JP2703577B2 - Air separation equipment - Google Patents

Air separation equipment

Info

Publication number
JP2703577B2
JP2703577B2 JP63251373A JP25137388A JP2703577B2 JP 2703577 B2 JP2703577 B2 JP 2703577B2 JP 63251373 A JP63251373 A JP 63251373A JP 25137388 A JP25137388 A JP 25137388A JP 2703577 B2 JP2703577 B2 JP 2703577B2
Authority
JP
Japan
Prior art keywords
liquid
air
nitrogen
tower
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63251373A
Other languages
Japanese (ja)
Other versions
JPH02101373A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP63251373A priority Critical patent/JP2703577B2/en
Publication of JPH02101373A publication Critical patent/JPH02101373A/en
Application granted granted Critical
Publication of JP2703577B2 publication Critical patent/JP2703577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04842Intermittent process, so-called batch process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体空気を主原料とし、その液体空気を
窒素および酸素に分離する空気分離装置に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to an air separation device that uses liquid air as a main raw material and separates the liquid air into nitrogen and oxygen.

〔従来の技術〕[Conventional technology]

窒素および酸素は、一般に、大気中の空気を原料と
し、この空気を圧縮機で圧縮したのち、吸着筒に入れて
炭酸ガスおよび水分を除去し、さらに熱交換器を通して
冷媒と熱交換させて冷却し、ついで精留塔で深冷液化分
離するという工程を経て製造されている。
In general, nitrogen and oxygen are obtained by using air in the atmosphere as a raw material, compressing this air with a compressor, removing the air into an adsorption column to remove carbon dioxide gas and moisture, and further exchanging heat with a refrigerant through a heat exchanger for cooling. Then, it is manufactured through a process of cryogenic liquefaction and separation in a rectification column.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のような窒素および酸素を製造するための空気分
離装置は、24時間操業によつて稼働されており、使用電
力量が多く電気料金が嵩むため、製品のコストを低くす
ることができないという問題がある。また、大気中の空
気を原料とするため、大気が汚染された工場地帯等で操
業を行うと、原料空気中の不純物の含有量が多くなり製
造される窒素や酸素の純度が低下するという問題があ
る。
The above-described air separation device for producing nitrogen and oxygen is operated 24 hours a day, and consumes a large amount of electric power, increasing electricity costs, and thus cannot reduce the cost of products. There is. In addition, since the air in the atmosphere is used as a raw material, if the operation is performed in a factory zone or the like where the air is contaminated, the content of impurities in the raw air increases and the purity of nitrogen and oxygen produced decreases. There is.

この発明は、このような事情に鑑みなされたもので、
製品窒素,酸素のコストを低下することができるととも
に、工場地帯群中で操業を行つても製品窒素,酸素の純
度の低下を招くことがない空気分離装置の提供をその目
的とする。
The present invention has been made in view of such circumstances,
It is an object of the present invention to provide an air separation device that can reduce the cost of product nitrogen and oxygen and that does not cause a decrease in the purity of product nitrogen and oxygen even when operating in a group of factory areas.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の空気分離装置
は、当該空気分離装置外から供給された液体空気を貯溜
する液体空気貯槽と、液体空気を底部に溜め精留作用に
よりその液体空気中の窒素を気体として上部側から取り
出す高圧下部塔と、上記液体空気貯槽の液体空気を原料
空気として上記高圧下部塔に常時供給する液体空気供給
パイプと、液体空気を対象とし酸素を液状で底部に残し
窒素を気体として上部側から取り出す低圧上部塔と、上
記高圧下部塔の底部の貯溜液体空気の一部を上記低圧上
部塔に供給する液体空気供給パイプと、上記高圧下部塔
の底部の貯溜液体空気を加熱する加熱手段と、上記低圧
上部塔の内部に設けられる窒素ガス液化用の凝縮器と、
上記高圧下部塔内で生成した窒素ガスの一部を上記凝縮
器内に案内する第1の還流液パイプと、上記凝縮器内で
生じた液化窒素の一部を還流液として精留塔内に戻す第
2の還流液パイプを備えたという構成をとる。
In order to achieve the above object, an air separation device according to the present invention includes a liquid air storage tank that stores liquid air supplied from outside the air separation device, a liquid air storage tank that stores liquid air at a bottom portion, and a liquid air in the liquid air that is rectified. A high-pressure lower tower that extracts nitrogen from the upper side as a gas, a liquid air supply pipe that constantly supplies liquid air in the liquid air storage tank to the high-pressure lower tower as raw material air, and leaves oxygen at the bottom in a liquid state for liquid air. A low-pressure upper tower that removes nitrogen as a gas from the upper side, a liquid-air supply pipe that supplies a part of the stored liquid air at the bottom of the high-pressure lower tower to the low-pressure upper tower, and a stored liquid air at the bottom of the high-pressure lower tower Heating means for heating, a condenser for liquefying nitrogen gas provided inside the low-pressure upper column,
A first reflux liquid pipe for guiding a part of the nitrogen gas generated in the high-pressure lower column into the condenser, and a part of the liquefied nitrogen generated in the condenser as a reflux liquid in the rectification column A configuration is provided in which a second reflux liquid pipe for returning is provided.

〔作用〕[Action]

すなわち、この発明の空気分離装置は、従来例のよう
に大気中の空気を原料とするのではなく、当該装置外で
つくられ準備された液体空気を主原料としている。その
ため、夜間等の電気料金がやすい間に1日分の液体空気
をつくつて液体空気貯槽に貯溜しておき、これを主原料
として使用することにより大幅な電気料金のコストダウ
ンを実現することができる。また、原料液体空気を空気
の清浄な場所でつくり、これを液体空気貯槽に貯溜する
ことにより、当該空気分離装置が工場地帯郡中に位置し
ていても、不純物を含有しない原料液体空気を主原料と
して使用することができるようになる。その結果、その
原料液体空気から得られる製品窒素および製品酸素が純
度の高いものになる。また、液体空気貯槽からの液体空
気の供給は常時行われているため、純度の変動が殆どな
く、一定純度の製品窒素および製品酸素を得ることがで
きるようになる。
That is, the air separation device of the present invention does not use air in the atmosphere as a raw material as in the conventional example, but uses liquid air prepared and prepared outside the device as a main raw material. For this reason, liquid electricity for one day is created and stored in a liquid air storage tank while electricity charges are easy at night or the like, and this can be used as a main raw material to realize a significant reduction in electricity cost. it can. In addition, by producing raw material liquid air in a clean air place and storing it in a liquid air storage tank, even if the air separation device is located in a factory zone, raw material liquid air containing no impurities is used as the main raw material air. Can be used as As a result, the product nitrogen and product oxygen obtained from the raw liquid air have high purity. Further, since the supply of the liquid air from the liquid air storage tank is always performed, there is almost no fluctuation in the purity, and it is possible to obtain the product nitrogen and the product oxygen having a certain purity.

つぎに、この発明を実施例にもとづいて詳しく説明す
る。
Next, the present invention will be described in detail based on embodiments.

〔実施例〕〔Example〕

図面はこの発明の一実施例を示している。図におい
て、1は液体空気貯蔵タンクであり、別個に設けられた
液体空気製造装置(図示せず)で製造された液体空気2
が貯蔵されている。この液体空気2は、液体空気供給パ
イプ3を介して連続的に高圧下部塔4に送られるように
なつている。この高圧下部塔4は、底部に液体空気2を
溜め精留作用により窒素を気化させて上部から取出し、
酸素リツチな液体空気2′を底部に残すようにする。5
は大気中の空気を取り込んで圧縮する空気圧縮機であ
り、前後にそれぞれ空気浄化装置5a,5bが設けられてい
る。6は2個1組の吸着筒である。この吸着筒6には内
部にモレキユラーシーブが充填されていて空気圧縮機5
により圧縮された空気中のH2OおよびCO2を吸着除去する
作用をする。7は吸着筒6によりH2O,CO2が吸着除去さ
れた圧縮空気を熱交換器8に送る圧縮空気供給パイプで
ある。9は熱交換器8により低温に冷却された圧縮空気
を高圧下部塔4に送り込むパイプであり、先端が高圧下
部塔4の内側下部側に設けられた加熱用のパイプ9aに連
結されている。上記圧縮空気は、パイプ9aを通過する間
に、高圧下部塔4の底部に溜まっている液体空気2′を
加熱してその一部を気化させる。そして、パイプ10によ
つて、一旦高圧下部塔4の外部に送られたのちパイプ9a
の上方から高圧下部塔4内に送り込まれ高圧下部塔4内
の気化液体空気と混合する。11は高圧下部塔4の上方に
設けられた低圧上部塔で、液体空気を原料とし酸素を液
状で底部に残し窒素を気体として上部から取り出すよう
になつている。そして、これの内部の下部側に凝縮器12
が設けられている。この凝縮器12には、高圧下部塔4の
上部に溜る窒素ガスが第1の還流液パイプ13を介して送
入されるようになつている。上記低圧上部塔11は、その
内部が高圧下部塔4内よりも低圧状態になつており、高
圧下部塔4の底部の液体空気(N250〜70%,O230〜50
%)2′を膨脹弁14付きパイプ15を経由して内部に導入
し、精留作用により窒素分を気化して上昇させ酸素分を
液化して下降させるようになつている。この低圧上部塔
11の底部に溜まる液体酸素の冷熱により、第1の還流液
パイプ13から凝縮器12内に送入された窒素ガスが液化
(凝縮器12内の圧力は下部精留塔4内と同じ高圧になつ
ているため液化が可能)し、その液体窒素の一部が第2
の還流液パイプ16を通つて高圧下部塔4に還流液として
流下供給されるとともに、残りの一部の液体窒素が導入
パイプ16aを経て液体窒素貯槽17に製品液体窒素として
送り込まれ、残りの他の液体窒素が膨脹弁14a付きパイ
プ16bを経由して低圧上部塔11内の上部に導入される。
上記第2の還流液パイプ16を通つて高圧下部塔4に供給
される還流液用の液体窒素は、液体窒素溜め18および複
数の棚部19を経て高圧下部塔4内を下方に流下し、高圧
下部塔4の底部側から上昇する気化液体空気および導入
圧縮空気と向流的に接触し蒸留するようになつている。
この蒸留過程で上記空気(気化液体空気プラス導入圧縮
空気)中の高沸点成分(酸素分)は液化されて高圧下部
塔4の底部に溜り、低沸点成分の窒素ガスが高圧下部塔
4の上部に溜る。また、上記低圧上部塔11内において
は、断熱膨張状態で送られた液体空気2′のうちの窒素
分およびパイプ16bで送られてきた液体窒素が、窒素ガ
スとなつて上部側に溜まり、酸素分は液体酸素10aとな
つて低圧上部塔11の下部側に溜まる。この下部の液体酸
素10aは、導入パイプ20を経て液体酸素貯槽21に製品液
体酸素として送り込まれる。22は低圧上部塔11の中央部
から外部に延びている排出用パイプであり、低圧上部塔
11の中央部に溜まるアルゴン主体の微量不純成分を外部
に取り出す作用をする。23は低圧上部塔11の上部に溜っ
た窒素ガスを製品窒素ガスとして取り出す取出パイプ
で、超定温の窒素ガスを熱交換器8に送り、圧縮空気供
給パイプ7から熱交換器8に送られてくる圧縮空気を冷
却するとともに、上記窒素ガスを常温に加熱させたのち
バツフアタンク24に案内する。この窒素ガスはバツフア
タンク24内に送り込まれ、一時的に貯留されたのち需要
に応じて、圧縮器25の作動により装置外へ導出される。
27は、第1の還流液パイプ13から分岐した取出パイプで
あり、高圧下部塔4の上部から取り出される窒素ガスの
一部が送り込まれるようになつている。上記高圧下部塔
4から送り出される窒素ガスは、パイプ27を通つて熱交
換器8に送られ熱交換器8内を通過する圧縮空気を冷却
するとともに、それ自身が常温に加熱され製品窒素ガス
として取出パイプ28に送り出される。この場合、高圧下
部塔4内および低圧上部塔11内における最上部には、窒
素ガスとともに、沸点の低いHe(−269℃),H2(−253
℃)が溜りやすいため、高圧下部塔4の上端には、He,H
2ガス取り出し用のパイプ26aが連結され、低圧上部塔11
の上端にはHe,H2ガス取り出し用のパイプ26bが連結さ
れ、それぞれ内部のHe,H2ガスを除去できるようになつ
ている。また、第1の還流液パイプ13の端部は、高圧下
部塔4の最上部よりかなり下側に開口し、取出パイプ23
の端部は、低圧上部塔11の最上部よりかなり下側に開口
しており、それぞれHe,H2の混在しない純窒素ガスのみ
を製品窒素ガスとして取り出すようになつている。
The drawings show an embodiment of the present invention. In the figure, reference numeral 1 denotes a liquid air storage tank, which is a liquid air storage tank which is manufactured by a separately provided liquid air manufacturing apparatus (not shown).
Is stored. The liquid air 2 is continuously sent to the high-pressure lower tower 4 via the liquid air supply pipe 3. This high-pressure lower tower 4 stores liquid air 2 at the bottom, vaporizes nitrogen by rectification, and removes it from the top,
The oxygen-rich liquid air 2 'is left at the bottom. 5
Is an air compressor that takes in and compresses air in the atmosphere, and is provided with air purifiers 5a and 5b before and after. Reference numeral 6 denotes a set of two suction cylinders. The adsorption cylinder 6 is filled with a molecular sieve and the air compressor 5
And acts to adsorb and remove H 2 O and CO 2 in the compressed air. Reference numeral 7 denotes a compressed air supply pipe for sending the compressed air from which H 2 O and CO 2 have been removed by adsorption to the heat exchanger 8. Reference numeral 9 denotes a pipe for sending the compressed air cooled to a low temperature by the heat exchanger 8 to the high-pressure lower tower 4, and its tip is connected to a heating pipe 9 a provided on the inner lower side of the high-pressure lower tower 4. While passing through the pipe 9a, the compressed air heats the liquid air 2 'stored at the bottom of the high-pressure lower tower 4 to vaporize a part thereof. Then, once sent to the outside of the high-pressure lower tower 4 by the pipe 10, the pipe 9a
Is fed into the high-pressure lower tower 4 from above and mixed with the vaporized liquid air in the high-pressure lower tower 4. Reference numeral 11 denotes a low-pressure upper tower provided above the high-pressure lower tower 4, which uses liquid air as a raw material, leaves oxygen in a liquid state at the bottom, and removes nitrogen as a gas from the upper part. And on the lower side inside this is a condenser 12
Is provided. Nitrogen gas stored in the upper part of the high-pressure lower tower 4 is supplied to the condenser 12 through a first reflux liquid pipe 13. The low-pressure upper column 11, the interior has decreased to the lower pressure than the pressure lower column within 4, liquid air in the bottom of the high pressure the lower column 4 (N 2 50~70%, O 2 30~50
%) 2 ′ is introduced into the interior through a pipe 15 with an expansion valve 14, and the nitrogen content is vaporized and increased by the rectification action, and the oxygen content is liquefied and lowered. This low pressure upper tower
The nitrogen gas sent into the condenser 12 from the first reflux liquid pipe 13 is liquefied by the cold heat of the liquid oxygen accumulated at the bottom of the column 11 (the pressure in the condenser 12 is the same as that in the lower rectification column 4). Liquefaction is possible, and part of the liquid nitrogen
The liquid nitrogen is supplied to the high-pressure lower tower 4 as a reflux liquid through the reflux liquid pipe 16 while the remaining part of the liquid nitrogen is fed into the liquid nitrogen storage tank 17 through the introduction pipe 16a as product liquid nitrogen, and Of liquid nitrogen is introduced into the upper part of the low-pressure upper tower 11 via a pipe 16b with an expansion valve 14a.
The liquid nitrogen for reflux supplied to the high-pressure lower tower 4 through the second reflux liquid pipe 16 flows down through the high-pressure lower tower 4 via the liquid nitrogen reservoir 18 and the plurality of shelves 19, The vaporized liquid air and the introduced compressed air rising from the bottom side of the high-pressure lower tower 4 are brought into countercurrent contact with each other and distilled.
In this distillation process, the high boiling point component (oxygen component) in the air (vaporized liquid air plus introduced compressed air) is liquefied and accumulates at the bottom of the high pressure lower column 4, and the nitrogen gas of the low boiling point component is transferred to the upper portion of the high pressure lower column 4. Accumulate in Further, in the low-pressure upper tower 11, the nitrogen content of the liquid air 2 'sent in the adiabatic expansion state and the liquid nitrogen sent by the pipe 16b are accumulated at the upper side as nitrogen gas, and The fraction becomes liquid oxygen 10a and accumulates on the lower side of the low-pressure upper column 11. The lower liquid oxygen 10a is sent to the liquid oxygen storage tank 21 via the introduction pipe 20 as product liquid oxygen. Reference numeral 22 denotes a discharge pipe extending from the center of the low-pressure upper tower 11 to the outside,
It acts to take out trace impurities mainly composed of argon accumulated in the central part of 11. Reference numeral 23 denotes a take-out pipe for taking out nitrogen gas accumulated in the upper part of the low-pressure upper tower 11 as product nitrogen gas, sending ultra-constant-temperature nitrogen gas to the heat exchanger 8 and sending it from the compressed air supply pipe 7 to the heat exchanger 8. After cooling the incoming compressed air and heating the nitrogen gas to room temperature, it is guided to the buffer tank 24. The nitrogen gas is fed into a buffer tank 24, temporarily stored, and then discharged out of the apparatus by operating a compressor 25 according to demand.
Reference numeral 27 denotes an extraction pipe branched from the first reflux liquid pipe 13 so that a part of the nitrogen gas extracted from the upper part of the high-pressure lower tower 4 is fed. The nitrogen gas sent from the high-pressure lower tower 4 is sent to the heat exchanger 8 through the pipe 27 to cool the compressed air passing through the heat exchanger 8, and is itself heated to room temperature to produce product nitrogen gas. It is sent out to the extraction pipe 28. In this case, along with nitrogen gas, He (−269 ° C.) and H 2 (−253) having a low boiling point are provided at the uppermost portions in the high-pressure lower column 4 and the low-pressure upper column 11.
℃) easily accumulates, so that He, H
2 The gas extraction pipe 26a is connected to the low pressure upper tower 11
A pipe 26b for taking out He and H 2 gas is connected to the upper end of the pipe, so that the He and H 2 gas inside each can be removed. Further, the end of the first reflux liquid pipe 13 opens considerably below the uppermost part of the high-pressure lower tower 4, and the outlet pipe 23
End of is considerably opened below the top of the low pressure upper column 11, and summer to retrieve He respectively, pure nitrogen gas is not mixed in H 2 only as product nitrogen gas.

この装置は、つぎのようにして窒素ガス,液体窒素お
よび液体酸素を製造する。すなわち、まず、別個に設け
られた液体空気製造装置により液体空気2を製造し、こ
の液体空気2を液体空気貯蔵タンク1内に貯溜してお
く。この場合、液体空気2の製造は、電気料金が安価な
夜間に空気の清浄な場所で行い、24時間の操業に必要な
分量を液体空気貯蔵タンク1内に貯溜しておくことが行
われる。そして、この液体空気2を液体空気供給パイプ
3を介して高圧下部塔4に原料空気として連続的に供給
する。他方、この時、空気圧縮機5により、大気中の空
気を副原料として取り込んで圧縮することが行われる。
この副原料となる圧縮空気は、空気浄化装置5aおよび5b
により不純物を除去された状態で供給される。そして、
圧縮された空気は吸着筒6に送り込まれ、圧縮空気中の
H2OおよびCO2の吸着除去がなされ、さらに熱交換器8で
の冷却がなされたのち加熱用のパイプ9aに送入される。
これにより、高圧下部塔4の底部の貯留液体空気が加熱
されてその一部が気化する。上記加熱用パイプ9aを通つ
た圧縮空気は、パイプ10により一旦高圧下部塔4の下部
から外部に導出されたのち高圧下部塔4の中央部から内
部に投入される。この投入された圧縮空気は、加熱用パ
イプ9aによる加熱によつて気化した空気とともに高圧下
部塔4内を上昇する。この過程で、液体窒素溜め18から
溢溜する液体窒素と向流接触して蒸留され、酸素分が液
化分離され窒素分のみが気体として残る。すなわち、上
記向流接触の過程において、窒素と酸素の沸点の差(大
気圧下では酸素の沸点−183℃,窒素の沸点−196℃)に
より、圧縮空気中の高沸点成分である酸素が液化し、窒
素が気体のまま残る。ついで、この窒素ガスの一部は第
1の還流液パイプ13から低圧上部塔11内の凝縮器12に送
り込まれ、残部が製品窒素ガスとして取出パイプ27から
取り出される。そして、熱交換器8で常温近くまで昇温
され、製品取出パイプ28から製品窒素ガスとして送り出
される。この場合、製品取出パイプ27から取り出される
製品窒素ガスの圧力はかなり高くなつているため、同一
径のパイプでは多量のガスを輸送できるようになるし、
輸送量を一定にしたときには小径のパイプを用いること
ができるようになり設備費の節約を実現しうるようにな
る。他方の、高圧下部塔4の下部に溜つた液体空気2′
は、膨脹弁14付きパイプ15を介して低圧上部塔11に断熱
膨張状態で送り込まれ、精留作用を受ける。これにより
液体空気2′中の酸素分が液化分離され、窒素分が気体
として上部に残る。そして、液化分離され塔底に溜まつ
た液体酸素10aの冷熱により、高圧下部塔4の上部から
凝縮器12に送入された窒素ガスが液化し、その一部が高
圧下部塔4用の還流液となつて第2の還流液パイプ16を
経て高圧下部塔4に戻り、残部が導入パイプ16aを経て
液体窒素貯槽17に製品液体窒素として送り込まれる。な
お、凝縮器12を冷却し終えた液体酸素10aは、導入パイ
プ20を経て液体酸素貯槽21に製品液体酸素として送り込
まれる。また、低圧上部塔11の上部に溜まる窒素ガスは
取出パイプ23からバツフアタンク24に送られたのち、圧
縮器25により外部に送られ、製品窒素ガスとして取り出
される。
This device produces nitrogen gas, liquid nitrogen and liquid oxygen as follows. That is, first, the liquid air 2 is manufactured by a separately provided liquid air manufacturing apparatus, and the liquid air 2 is stored in the liquid air storage tank 1. In this case, the production of the liquid air 2 is performed in a place where the electricity rate is low at night when the air charge is inexpensive, and the amount necessary for the 24-hour operation is stored in the liquid air storage tank 1. Then, the liquid air 2 is continuously supplied as raw material air to the high-pressure lower tower 4 via the liquid air supply pipe 3. On the other hand, at this time, the air compressor 5 takes in air in the atmosphere as an auxiliary material and compresses it.
The compressed air serving as this auxiliary material is supplied to the air purification devices 5a and 5b.
Is supplied in a state where impurities are removed. And
The compressed air is sent to the adsorption column 6, and the compressed air
H 2 O and CO 2 are adsorbed and removed, and after being cooled in the heat exchanger 8, they are sent to a heating pipe 9 a.
Thereby, the stored liquid air at the bottom of the high-pressure lower tower 4 is heated and a part thereof is vaporized. The compressed air that has passed through the heating pipe 9a is once led out of the lower part of the high-pressure lower tower 4 to the outside by the pipe 10, and is then injected into the high-pressure lower tower 4 from the center. The supplied compressed air rises in the high-pressure lower tower 4 together with air vaporized by heating by the heating pipe 9a. In this process, the liquid nitrogen overflowing from the liquid nitrogen reservoir 18 is counter-currently contacted and distilled, whereby the oxygen content is liquefied and separated, leaving only the nitrogen content as a gas. That is, in the process of the countercurrent contact, oxygen, which is a high boiling component in the compressed air, is liquefied due to the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen -183 ° C under atmospheric pressure, boiling point of nitrogen -196 ° C). And the nitrogen remains gaseous. Next, a part of this nitrogen gas is sent from the first reflux liquid pipe 13 to the condenser 12 in the low-pressure upper tower 11, and the remainder is taken out from the extraction pipe 27 as product nitrogen gas. Then, the temperature is raised to near normal temperature in the heat exchanger 8, and is sent out as product nitrogen gas from the product extraction pipe 28. In this case, since the pressure of the product nitrogen gas taken out from the product take-out pipe 27 is considerably high, a large amount of gas can be transported with a pipe having the same diameter,
When the transport amount is fixed, it becomes possible to use a small-diameter pipe, so that equipment cost can be reduced. On the other hand, the liquid air 2 'collected at the lower part of the high-pressure lower tower 4
Is sent to the low-pressure upper tower 11 through a pipe 15 with an expansion valve 14 in an adiabatic expansion state, and is subjected to a rectification action. As a result, the oxygen content in the liquid air 2 'is liquefied and separated, and the nitrogen content remains as a gas at the top. The nitrogen gas sent from the upper part of the high-pressure lower tower 4 to the condenser 12 is liquefied by the cold heat of the liquid oxygen 10a that has been liquefied and separated and collected at the bottom of the tower. The liquid is returned to the high pressure lower tower 4 via the second reflux liquid pipe 16 via the second reflux liquid pipe 16, and the remainder is sent to the liquid nitrogen storage tank 17 via the introduction pipe 16a as product liquid nitrogen. The liquid oxygen 10a that has finished cooling the condenser 12 is sent to the liquid oxygen storage tank 21 via the introduction pipe 20 as product liquid oxygen. Further, the nitrogen gas accumulated in the upper part of the low-pressure upper tower 11 is sent from an extraction pipe 23 to a buffer tank 24, and then sent outside by a compressor 25 to be extracted as product nitrogen gas.

このように、この空気分離装置は、空気をそのまま原
料とするのではなく、液体空気貯蔵タンク1を設け、別
個に設けられた装置でつくられる液体空気をそこに貯溜
し、これを主原料としている。そのため、夜間等の電気
料金がやすい間に1日分の原料液体空気をつくり、これ
を液体空気貯蔵タンク1に貯溜することにより大幅な電
気料金のコストダウンが図れるようになる。また、主原
料となる原料液体空気を空気の清浄な場所でつくること
により、当該装置が例え汚染地帯に立設されていても、
主原料が不純物を含有しないものになる。その結果、得
られる製品窒素および製品酸素が純度の高いものにな
る。さらに、主原料となる原料液体空気に不純物が少な
いため、その不純物が空気分離装置等の汚染させる等の
悪影響が生じない。
As described above, this air separation device does not use air as a raw material, but provides a liquid air storage tank 1 and stores therein liquid air produced by a separately provided device, and uses this as a main raw material. I have. Therefore, one day's worth of raw material liquid air is produced while the electricity charge is easy at night or the like, and stored in the liquid air storage tank 1, so that the cost of the electricity charge can be significantly reduced. In addition, by making the raw material liquid air which is the main raw material in a place where the air is clean, even if the apparatus is set up in a contaminated area,
The main raw material does not contain impurities. As a result, the resulting product nitrogen and product oxygen are of high purity. Further, since the raw material liquid air serving as the main raw material has few impurities, the impurities do not cause adverse effects such as contamination of an air separation device or the like.

なお、上記実施例において、取出パイプ27および導入
パイプ16aに開閉弁を設けてもよい。これにより、窒素
ガスおよび液体窒素を同時に得るだけでなく、窒素ガス
だけを取り出したり、液体窒素だけを取り出したりする
ことができるようになる。また、高圧下部塔4および低
圧上部塔11内に開閉バルブ付の液面計を設け、その液面
計により、液体空気2′および液体酸素10aの量を制御
できるようにしてもよい。これにより、製品窒素ガス等
の需要量に変動が生じてもバルブの開閉により原料の供
給を制御でき、上記需要量の変動に迅速に対応できるよ
うになる。
In the above embodiment, an opening / closing valve may be provided on the extraction pipe 27 and the introduction pipe 16a. This makes it possible not only to obtain nitrogen gas and liquid nitrogen at the same time, but also to extract only nitrogen gas or only liquid nitrogen. Further, a liquid level gauge with an open / close valve may be provided in the high-pressure lower tower 4 and the low-pressure upper tower 11, and the levels of the liquid air 2 'and the liquid oxygen 10a may be controlled by the liquid level gauge. Thus, even if the demand amount of the product nitrogen gas or the like fluctuates, the supply of the raw material can be controlled by opening and closing the valve, and the fluctuation of the demand amount can be quickly responded.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の空気分離装置は、当該装置
外から供給された液体空気を貯溜するための液体空気貯
槽を備え、この液体空気を主原料としている。そのた
め、夜間等の電気料金が安い間に1日分の原料液体空気
をつくつておき、これを原料とするにより製品の大幅な
コストダウンを実現することができる。また、主原料と
なる原料液体空気を空気の清浄な場所でつくることによ
り、当該空気分離装置が大気の汚染された工場地帯に位
置しても、原料中の不純物が少なくなり、純度の高い製
品窒素および製品窒素を得ることができるようになる。
また、液体空気貯槽からの液体空気の供給は常時行われ
ているため、純度の変動が殆どなく、一定純度の製品窒
素および製品酸素を得ることができるようになる。
As described above, the air separation device of the present invention includes the liquid air storage tank for storing the liquid air supplied from outside the device, and uses the liquid air as a main raw material. For this reason, one day's worth of raw material liquid air is prepared while electricity rates are low, such as at night, and this can be used as a raw material to achieve a significant cost reduction of the product. In addition, by producing the raw material liquid air, which is the main raw material, in a place where the air is clean, even if the air separation device is located in a factory zone where the air is polluted, impurities in the raw material are reduced, and a product of high purity is obtained. Nitrogen and product nitrogen can be obtained.
Further, since the supply of the liquid air from the liquid air storage tank is always performed, there is almost no fluctuation in the purity, and it is possible to obtain the product nitrogen and the product oxygen having a certain purity.

【図面の簡単な説明】[Brief description of the drawings]

図面はこの発明の一実施例の構成図である。 1……液体空気貯蔵タンク、2……液体空気、4……高
圧下部塔、9a,15……パイプ、11……低圧上部塔、12…
…凝縮器、13……第1の還流液パイプ、16……第2の還
流液パイプ
The drawing is a configuration diagram of one embodiment of the present invention. 1 ... Liquid air storage tank, 2 ... Liquid air, 4 ... High pressure lower tower, 9a, 15 ... Pipe, 11 ... Low pressure upper tower, 12 ...
... condenser, 13 ... first reflux liquid pipe, 16 ... second reflux liquid pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】当該空気分離装置外から供給された液体空
気を貯溜する液体空気貯槽と、液体空気を底部に溜め精
留作用によりその液体空気中の窒素を気体として上部側
から取り出す高圧下部塔と、上記液体空気貯槽の液体空
気を原料空気として上記高圧下部塔に常時供給する液体
空気供給パイプと、液体空気を対象とし酸素を液状で底
部に残し窒素を気体として上部側から取り出す低圧上部
塔と、上記高圧下部塔の底部の貯溜液体空気の一部を上
記低圧上部塔に供給する液体空気供給パイプと、上記高
圧下部塔の底部の貯溜液体空気を加熱する加熱手段と、
上記低圧上部塔の内部に設けられる窒素ガス液化用の凝
縮器と、上記高圧下部塔内で生成した窒素ガスの一部を
上記凝縮器内に案内する第1の還流液パイプと、上記凝
縮器内で生じた液化窒素の一部を還流液として精留塔内
に戻す第2の還流液パイプを備えたことを特徴とする空
気分離装置。
1. A liquid air storage tank for storing liquid air supplied from outside the air separation device, and a high-pressure lower tower for storing liquid air at the bottom and extracting nitrogen in the liquid air as gas from the upper side by rectification. A liquid-air supply pipe that constantly supplies liquid air in the liquid-air storage tank as raw material air to the high-pressure lower tower, and a low-pressure upper tower that targets liquid air, leaves oxygen at the bottom in a liquid state, and removes nitrogen as a gas from the upper side. A liquid air supply pipe for supplying a part of the stored liquid air at the bottom of the high pressure lower tower to the low pressure upper tower, and heating means for heating the stored liquid air at the bottom of the high pressure lower tower,
A condenser for liquefying nitrogen gas provided inside the lower pressure upper tower, a first reflux liquid pipe for guiding a part of the nitrogen gas generated in the higher pressure lower tower into the condenser, and the condenser An air separation device comprising a second reflux liquid pipe for returning a part of the liquefied nitrogen generated in the rectification tower as a reflux liquid into the rectification column.
JP63251373A 1988-10-05 1988-10-05 Air separation equipment Expired - Fee Related JP2703577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251373A JP2703577B2 (en) 1988-10-05 1988-10-05 Air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251373A JP2703577B2 (en) 1988-10-05 1988-10-05 Air separation equipment

Publications (2)

Publication Number Publication Date
JPH02101373A JPH02101373A (en) 1990-04-13
JP2703577B2 true JP2703577B2 (en) 1998-01-26

Family

ID=17221868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251373A Expired - Fee Related JP2703577B2 (en) 1988-10-05 1988-10-05 Air separation equipment

Country Status (1)

Country Link
JP (1) JP2703577B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005894B2 (en) 2005-06-23 2012-08-22 エア・ウォーター株式会社 Nitrogen generation method and apparatus used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285373A (en) * 1985-06-10 1986-12-16 金子 恭三 Method of chilling and separating air by utilizing cold heat
JPH0814459B2 (en) * 1987-01-27 1996-02-14 日本酸素株式会社 Air liquefaction separation method
JPS63220081A (en) * 1987-03-06 1988-09-13 株式会社 大分サンソセンタ− Air liquefying separating method and air liquefying separating device corresponding to demand fluctuation of oxygen and nitrogen

Also Published As

Publication number Publication date
JPH02101373A (en) 1990-04-13

Similar Documents

Publication Publication Date Title
CN105008272B (en) Argon production method and device
AU669998B2 (en) Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
CN1043196A (en) Air separating method and device
JP2001263935A (en) Method for separating air and air separator using the same
JPH0820178B2 (en) Low temperature air separation process for producing carbon monoxide free nitrogen
AU644962B2 (en) Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
CN106595221A (en) Oxygen production system and oxygen production method
CN102192637B (en) Air separation method and apparatus
TWI628401B (en) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
JP5005894B2 (en) Nitrogen generation method and apparatus used therefor
US6305191B1 (en) Separation of air
CN206695507U (en) Health care gas integrated form is produced and feedway
US6330812B2 (en) Method and apparatus for producing nitrogen from air by cryogenic distillation
US5626036A (en) Process for the production of oxygen by cryogenic distillation
JP2703577B2 (en) Air separation equipment
JP2006284075A (en) Air separating method and its device
JP5642923B2 (en) Air separation method
JP3667875B2 (en) Air liquefaction separation method
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JPH08296961A (en) Air separation method and apparatus used therefor
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JP3539709B2 (en) Air separation equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees