3図に示すようにメッキ処理工程と、
クロメート処理工程の間にベーキング処理工程を介在さ
せることで水素ぜい性を防止するようにしている。
Therefore, today, such hydrogen embrittlement is prevented by a heat treatment at 200 ° C. × several hours, ie, a baking treatment (dehydrogenation heat treatment) after the plating treatment. That is, as shown in FIG.
The hydrogen embrittlement is prevented by interposing a baking treatment step between the chromate treatment steps.

ところで、該ベーキング処理は、電気メッキを自動ラ
インで処理する場合、メッキ直後、メッキ部品(素材)
をラインより外してベーキング炉内にセットし替え、所
定時間の高温熱処理を行うことで実施されている。
By the way, in the baking process, when electroplating is performed by an automatic line, immediately after plating, plated parts (material)
Is removed from the line, set in a baking furnace, and subjected to a high-temperature heat treatment for a predetermined time.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上述した処理の場合、次のような問題が指摘
されている。すなわち、 高温熱処理に長時間かかるので、メッキ処理効率が低
下する。
However, in the case of the above-described processing, the following problem has been pointed out. That is, since the high-temperature heat treatment takes a long time, the plating efficiency is reduced.

亜鉛メッキには、後工程としてクロメート処理工程を
行なう必要があり、その際にベーキング炉から部品を取
り出し再びクロメート処理ラインに組み込まなければな
らず、処理手数が煩雑になる。
In the galvanization, a chromate treatment step needs to be performed as a post-process. At this time, parts must be taken out of the baking furnace and assembled again into the chromate treatment line, which complicates the process.

安価なメッキとされている亜鉛メッキがコスト高とな
る。
Zinc plating, which is regarded as inexpensive plating, increases costs.

従って、ベーキング処理工程をメッキ処理の自動ライ
ンに組み込み難いのが実情である。
Therefore, in reality, it is difficult to incorporate the baking process into an automatic plating line.

そこで、本発明者は、メッキ時に生ずる水素ぜい性の
メカニズムを究明するため、第4図(a)、(b)に示
すような、酸化スケールのない素材についてのアルカ
リ浴ライン、酸化スケールのある素材についての塩化
浴ラインにおける各処理工程における水素ぜい化率と水
素含有量について調べた。
In order to investigate the mechanism of hydrogen embrittlement generated during plating, the inventor of the present invention used an alkaline bath line for a material without an oxide scale as shown in FIGS. 4 (a) and 4 (b). The hydrogen embrittlement rate and hydrogen content of each material in each treatment step in the chloride bath line were examined.

ここで、水素含有量を測定する手段としては、第5図
に示すような水素透過装置を用いた。すなわち、反応槽
aの中間に試料(素材)bを配置して、水素引き抜き側
槽cと水素供給側槽dとに分割し、槽c、dに、それぞ
れ無抵抗電流計e、および電流計fを介して対極g、h
を吊下し、無抵抗電流計e、電流計f間にガルバノスタ
ットiとポテンショスタットjを直列に配置すると共
に、ガルバノスタットiとポテンショスタットjとの間
に試料(素材)bを吊下し、またポテンショスタットj
より水素引き抜き側槽cに比較電極kを吊下し、さらに
無抵抗電流計eに記録計1を接続した構成の水素透過装
置を用い、水素供給側より水素引き抜き側への水素透過
電流曲線を測定することにより試料(素材)中の水素拡
散定数を求め、定常透過電流値により、測定する方法を
採用した。
Here, as a means for measuring the hydrogen content, a hydrogen permeable device as shown in FIG. 5 was used. That is, a sample (material) b is arranged in the middle of the reaction tank a, and divided into a hydrogen extraction side tank c and a hydrogen supply side tank d, and the non-resistance ammeter e and the ammeter are provided in the tanks c and d, respectively. counter electrodes g, h via f
, A galvanostat i and a potentiostat j are arranged in series between the resistanceless ammeter e and the ammeter f, and a sample (material) b is suspended between the galvanostat i and the potentiostat j. And potentiostat j
A hydrogen permeation current curve from the hydrogen supply side to the hydrogen withdrawal side was obtained by using a hydrogen permeation device having a configuration in which a comparative electrode k was suspended from the hydrogen withdrawal side tank c and the recorder 1 was connected to the resistanceless ammeter e. A hydrogen diffusion constant in the sample (material) was obtained by measurement, and a measurement method was adopted based on a steady-state transmission current value.

また、水素ぜい化率を測定する手段としては、第6図
(a)に示す水素ぜい化迅速測定器(デルタ・リサーチ
社製、デルタゲージ)を用い、すなわち、走行圧縮バイ
スmと固定バイスn間に、試料(素材)bを配置し、走
行圧縮バイスmを移動させ、該試料(素材)bの破断時
における走行圧縮バイスmの移動距離Lによって測定で
きるようにした構成の水素ぜい化迅速測定器を用い、試
料(素材)bとして、無処理試料についての試料(素
材)bの破断時における走行圧縮バイスmの移動距離L0
と、水素吸蔵試料についての試料(素材)bの破断時に
おける走行圧縮バイスmの移動距離Lnを測定し、式
〔(L0−Ln)/L0〕×100により測定する方法を採用し
た。
As a means for measuring the hydrogen embrittlement rate, a hydrogen embrittlement rapid measuring device (Delta Research Co., Ltd., delta gauge) shown in FIG. 6 (a) is used. A sample (material) b is arranged between the vice n, the traveling compression vise m is moved, and a hydrogen reservoir having a configuration that can be measured by the moving distance L of the traveling compression vise m when the sample (material) b is broken. As a sample (material) b, a moving distance L 0 of the traveling compression vise m at the time of breakage of the sample (material) b was used as a sample (material) b using a rapid measurement device
If, employ a method of measuring the movement distance L n of the running compressor vice m at break of the sample (material) b of the hydrogen-absorbing sample is determined by the formula [(L 0 -L n) / L 0 ] × 100 did.

そして、各工程における水素ぜい化率と水素含有量
は、次表のような結果となった。
Then, the hydrogen embrittlement rate and the hydrogen content in each step were as shown in the following table.

なお、上記試料は、次の作製条件で得た。 The above sample was obtained under the following manufacturing conditions.

なお、上記試料は、次の作製条件で得た。 The above sample was obtained under the following manufacturing conditions.

なお、試料片としては、次の条件より作製されたもの
を用いた。
In addition, what was produced on condition of the following was used as a sample piece.

以上が、現状ラインのメッキ作業条件で作製した試料
の水素ぜい化率と水素含有量であり、ジンケート浴ライ
ンにおいて高い水素ぜい化率を示したのはメッキ工程で
あり、68.7%であった。また、塩化浴ラインの場合、メ
ッキ工程の水素ぜい化率は低い値(4.6%)を示した
が、前処理工程である酸洗で、19.0%となり、水素ぜい
性を生じる可能性を示唆した。このことより、亜鉛メッ
キ工程における水素ぜい性は、酸洗工程とジンケート浴
を使用した工程で生じることが確認できた。
The above is the hydrogen embrittlement rate and the hydrogen content of the sample prepared under the plating operation conditions of the current line, and the plating process showed the high hydrogen embrittlement rate in the zincate bath line at 68.7%. Was. In the case of the chloride bath line, the hydrogen embrittlement rate in the plating process showed a low value (4.6%), but it became 19.0% in the pre-treatment step of pickling, indicating the possibility of hydrogen embrittlement. Suggested. From this, it was confirmed that the hydrogen embrittlement in the galvanizing step occurred in the pickling step and the step using a zincate bath.

このことより、本発明者は、素材としての鉄鋼部材に
おいて、前処理の塩酸が、部品表面のスケール酸化物を
除去する目的とメッキ前の表面活性化のために必須であ
ることより、該酸洗による水素吸蔵を防ぐことで水素ぜ
い化を防止できる可能性のあることを見出した。
From this, the present inventor has suggested that in a steel member as a raw material, pretreatment hydrochloric acid is indispensable for the purpose of removing scale oxide on the surface of a part and for activating the surface before plating. It has been found that hydrogen embrittlement can be prevented by preventing hydrogen occlusion by washing.

次に、本発明者は、ジンケート浴を使用した工程にお
ける水素ぜい性について、種々、試験、研究をした結
果、素材表面に水素吸蔵防止層を形成させることによっ
て解決でき、該水素吸蔵防止層として電解研磨処理によ
って得られるものが好ましいことを究明した。すなわ
ち、メッキ処理の現状ラインにおける水素ぜい性を検討
した処、アルカリ浴で作製した素材(試料)は、高い水
素ぜい化率を示すにもかかわらず水素含有量が少ない値
を示し、水素ぜい化率と水素含有量との間に相関性が認
められず、この要因を検討すると、前述水素引き抜き試
験の際の電解研磨処理が影響するのではないかというこ
とを究明した。
Next, the present inventors conducted various tests and studies on hydrogen embrittlement in a process using a zincate bath, and as a result, it was possible to solve the problem by forming a hydrogen occlusion prevention layer on the material surface. It was clarified that a material obtained by an electrolytic polishing treatment was preferable. In other words, as a result of examining the hydrogen embrittlement in the current line of the plating process, the material (sample) produced in the alkaline bath showed a low hydrogen content despite the high hydrogen embrittlement rate, No correlation was found between the embrittlement rate and the hydrogen content, and when this factor was examined, it was clarified that the electropolishing treatment during the above-mentioned hydrogen extraction test might have an effect.

本発明は、上述した点に対処して創案したものであっ
て、その目的とする処は、高張力鋼等への電気メッキ時
に生じる水素吸蔵による水素ぜい性を防止するための電
気メッキ時の水素ぜい性防止方法を提供することにあ
る。
The present invention has been made in view of the above points, and has as its object the object of electroplating for preventing hydrogen embrittlement due to hydrogen occlusion occurring at the time of electroplating on high-strength steel or the like. To provide a method for preventing hydrogen embrittlement.

〔課題を解決するための手段〕[Means for solving the problem]

そして、上記目的を達成するための手段としての本発
明の電気メッキ時の水素ぜい性防止方法は、金属表面に
メッキをするに際して、該メッキ処理の前段で電解研磨
処理を行うようにした構成よりなる。
The method for preventing hydrogen embrittlement during electroplating of the present invention as a means for achieving the above object is characterized in that, when plating a metal surface, an electrolytic polishing treatment is performed before the plating treatment. Consisting of

また、本発明の電気メッキ時の水素ぜい性防止方法
は、電解研磨処理に用いる電解液として、クロム酸を含
む電解液を用い、メッキ処理の前段で電解研磨処理を行
うようにした構成よりなる。
Further, the method for preventing hydrogen embrittlement during electroplating of the present invention uses an electrolytic solution containing chromic acid as the electrolytic solution used for the electropolishing process, and performs the electropolishing process before the plating process. Become.

さらに、本発明の電気メッキ時の水素ぜい性防止方法
は、金属表面にメッキをするに際して、該メッキ処理の
前段で、電解研磨処理を行い、該金属表面に電解研磨液
中に含有する金属の化合物層を形成させるようにした
後、酸洗処理を経て、上記メッキ処理を行うようにした
構成よりなる。
Furthermore, the method for preventing hydrogen embrittlement during electroplating of the present invention is characterized in that, when plating a metal surface, an electropolishing treatment is performed at a stage prior to the plating treatment, and the metal contained in the electropolishing liquid is applied to the metal surface. After the compound layer is formed, the above plating process is performed through an acid washing process.

さらにまた、本発明の電気メッキ時の水素ぜい性防止
方法は、酸洗処理に用いる溶液として、塩酸とポリカテ
ィオン−アミン誘導体を含有する溶液を用いるようにし
た構成よりなる。
Furthermore, the method for preventing hydrogen embrittlement during electroplating according to the present invention has a configuration in which a solution containing hydrochloric acid and a polycation-amine derivative is used as a solution used in the pickling treatment.

〔作用〕[Action]

そして、上記構成に基づく、本発明の電気メッキ時の
水素ぜい性防止方法によれば、メッキ処理の前段の電解
研磨工程により、素材(金属)表面にクロム化合物等の
金属化合物層を形成させ、該化合物層によりメッキ時に
発生する水素の金属内部への侵入を防止し、該素材(金
属)の水素ぜい性を防止するように作用する。
According to the method for preventing hydrogen embrittlement during electroplating of the present invention based on the above configuration, a metal compound layer such as a chromium compound is formed on the surface of a material (metal) by an electropolishing step prior to plating. The compound layer prevents the hydrogen generated at the time of plating from entering the inside of the metal, and acts to prevent the hydrogen embrittlement of the material (metal).

また、本発明の電気メッキ時の水素ぜい性防止方法に
よれば、電解研磨処理をした後、再び、酸洗処理を行っ
た後、メッキ処理をすることで、メッキ処理の際に発生
する水素の付着し難くして、その侵入を、よりいっそう
防止するように作用する。
In addition, according to the method for preventing hydrogen embrittlement during electroplating of the present invention, after the electrolytic polishing treatment, the pickling treatment is performed again, and then the plating treatment is performed. This makes it difficult for hydrogen to adhere and acts to further prevent its intrusion.

以上のように、本発明の電気メッキ時の水素ぜい性防
止方法は、メッキ処理の前段で、電解研磨処理、電
解研磨処理と酸洗処理を行うようにした点に特徴を有
し、この点によって、メッキ時に発生する水素の金属内
部への侵入を防止するためのクロム化合物等の金属化合
物層を形成させ得、また付着条件を排除するという格別
な作用を奏する方法である。
As described above, the method for preventing hydrogen embrittlement during electroplating according to the present invention is characterized in that electrolytic polishing, electrolytic polishing and pickling are performed before the plating. According to this method, a metal compound layer such as a chromium compound for preventing the intrusion of hydrogen generated during plating into the metal can be formed, and a special effect of eliminating the adhesion condition can be obtained.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明を具体化した実施
例について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

ここに、第1〜2図は、本実施例を示し、第1図は、
メッキ処理の処理工程図、第2図は電解研磨処理を施し
た素材表面の分析状況を説明するための分析図である。
1 and 2 show this embodiment, and FIG.
FIG. 2 is an analysis diagram for explaining an analysis state of the surface of the material subjected to the electropolishing process.

本実施例の電気メッキ時の水素ぜい性防止方法は、電
気亜鉛メッキについて具体化した方法であって、第1図
に示すように、前述した従来例(第4図参照)の溶剤脱
脂処理と酸活性処理との間に電解研磨処理工程を介在さ
せた構成よりなる。なお、電解研磨処理工程を除く他の
工程は、従来工程と同様であるので、その説明を省略す
る。
The method for preventing hydrogen embrittlement at the time of electroplating according to the present embodiment is a method embodied for electrogalvanizing, and as shown in FIG. 1, the solvent degreasing treatment of the above-described conventional example (see FIG. 4). And an acid activation treatment with an electropolishing treatment step. The other steps except the electropolishing step are the same as the conventional steps, and the description thereof is omitted.

そして、電解研磨処理工程は、通常、金属表面の表面
処理として行う電解研磨と同様の手法を採用し、次の処
理条件で実施した。すなわち、 ・電解液:燐酸と無水クロム酸との混合液 (燐酸:1000mlに対して、クロム酸:200g/lの割合) ・電流密度:25A/dm2 ・電解時間:15分間 ・電解液温:室 温 ・素材:SK-5 調質材(HV550) 100×9×0.8mm の条件で実施した。
Then, the electrolytic polishing treatment step was carried out under the following treatment conditions by employing the same method as the electrolytic polishing usually performed as the surface treatment of the metal surface. • Electrolyte: a mixture of phosphoric acid and chromic anhydride (ratio of chromic acid: 200 g / l to 1000 ml of phosphoric acid) • Current density: 25 A / dm 2 • Electrolysis time: 15 minutes • Electrolyte temperature : Room temperature ・ Material: SK-5 Tempered material (HV550) Conducted under the conditions of 100 × 9 × 0.8 mm.

そして、上記電解研磨処理を施した素材について、水
洗−酸活性−亜鉛メッキ処理をした後、前述した第6図
(a)に示す水素ぜい化迅速測定器による水素ぜい化率
は、0.0%であった。
Then, the material subjected to the electrolytic polishing treatment is subjected to water washing-acid activity-zinc plating treatment, and then the hydrogen embrittlement rate by the hydrogen embrittlement rapid measuring device shown in FIG. %Met.

ここで、電解液として、燐酸(1000ml)と無水クロム
酸(200g/l)との混合液を用いたのは,種々の電解液を
用いて、電解研磨処理をすると共に、該処理をした素材
についてメッキ処理を施したものについて水素ぜい化率
を調べた結果による。
Here, a mixture of phosphoric acid (1000 ml) and chromic anhydride (200 g / l) was used as the electrolytic solution because various electrolytic solutions were used for the electrolytic polishing treatment and the material subjected to the treatment. This is based on the result of examining the hydrogen embrittlement rate of the plated metal.

すなわち、電流密度、電解時間および電解液温度を、
前述と同一条件で、他の電解液を用いた場合について述
べると、燐酸:800ml、硫酸:200ml、クロム酸:10g/lの
混合液を電解液とした場合の水素ぜい化率が、2.1%、
燐酸800ml、硫酸:200mlの混合液を電解液とした場合
の水素ぜい化率が、19.6%、燐酸:800ml、硫酸:200m
l、酸:40g/lの混合液を電解液とした場合の水素ぜい
化率が、18.3%であった。
That is, current density, electrolysis time and electrolyte temperature,
Under the same conditions as described above, when using another electrolyte solution, the hydrogen embrittlement rate when a mixed solution of phosphoric acid: 800 ml, sulfuric acid: 200 ml, and chromic acid: 10 g / l was used as the electrolyte was 2.1. %,
Hydrogen embrittlement rate when a mixed solution of 800 ml of phosphoric acid and 200 ml of sulfuric acid was used as an electrolytic solution, 19.6%, 800 ml of phosphoric acid, 200 m of sulfuric acid
l, acid: The hydrogen embrittlement ratio was 18.3% when a mixed solution of 40 g / l was used as the electrolytic solution.

このことより、メッキ処理後における水素ぜい化率を
低く押さえることができるのは、燐酸とクロム酸を含有
する混合液を電解研磨液とするものが好ましいことが確
認できる。また、他の電解研磨液を用いた場合であって
も、電解研磨処理工程を有しない電気メッキに比べると
水素ぜい化率が低下させることが確認できた。
From this, it can be confirmed that the reason why the hydrogen embrittlement rate after the plating treatment can be suppressed to a low value is to use a mixed solution containing phosphoric acid and chromic acid as the electropolishing liquid. In addition, it was confirmed that even when another electrolytic polishing liquid was used, the hydrogen embrittlement rate was reduced as compared with electroplating having no electrolytic polishing treatment step.

また、前述した実施例における条件(電流密度、電解
時間および電解液温度)を変更し、これらによる水素ぜ
い化率を調べた処、次のことを確認した。
Further, the conditions (current density, electrolysis time, and electrolyte temperature) in the above-described examples were changed, and the hydrogen embrittlement ratio was examined to confirm the following.

なお、電流密度:25A/dm2、電解液温度:20℃の条件で
行った。そして、電解時間が60秒の場合の水素含有量
は、0.1ppm以下となったことを確認した。
The test was performed under the conditions of current density: 25 A / dm 2 and electrolyte temperature: 20 ° C. Then, it was confirmed that the hydrogen content when the electrolysis time was 60 seconds was 0.1 ppm or less.

なお、電解時間:15分、電解液温度:20℃の条件で行っ
た。これは、実際のメッキ生産ラインにおいては、品物
の形状により電流分布が不均一となることを考慮したも
のであって、電流密度が15A/dm2以下で作製した試料の
水素ぜい化率は1〜2%と僅かに水素ぜい性の可能性を
しめしたが、25A/dm2以上で作製した試料の水素ぜい化
率は0%となり、水素ぜい性を防止できることが確認で
きた。
The electrolysis was performed under the conditions of an electrolysis time of 15 minutes and an electrolyte temperature of 20 ° C. This is in consideration of the fact that the current distribution becomes non-uniform due to the shape of the product in the actual plating production line, and the hydrogen embrittlement rate of the sample prepared at a current density of 15 A / dm 2 or less is Although the possibility of hydrogen embrittlement was slightly as low as 1-2%, the hydrogen embrittlement rate of the sample prepared at 25 A / dm 2 or more was 0%, confirming that the hydrogen embrittlement could be prevented. .

なお、電解時間:15分、電流密度:25A/dm2の条件で行
った。そして、液温が、25℃以下で作製した試料は水素
ぜい化率が0%であったのに対し、50℃では1%とな
り、僅かに水素ぜい性を生じる可能性が示唆された。こ
れは、高い液温のため電解研磨直後に化学研磨が生じ水
素が素材(試料)中に吸蔵されたことによると考えられ
る。
The electrolysis was performed under the conditions of an electrolysis time of 15 minutes and a current density of 25 A / dm 2 . The sample prepared at a liquid temperature of 25 ° C. or less had a hydrogen embrittlement rate of 0%, whereas the sample at 50 ° C. had a hydrogen embrittlement rate of 1%, suggesting the possibility of slight hydrogen embrittlement. . This is considered to be because chemical polishing occurred immediately after electrolytic polishing due to the high liquid temperature, and hydrogen was occluded in the material (sample).

そして、この結果より、水素ぜい化率を低くして、水
素ぜい性を防止するための、より好ましい条件は、電解
研磨液として、燐酸とクロム酸とを含有する混合液を
用い、電解時間を2分以上とし、電流密度を25A/dm
2以上に設定すると共に、電解研磨液の温度を25℃以
下の場合であることが確認できた。なお、電解研磨時の
素材の表面滅失深さは、2分で約1.5μmであった。し
かし、他の条件であってもよいことは当然である。例え
ば、電解液としては、クロム酸を含有する溶液であれば
よいことは明らかである。
From this result, a more preferable condition for lowering the hydrogen embrittlement rate and preventing hydrogen embrittlement is to use a mixed solution containing phosphoric acid and chromic acid as an electrolytic polishing solution, Time is 2 minutes or more, and current density is 25A / dm
It was confirmed that the temperature was set to 2 or more and the temperature of the electropolishing liquid was 25 ° C. or less. The surface loss depth of the material during the electropolishing was about 1.5 μm in 2 minutes. However, other conditions may be used. For example, it is clear that the electrolyte may be a solution containing chromic acid.

ところで、一般的に鉄鋼材料の水素感受性に及ぼす要
因としては、機械加工により素材表面に存在する加工
変質層や内部応力および切り欠き的要素を有する表面形
態、材質、硬度等とされている。そこで、本実施例
における手法で用いた試料について見ると、上記要因の
内、内部応力については熱処理によって除去されてお
り、また材質、硬度もそれぞれSK5、Hv550と一定条件下
で行うと共に、前述した通り、上述電解研磨でのアノー
ド溶解に伴う板厚の減少が、電解時間2分で約1.5μm
であることより、電解研磨前に存在した切り欠き的な要
素を有すると解される亀裂が電解時間2分後においても
存在し、また電解時間が15分の試料においても通常の鏡
面光沢を有する平滑な表面でなく、表面荒さRmaxが1.5
μmの半球状研磨面を有するものであることが確認でき
た。このことより、本実施例における方法で採用する電
解研磨が、メッキ処理の際の水素ぜい性を防止する要因
となるのは、アノード溶解による加工変質層の除去等の
機械的な要因でなく、電解研磨の際に試料表面にクロム
化合物等の化合物層(被膜あるいは吸着層)が形成さ
れ、その層によって水素の侵入が阻止されるものと考え
られる。
By the way, factors that generally affect the hydrogen sensitivity of a steel material include the surface morphology, material, hardness, and the like, which have a work-affected layer, internal stress, and notch elements existing on the surface of the material by machining. Therefore, looking at the sample used in the method of the present embodiment, among the above factors, the internal stress has been removed by heat treatment, and the material and hardness are also set to SK5 and Hv550, respectively, under the same conditions as described above. As described above, the decrease in the plate thickness due to the dissolution of the anode in the above-mentioned electropolishing was about 1.5 μm in 2 minutes of electrolysis.
Therefore, a crack which is presumed to have a notch element existing before the electropolishing exists even after 2 minutes of the electrolysis time, and has a normal specular gloss even in the sample having the electrolysis time of 15 minutes. Surface roughness R max is 1.5 instead of smooth surface
It was confirmed that it had a hemispherical polished surface of μm. From this, the electropolishing employed in the method of the present embodiment is a factor that prevents hydrogen embrittlement during the plating process, rather than a mechanical factor such as removal of a deteriorated layer due to anode dissolution. It is considered that a layer of a compound such as a chromium compound (coating or adsorption layer) is formed on the surface of the sample during the electropolishing, and that the layer prevents entry of hydrogen.

そこで、該化合物層の存在を確認するために、電解研
磨した表面をXPS(X線光電子分光法)によって分析し
た処、第2図に示す分析結果を得た。そして、この結果
によると、特に、燐酸とクロム酸を含有する電解研磨液
を用いたものにあっては、該化合物層の形成されている
ことが確認できた。また、該化合物層は後工程の酸洗に
おいても消失することのないことも確認できた。なお、
他の電解液を用いた場合にあっても、若干の化合物層が
認められ、水素吸蔵を低くすることができることが確認
できた。
Then, in order to confirm the presence of the compound layer, when the electropolished surface was analyzed by XPS (X-ray photoelectron spectroscopy), the analysis results shown in FIG. 2 were obtained. According to the results, it was confirmed that the compound layer was formed particularly in the case of using the electrolytic polishing liquid containing phosphoric acid and chromic acid. It was also confirmed that the compound layer did not disappear even in the subsequent pickling. In addition,
Even when another electrolytic solution was used, a slight compound layer was observed, and it was confirmed that hydrogen absorption could be reduced.

また、上記電界研磨処理をした後、酸洗処理(酸活
性)を行った処、水素ぜい化率、水素含有量が、一層低
下した。すなわち、その溶液として、10%塩酸にインヒ
ビターとして、ポリカィオン−アミン誘導体を含有する
溶液を用い、酸洗処理をした処、水素ぜい化率、水素含
有量の低下を認めた。これは、電界研磨処理によって発
生した化合物層への水素の付着条件を軽減したことによ
るものと考えられる。なお、併せて、該溶液による酸洗
処理を電界研磨処理前にも行ってもよい。
In addition, after the above-mentioned electropolishing treatment, a treatment for pickling (acid activity) further reduced the hydrogen embrittlement rate and the hydrogen content. That is, a solution containing a polycation-amine derivative as an inhibitor in 10% hydrochloric acid was used as the solution, and pickling treatment was performed. As a result, the hydrogen embrittlement rate and the hydrogen content were reduced. This is presumably because the conditions for attaching hydrogen to the compound layer generated by the electropolishing treatment were reduced. In addition, the pickling treatment with the solution may be performed before the electropolishing treatment.

ところで、上述した実施例においては、メッキ処理と
して亜鉛メッキを中心として説明したが、カドニウムメ
ッキ等についても同様に実施できることは明らかであ
る。
By the way, in the above-described embodiment, zinc plating has been mainly described as the plating process, but it is apparent that cadmium plating and the like can be similarly performed.

なお、本発明は上述した実施例に限定されるものでな
く、本発明の要旨を変更しない範囲内において変形実施
できるものを含む。
It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications that can be made without departing from the scope of the present invention.

〔発明の効果〕〔The invention's effect〕

以上の説明より明らかなように、本発明の電気メッキ
時の水素ぜい性防止方法によれば、メッキ処理の前段で
電解研磨処理、または電解研磨処理をした後に酸洗処理
をして、素材(金属)表面にクロム化合物等の化合物層
を形成させるようにしているので、該化合物層によりメ
ッキ時に発生する水素の金属内部への侵入を防止するこ
とができるという効果を有する。
As is apparent from the above description, according to the method for preventing hydrogen embrittlement during electroplating of the present invention, an electrolytic polishing treatment before the plating treatment, or an acid polishing treatment after the electrolytic polishing treatment, Since a compound layer of a chromium compound or the like is formed on the surface of the (metal), the compound layer has an effect of preventing hydrogen generated at the time of plating from entering the metal.

従って、本発明によれば、従来のメッキ処理の場合と
異なり、該メッキ処理で吸蔵した水素除去のためのベー
キング処理を省略できるので、メッキ作業を効率的に行
えるという効果を有する。
Therefore, according to the present invention, unlike the conventional plating process, the baking process for removing the hydrogen occluded in the plating process can be omitted, so that the plating operation can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

第1〜2図は、本実施例を示し、第1図は、メッキ処理
の処理工程図、第2図は電解研磨処理を施した素材表面
の分析状況を説明するための分析図、第3〜4図は従来
のメッキ処理の処理工程図、第5図は水素透過装置の概
略構成図、第6図(a)(b)(c)は折り曲げ試験の
説明をするための説明図である。
FIGS. 1 and 2 show the present embodiment, FIG. 1 is a process diagram of a plating process, FIG. 2 is an analysis diagram for explaining an analysis state of a material surface subjected to electrolytic polishing, and FIG. 4 to 4 are process diagrams of a conventional plating process, FIG. 5 is a schematic configuration diagram of a hydrogen permeable device, and FIGS. 6 (a), (b) and (c) are explanatory diagrams for explaining a bending test. .

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属表面にメッキをするに際して、該メッ
キ処理の前段で電解研磨処理を行い、該金属表面に、該
電解研磨液中に含有する金属の化合物層からなる水素吸
蔵防止層を形成させてなることを特徴とする電気メッキ
時の水素ぜい性防止方法。
When plating a metal surface, an electropolishing process is performed prior to the plating process, and a hydrogen occlusion prevention layer comprising a compound layer of a metal contained in the electropolishing liquid is formed on the metal surface. A method for preventing hydrogen embrittlement at the time of electroplating, characterized in that:
【請求項2】電解研磨処理に用いる電解研磨液として、
クロム酸を含む電解研磨液を用いる請求項1に記載の電
気メッキ時の水素ぜい性防止方法。
2. The electropolishing liquid used in the electropolishing treatment,
The method for preventing hydrogen embrittlement during electroplating according to claim 1, wherein an electropolishing liquid containing chromic acid is used.
【請求項3】金属表面にメッキをするに際して、該メッ
キ処理の前段で、電解研磨処理を行い、該金属表面に、
該電解研磨液中に含有する金属の化合物層からなる水素
吸蔵防止層を形成させた後、酸洗処理を経て、上記メッ
キ処理を行う請求項1に記載の電気メッキ時の水素ぜい
性防止方法。
3. When plating a metal surface, an electropolishing process is performed before the plating process, and
2. The prevention of hydrogen embrittlement during electroplating according to claim 1, wherein the plating treatment is performed after forming a hydrogen absorption preventing layer comprising a compound layer of a metal contained in the electropolishing liquid, followed by pickling treatment. Method.
【請求項4】酸洗処理に用いる溶液として、塩酸とポリ
カティオン−アミン誘導体を含有する溶液である請求項
3に記載の電気メッキ時の水素ぜい性防止方法。
4. The method for preventing hydrogen embrittlement during electroplating according to claim 3, wherein the solution used for the pickling treatment is a solution containing hydrochloric acid and a polycation-amine derivative.
JP1105160A 1989-04-24 1989-04-24 How to prevent hydrogen embrittlement during electroplating Expired - Fee Related JP2704230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105160A JP2704230B2 (en) 1989-04-24 1989-04-24 How to prevent hydrogen embrittlement during electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105160A JP2704230B2 (en) 1989-04-24 1989-04-24 How to prevent hydrogen embrittlement during electroplating

Publications (2)

Publication Number Publication Date
JPH02282494A JPH02282494A (en) 1990-11-20
JP2704230B2 true JP2704230B2 (en) 1998-01-26

Family

ID=14399955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105160A Expired - Fee Related JP2704230B2 (en) 1989-04-24 1989-04-24 How to prevent hydrogen embrittlement during electroplating

Country Status (1)

Country Link
JP (1) JP2704230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103712B1 (en) * 2008-03-20 2019-02-13 ATOTECH Deutschland GmbH Ni-P layer system and process for its preparation
CN114207190A (en) * 2019-08-05 2022-03-18 Sms集团有限公司 Method and device for electrolytically coating electrically conductive strips and/or fabrics by means of impulse technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511326A (en) * 1974-06-25 1976-01-08 Sumitomo Electric Industries METSUKI MAESHORIHOHO
JPS60110892A (en) * 1983-11-21 1985-06-17 Takada Kenkyusho:Kk Plating method for providing low hydrogen brittleness and high corrosion resistance
JPS6436782A (en) * 1987-07-30 1989-02-07 Harada Mitsuo Surface hardening method of saw or the like

Also Published As

Publication number Publication date
JPH02282494A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
Brenner et al. Deposition of nickel and cobalt by chemical reduction
Gabe The role of hydrogen in metal electrodeposition processes
Baldwin et al. The plating rates and physical properties of electroless nickel/phosphorus alloy deposits
US4789437A (en) Pulse electroplating process
US3672964A (en) Plating on aluminum,magnesium or zinc
Robertson et al. The role of iron (III) and tartrate in the zincate immersion process for plating aluminium
JP3631090B2 (en) Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance
US3989606A (en) Metal plating on aluminum
JP2704230B2 (en) How to prevent hydrogen embrittlement during electroplating
US4818632A (en) Plated structure exhibiting low hydrogen embrittlement
JPH0436498A (en) Surface treatment of steel wire
Carr et al. The effects of zinc alloy electroplating on the hydrogen embrittlement of high strength steels
US4349390A (en) Method for the electrolytical metal coating of magnesium articles
US3065154A (en) Method of plating chromium and the like to titanium, its alloys, and the like
JP3247517B2 (en) Plating method of titanium material
US4007099A (en) Cathodic production of micropores in chromium
Mandich et al. Troubleshooting electroplating installations: nickel sulfamate plating systems
Such et al. An Improvement in the Zincate Method for Plating on Aluminum
Duncan The effect of solution age on corrosion resistance of electroless nickel deposits
Belt et al. Nickel-Cobalt Alloy Deposits from a Concentrated Sulphamate Electrolyte
Johnson Immersion plating of the platinum group metals
EP0120850B1 (en) Method for determining structures exhibiting low hydrogen embrittlement
Monk et al. Electrodeposition of tin alloys from alkaline stannate baths
Dini et al. Preparation of uranium for electroplating with nickel
GB2065175A (en) Method and Composition for Producing Palladium Electrodeposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees