JP2700978B2 - Electronic component and method of manufacturing the same - Google Patents
Electronic component and method of manufacturing the sameInfo
- Publication number
- JP2700978B2 JP2700978B2 JP4245272A JP24527292A JP2700978B2 JP 2700978 B2 JP2700978 B2 JP 2700978B2 JP 4245272 A JP4245272 A JP 4245272A JP 24527292 A JP24527292 A JP 24527292A JP 2700978 B2 JP2700978 B2 JP 2700978B2
- Authority
- JP
- Japan
- Prior art keywords
- electronic component
- pores
- sintered
- resin
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Capacitors (AREA)
- Details Of Resistors (AREA)
- Insulating Of Coils (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Coils Or Transformers For Communication (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は電子部品に関し、特にチ
ップインダクタ,チップコンデンサ,LC複合チップ部
品等のチップ状の電子部品及びその製造方法に関する。
【0002】
【従来の技術】小型電子部品(チップインダクタ,チッ
プコンデンサ等と呼ばれている)は、誘電体中に多数の
膜状電極を配置したり、電気絶縁性磁性体(フェライト
等)の内部にコイル状の導体を配置した構造を有し、一
般にこれらの電子部品は印刷法などの積層法により積層
体として製作された後、高温焼結により一体焼結体とさ
れ、この焼結体の表面に露出させた引出導体端に外部端
子としての導電ペーストを塗布焼付けて完成品とする。
【0003】このような電子部品は、プリント配線基板
へ搭載され、外部端子を所定のプリント配線部分へ半田
付けされるが、焼付けられたままの外部端子は半田付け
の際に半田食われ現象(外部端子を構成するAg,Pd
又はその合金が溶触半田浴中へ拡散移行して、電極切れ
や部分薄層の発生により半田の乗りが悪くなる現象)が
生じるため、最近では外部端子に電気めっきを施した電
子部品に対する要求が強い。
【0004】
【発明が解決しようとする課題】ところが、チップ部品
に電気めっきを施すと、磁性体や誘電体などの露出表面
に存在する微小な細孔に電気めっきの際の電解液が侵入
し、水洗後にも少量残留して電子部品の電気特性(Q
等)を劣化させる原因となった。
【0005】また、外部端子は少なくとも2個所に形成
され、これらが半田によりプリント配線基板の導体へ接
合されるが、半田は冷却時に収縮して電子部品に応力を
加え、電子部品の定数L,C等に影響を与え、特に積層
−焼結型のインダクタまたはトランスの場合にはこの応
力による歪が磁歪現象を引き起こし、そのインダクタン
スが元の値から3%も変動することがある。
【0006】さらに、このような半田付けを行なう場合
に、前もって電子部品の底の小個所に接着剤を貼着しこ
の電子部品をプリント配線基板へ仮着けしておく方法が
用いられるが、この場合に接着剤が電子部品の周辺の大
部分を構成する焼結体の細孔へ侵入して接着不良を起こ
し、電子部品が脱落してしまう現象もしばしば見られ、
工程の能率化、自動化の障害となっていた。上記2つの
点は電気メッキの有無に拘りなく存在する問題点であっ
た。
【0007】そこで、本発明は、電解液、半田、接着剤
の侵入を防止して電気特性の劣化、接着性の低下を回避
でき、また、半田を使用する場合でも電気特性の変化を
無くすことができる電子部品及びその製造方法を提供す
ることを目的とする。
【0008】
【課題を解決するための手段】本発明の請求項1の構成
は、焼結磁性体、誘電体等のセラミック表面部分を有
し、かつ、内部導体、電極等の引出端に接続する薄膜状
外部導電端子を具備した電子部品において、前記セラミ
ック表面部分に存在する全ての細孔にシリコーン樹脂及
びフェノール樹脂より選択した合成樹脂が含浸されてい
るものである。
【0009】また、本発明の請求項2の構成は、焼結磁
性体,誘電体等の焼結セラミック表面部を有し且つ内部
導体,電極等の引出端が前記焼結セラミックの側面に導
出された電子部品に、真空中でセラミック表面部分の細
孔へシリコーン樹脂及びフェノール樹脂より選択した合
成樹脂を含浸させ、次いで表面の合成樹脂を洗浄除去
し、乾燥後樹脂を硬化する工程を含むことを特徴とする
ものである。
【0010】また、本発明の請求項3の構成は、前記電
子部品は積層型のチップインダクタであることを特徴と
するものである。
【0011】
【作用】本発明の電子部品は、焼結磁性体、誘電体等の
セラミック表面部分を形成する細孔に合成樹脂を含浸し
たものであるから、セラミック表面部分の全ての微細な
細孔はシリコーン等の合成樹脂で塞がれ、他方、細孔を
除く表面部分は露出状態のままとなる。
【0012】この結果、電子部品の引出端に接続した外
部導電端子に対して電気メッキを行なって電極を形成す
る場合又は外部端子の半田付けを行う場合でも、電解液
又は半田がセラミック表面部分から細孔を経て内部に浸
透して電気特性を劣化させる虞れがなく、また、上記電
極を形成する面以外の面を利用して接着剤を使用する場
合でも接着剤がセラミック表面部分から細孔を経て内部
に浸透し接着性を損なう事態を回避できる。また、セラ
ミック表面部分の微細な細孔はシリコーン等の合成樹脂
で塞がれていることから、半田の冷却により生じる電子
部品内の応力の減少を図ることができ、特性変化を無く
すことができる。
【0013】また、本発明の製造方法によれば、チップ
部品表面の微細な多孔にはシリコーン等の合成樹脂が含
浸されて細孔を塞ぐ一方で、細孔を除く表面部分は露出
させておくことができる。このため、電子部品の引出端
に接する外部端子の下地に対して電気メッキを行なう場
合には電解液が焼結体表面から内部に浸透して電気特性
を劣化させるおそれがなく、また半田により生じる電子
部品内の応力が減少し、さらに仮着用の接着剤の接着効
果が高く保てることになった。
【0014】
【実施例】以下、本発明の実施例を詳細に説明する。
【0015】図1に示す電子部品は、焼結磁性体、誘電
体等のセラミック表面部分を有する焼結体4と、焼結体
4のセラミック表面部分の細孔にシリコーン樹脂及びフ
ェノール樹脂から選ばれる合成樹脂を含浸させたもので
あり、この焼結体4の両側部に電極13が形成されてい
る。
【0016】次に、図1に示す電子部品の製造方法につ
いて、図2乃至図5を参照して説明する。
【0017】まず、図2のように焼結型の小型チップ1
を用意する。この小型チップ1は、コンデンサならば電
極と誘電体ペースト層との交互積層体を焼結したもの、
インダクタならばコイル形成用導体と磁性フェライト粉
末ペースト層との交互積層体とを積層したものであり、
他に焼結型抵抗器などがある。
【0018】いずれにしても、小型チップ1は、典型的
には図2に示すように直方体で側辺の少なくとも2個所
に内部導体、電極等を形成する導体を内部から引出すと
ともに、外周面の大部分が焼結体4のセラミック表面部
分となっている。
【0019】即ち、図3に示すように、ビーカ5にシリ
コーン樹脂2:溶剤(ガソリン)8の割合の混合液を入
れ、その中に多数の小型チップ1(下地の有無に拘らな
い)を浸漬し、これをデシケータ6内に封じ、トラップ
7を介して真空ポンプ8で吸引する。約30分間後に真
空含浸を終了して小型チップ1をビーカ5から取出し、
ガソリンで十分に表面洗浄する。約100℃の高温で約
30分乾燥すると全ての細孔にシリコーン樹脂の含浸し
た小型チップ1が得られる。シリコーン樹脂の代りに、
フェノール樹脂を用いることもできる。
【0020】この小型チップ1においては、焼結体4の
表面の全ての細孔にシリコーン樹脂が侵入してこれらを
塞いでいるが、他の表面は露出されている。また必要に
応じてAgペースト等をはけ塗りして図4に示す電極下
地9とする。
【0021】次に、この小型チップ1の電極下地9の上
に所定の電気メッキを行なう。即ち、図5に示すよう
に、所定の電解液を容れた電解槽10に、周面を金網で
構成した回転バレル11を浸し、その中に多数の小型チ
ップ1を収容し、バレル11を回転させながら金網と中
心導体との間に通電する。また小型チップ1の浮遊化の
ためにガス源12から電解液中にガスを吹込む。このよ
うにして電極下地9の上には所定の外部端子13として
のメッキ層が形成される。例えば、銀を下地としてその
上に銅,ニッケル及び錫をこの順に形成するには3つの
電解槽を用いてこの順にメッキを行なえば良い。
【0022】以上のようにして図1に示す電子部品を得
ることができる。尚、図1に示す電子部品は、見易くす
るために誇張されているが、実際はもっと薄い。
【0023】この電子部品は、焼結体4のセラミック表
面部分の全ての細孔がシリコーンで塞がれているから電
解液が部品内部へ侵入する虞れがなく水洗によって電解
液をきれいに除去することができる。
【0024】上述した本実施例の技術を、磁性フェライ
ト層とコイル用印刷導体との交互積層体の焼結体に対し
て実行したところ、経時的なQの劣化は全く見られず、
またインダクタンスの低下が従来最大数%あったもの
が、本実施例では全く見られなかった。
【0025】この理由は定かではないが、セラミック表
面部分の細孔へシリコーン樹脂を含浸させることによ
り、歪が生じにくくなったのではないかと推定される。
また、化学的な作用が減るためとも推定される。いずれ
にせよ、本実施例により、電子部品の電気的特性を大幅
に改善できた。
【0026】また、上述した電子部品を接着剤でプリン
ト配線基板へ仮着けしたところ、接着性の低下は全く見
られなかった。1つの実験例ではシリコーン樹脂を含浸
をしない場合には、0.2乃至2kgの力で電子部品が
基板から脱落したのに対し、シリコーン樹脂を含浸した
同一構成,同一寸法の電子部品では5乃至7kgの力で
始めて脱落が生じた。
【0027】さらに、半田付の前後のインダクタンスを
測定した例では、シリコーン樹脂の含浸の無いものは約
3%のインダクタンス変化があったのに対し、シリコー
ン術を含浸した同じ寸法,同じ構成のインダクターでは
1%程度のインダクタンス変化しか生じなかった。
【0028】本発明は、上述した実施例に限定されるも
のではなく、その要旨の範囲内で種々の変形が可能であ
る。
【0029】本発明が適用される電子部品は、多少とも
電解液が付着し易いセラミックの表面が少なくとも一部
に露出しているものなら何でも良い。例えば。誘電体や
磁性体は通常の意味では多孔質でなくても表面に付着し
た電解液を水洗で除去し難い場合には本発明を適用する
と非常な効果が得られる。
【0030】また、電気メッキを施さない場合に、接着
性を向上し、応力の緩和を図る場合も同様である。尚、
応力の緩和は、小型チップ両端の半田が収縮したときに
小型チップに加わる力が充填された樹脂によって一部支
えられるため焼結体に加わる力が減少するためである。
【0031】
【発明の効果】以上説明した本発明によれば、上述した
構成としたので、セラミック表面部分の全ての細孔に合
成樹脂を含浸したことによって、電解液、半田、接着剤
の侵入を防止して電気特性の劣化、接着性の低下を回避
でき、また、半田を使用する場合でも電気特性の変化を
無くすことが可能な電子部品及びその製造方法を提供す
ることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component, and more particularly to a chip-shaped electronic component such as a chip inductor, a chip capacitor, and an LC composite chip component, and a method of manufacturing the same. 2. Description of the Related Art Small electronic components (referred to as chip inductors, chip capacitors, etc.) have a large number of film-like electrodes arranged in a dielectric or are made of an electrically insulating magnetic material (eg, ferrite). It has a structure in which coil-shaped conductors are arranged inside. Generally, these electronic components are manufactured as a laminate by a lamination method such as a printing method, and then are sintered as a single body by high-temperature sintering. A conductive paste as an external terminal is applied to the end of the lead conductor exposed on the surface of the substrate and baked to obtain a finished product. [0003] Such an electronic component is mounted on a printed wiring board, and external terminals are soldered to predetermined printed wiring portions. However, the external terminals that have been baked are eroded by soldering during soldering. Ag, Pd constituting the external terminal
Or the diffusion of the alloy into the contact solder bath to cause poor soldering due to the occurrence of electrode breakage or partial thin layer). Recently, there has been a demand for electronic components with external terminals electroplated. strong. However, when a chip component is subjected to electroplating, an electrolytic solution at the time of electroplating penetrates into minute pores existing on an exposed surface of a magnetic material or a dielectric material. , A small amount of residue remains even after washing with water.
Etc.). External terminals are formed in at least two places, and these are joined to the conductor of the printed wiring board by soldering. The solder shrinks upon cooling to apply stress to the electronic component, and the constants L, In particular, in the case of a laminated-sintered type inductor or transformer, distortion due to this stress causes a magnetostriction phenomenon, and its inductance may fluctuate by 3% from the original value. Further, when such soldering is performed, a method of pasting an adhesive to a small portion at the bottom of the electronic component in advance and temporarily attaching the electronic component to a printed wiring board is used. In some cases, a phenomenon in which the adhesive penetrates into pores of the sintered body that constitutes most of the periphery of the electronic component and causes poor adhesion, and the phenomenon that the electronic component falls off is often seen.
This hindered the efficiency and automation of the process. The above two points are problems that exist regardless of the presence or absence of electroplating. Therefore, the present invention can prevent the deterioration of the electrical characteristics and the adhesiveness by preventing the intrusion of the electrolytic solution, the solder and the adhesive, and eliminate the change in the electrical characteristics even when the solder is used. And a method for manufacturing the same. According to a first aspect of the present invention, there is provided a structure having a ceramic surface portion such as a sintered magnetic material or a dielectric material, and connected to a lead end of an internal conductor, an electrode or the like. In an electronic component provided with a thin film-shaped external conductive terminal, all pores present on the ceramic surface portion are covered with a silicone resin.
And a synthetic resin selected from phenolic resins . According to a second aspect of the present invention, there is provided a sintered ceramic material such as a sintered magnetic material or a dielectric material, and a leading end of an internal conductor, an electrode or the like is led out to a side surface of the sintered ceramic. Including a step of impregnating the pores of the ceramic surface portion with a synthetic resin selected from a silicone resin and a phenol resin in a vacuum, vacuum-cleaning and removing the synthetic resin on the surface, and then drying and curing the resin. It is characterized by the following. In a third aspect of the present invention, the electronic component is a multilayer chip inductor. The electronic component according to the present invention is formed by impregnating a synthetic resin into pores forming a ceramic surface portion such as a sintered magnetic material and a dielectric material. The pores are closed with a synthetic resin such as silicone, while the surface portion excluding the pores remains exposed. As a result, even when the external conductive terminal connected to the lead-out end of the electronic component is electroplated to form an electrode or when the external terminal is soldered, the electrolytic solution or the solder is removed from the ceramic surface portion. There is no danger of infiltrating into the interior through the pores and deteriorating the electrical characteristics.In addition, even when the adhesive is used by using a surface other than the surface on which the electrodes are formed, the adhesive is not allowed to pass through the pores from the ceramic surface portion. This can avoid the situation of penetrating into the interior through the process and impairing the adhesiveness. In addition, since the fine pores on the ceramic surface are closed with a synthetic resin such as silicone, the stress in the electronic component caused by cooling of the solder can be reduced, and the characteristic change can be eliminated. . Further, according to the manufacturing method of the present invention, fine pores on the surface of the chip component are impregnated with a synthetic resin such as silicone to close the pores, while the surface portion excluding the pores is exposed. be able to. Therefore, when electroplating is performed on the base of the external terminal that is in contact with the lead end of the electronic component, there is no possibility that the electrolytic solution permeates from the surface of the sintered body to the inside to deteriorate the electric characteristics, and is generated by soldering. The stress in the electronic component was reduced, and the adhesive effect of the temporarily worn adhesive could be kept high. Embodiments of the present invention will be described below in detail. The electronic component shown in FIG. 1 has a sintered body 4 having a ceramic surface portion such as a sintered magnetic material or a dielectric, and a pore formed in the ceramic surface portion of the sintered body 4 selected from a silicone resin and a phenol resin. The electrodes 13 are formed on both sides of the sintered body 4. Next, a method of manufacturing the electronic component shown in FIG. 1 will be described with reference to FIGS. First, as shown in FIG.
Prepare This small chip 1 is a capacitor obtained by sintering an alternate laminate of electrodes and a dielectric paste layer in the case of a capacitor,
If it is an inductor, it is a laminate of a coil forming conductor and an alternating laminate of magnetic ferrite powder paste layers,
Another example is a sintered resistor. In any case, as shown in FIG. 2, the small chip 1 typically draws a conductor forming an internal conductor, an electrode, and the like from at least two places on the side of the rectangular parallelepiped, and also has a small outer peripheral surface. Most of the surface is the ceramic surface portion of the sintered body 4. That is, as shown in FIG. 3, a mixed solution having a ratio of silicone resin 2: solvent (gasoline) 8 is put in a beaker 5, and a large number of small chips 1 (with or without a base) are immersed therein. Then, this is sealed in a desiccator 6 and sucked by a vacuum pump 8 through a trap 7. After about 30 minutes, the vacuum impregnation is completed, and the small chip 1 is removed from the beaker 5,
Clean the surface thoroughly with gasoline. After drying at a high temperature of about 100 ° C. for about 30 minutes, a small chip 1 in which all pores are impregnated with a silicone resin is obtained. Instead of silicone resin,
Phenolic resins can also be used. In the small chip 1, the silicone resin penetrates all pores on the surface of the sintered body 4 to block them, but the other surfaces are exposed. Further, if necessary, an Ag paste or the like is brush-coated to form the electrode base 9 shown in FIG. Next, predetermined electroplating is performed on the electrode base 9 of the small chip 1. That is, as shown in FIG. 5, a rotary barrel 11 having a peripheral surface formed of a wire mesh is immersed in an electrolytic tank 10 containing a predetermined electrolytic solution, a large number of small chips 1 are accommodated therein, and the barrel 11 is rotated. Electricity is applied between the wire mesh and the center conductor while the electric current is being applied. Further, a gas is blown from the gas source 12 into the electrolyte for floating the small chip 1. In this way, a plating layer as a predetermined external terminal 13 is formed on the electrode base 9. For example, to form copper, nickel, and tin in this order on a silver base, plating may be performed in this order using three electrolytic cells. As described above, the electronic component shown in FIG. 1 can be obtained. Although the electronic components shown in FIG. 1 are exaggerated for easy viewing, they are actually thinner. In this electronic component, since all pores on the ceramic surface portion of the sintered body 4 are closed with silicone, there is no danger that the electrolytic solution enters the inside of the component, and the electrolytic solution is removed by washing with water. be able to. When the above-described technique of this embodiment was applied to a sintered body of an alternate laminate of a magnetic ferrite layer and a printed conductor for a coil, no deterioration of Q with time was observed.
In the present embodiment, the decrease in inductance was several percent of the conventional maximum, but was not observed at all in this embodiment. Although the reason for this is not clear, it is presumed that the impregnation of the pores on the ceramic surface with the silicone resin has made it difficult for distortion to occur.
It is also presumed that the chemical action is reduced. In any case, according to the present embodiment, the electrical characteristics of the electronic component were significantly improved. When the above-mentioned electronic component was temporarily attached to a printed wiring board with an adhesive, no decrease in adhesiveness was observed. In one experimental example, when the silicone resin was not impregnated, the electronic component fell off the substrate with a force of 0.2 to 2 kg, whereas the electronic component impregnated with the silicone resin and having the same configuration and the same dimensions had a size of 5 to 5 kg. Dropping occurred only with a force of 7 kg. Further, in the example of measuring the inductance before and after soldering, the inductor without the impregnation of the silicone resin had an inductance change of about 3%, while the inductor of the same dimensions and the same configuration impregnated with the silicone technique. In this case, only an inductance change of about 1% occurred. The present invention is not limited to the embodiment described above, and various modifications can be made within the scope of the invention. The electronic component to which the present invention is applied may be any electronic component as long as the surface of the ceramic to which the electrolyte is more or less easily adhered is at least partially exposed. For example. Even if the dielectric or magnetic material is not porous in the usual sense, if the electrolyte attached to the surface is difficult to remove by washing with water, the present invention can provide a remarkable effect. The same applies to the case where the electroplating is not performed and the adhesion is improved and the stress is reduced. still,
The relaxation of the stress is because the force applied to the small chip when the solder at both ends of the small chip contracts is partially supported by the filled resin, and the force applied to the sintered body decreases. According to the present invention described above, since the above-described structure is employed, all the pores on the ceramic surface are impregnated with the synthetic resin, so that the electrolyte, the solder and the adhesive can enter. Thus, it is possible to provide an electronic component and a method for manufacturing the same, which can prevent deterioration of electrical characteristics and adhesiveness by preventing the occurrence of electrical characteristics, and can eliminate changes in electrical characteristics even when solder is used.
【図面の簡単な説明】
【図1】本発明の電子部品の実施例を示す正面図
【図2】本実施例における電子部品半成品の断面図
【図3】シリコーン樹脂含浸方法の説明図
【図4】シリコーン樹脂の含浸終了後の小型チップの正
面図
【図5】電気メッキ工程を示す断面図
【符号の説明】
1 小型チップ
2 導体引出端
3 導体引出端
4 焼結体
13 外部端子BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing an embodiment of an electronic component according to the present invention. FIG. 2 is a cross-sectional view of a semi-finished electronic component in the present embodiment. FIG. 4 Front view of small chip after completion of impregnation with silicone resin [FIG. 5] Cross-sectional view showing electroplating process [Description of symbols] 1 Small chip 2 Conductor leading end 3 Conductor leading end 4 Sintered body 13 External terminal
Claims (1)
し、かつ、内部導体、電極等の引出端に接続する薄膜状
外部導電端子を具備した電子部品において、前記セラミ
ック表面部分に存在する全ての細孔にシリコーン樹脂及
びフェノール樹脂より選択した合成樹脂が含浸されてい
ることを特徴とする電子部品。 2.焼結磁性体,誘電体等の焼結セラミック表面部を有
し且つ内部導体,電極等の引出端が前記焼結セラミック
の側面に導出された電子部品に、真空中でセラミック表
面部分の細孔へシリコーン樹脂及びフェノール樹脂より
選択した合成樹脂を含浸させ、次いで表面の合成樹脂を
洗浄除去し、乾燥後樹脂を硬化する工程を含むことを特
徴とする電子部品の製造方法。 3.前記電子部品は積層型のチップインダクタであるこ
とを特徴とする請求項2記載の電子部品の製造方法。(57) [Claims] In an electronic component having a ceramic surface portion such as a sintered magnetic material and a dielectric, and having a thin film-shaped external conductive terminal connected to a lead end of an internal conductor, an electrode, etc. Silicone resin and pores
An electronic component characterized by being impregnated with a synthetic resin selected from phenolic resins and phenolic resins . 2. An electronic component having a sintered ceramic surface such as a sintered magnetic material or a dielectric, and having leading ends of internal conductors, electrodes, etc. led out to the side surface of the sintered ceramic, has pores formed on the ceramic surface in a vacuum. A method of manufacturing an electronic component, comprising: impregnating a synthetic resin selected from a silicone resin and a phenol resin, washing and removing the synthetic resin on the surface, and drying and curing the resin. 3. 3. The method according to claim 2, wherein the electronic component is a multilayer chip inductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4245272A JP2700978B2 (en) | 1992-09-14 | 1992-09-14 | Electronic component and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4245272A JP2700978B2 (en) | 1992-09-14 | 1992-09-14 | Electronic component and method of manufacturing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12106783A Division JPS6014416A (en) | 1983-07-05 | 1983-07-05 | Manufacture of electronic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07240334A JPH07240334A (en) | 1995-09-12 |
JP2700978B2 true JP2700978B2 (en) | 1998-01-21 |
Family
ID=17131216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4245272A Expired - Lifetime JP2700978B2 (en) | 1992-09-14 | 1992-09-14 | Electronic component and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2700978B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8009012B2 (en) | 2007-07-24 | 2011-08-30 | Tdk Corporation | Stacked electronic part and method of manufacturing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100544908B1 (en) | 2002-04-01 | 2006-01-24 | 가부시키가이샤 무라타 세이사쿠쇼 | Ceramic electronic component and method for manufacturing the same |
JP3870936B2 (en) | 2003-07-14 | 2007-01-24 | 株式会社村田製作所 | Multilayer ceramic electronic components |
JP5188390B2 (en) * | 2006-03-15 | 2013-04-24 | 株式会社村田製作所 | Multilayer electronic component and manufacturing method thereof |
JP4992776B2 (en) * | 2007-07-24 | 2012-08-08 | Tdk株式会社 | Multilayer electronic component and manufacturing method thereof |
JP5038950B2 (en) * | 2007-07-24 | 2012-10-03 | Tdk株式会社 | Multilayer electronic component and manufacturing method thereof |
WO2009133766A1 (en) * | 2008-04-28 | 2009-11-05 | 株式会社村田製作所 | Multilayer coil component and method for producing the same |
KR101412827B1 (en) * | 2010-11-12 | 2014-06-30 | 삼성전기주식회사 | Condenser element, solid elecrolytic capacitor and method for manufacturing the same |
JP6434709B2 (en) * | 2014-04-11 | 2018-12-05 | アルプス電気株式会社 | Electronic component, method for manufacturing electronic component, and electronic device |
JP6984527B2 (en) * | 2018-03-30 | 2021-12-22 | 株式会社村田製作所 | Multilayer ceramic capacitors |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5952828A (en) * | 1982-09-20 | 1984-03-27 | 松下電器産業株式会社 | Method of forming electrodes of laminated ceramic condenser |
-
1992
- 1992-09-14 JP JP4245272A patent/JP2700978B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8009012B2 (en) | 2007-07-24 | 2011-08-30 | Tdk Corporation | Stacked electronic part and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH07240334A (en) | 1995-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7605683B2 (en) | Monolithic electronic component | |
KR100415800B1 (en) | Electric device chip and method for manufacturing the same | |
CN101894668B (en) | Laminated electronic component and manufacturing method therefor | |
JP2001244116A (en) | Electronic component and method of manufacturing the same | |
US6159768A (en) | Array type multi-chip device and fabrication method therefor | |
US6316726B1 (en) | Surface mount electronic component having electrodes suppressing the occurrence of migration | |
JP2700978B2 (en) | Electronic component and method of manufacturing the same | |
JP3304798B2 (en) | Electronic component and method of manufacturing the same | |
KR101158230B1 (en) | Solid electrolytic capacitor and method for preparing the same | |
KR101412827B1 (en) | Condenser element, solid elecrolytic capacitor and method for manufacturing the same | |
JP2641010B2 (en) | Chip electronic components | |
JPH0155566B2 (en) | ||
KR101659212B1 (en) | Method for manufacturing inductor device | |
US20200219662A1 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JPH11274002A (en) | Chip-laminated electrolytic capacitor | |
JPH1027712A (en) | Large-current multilayer chip inductor | |
JP2008218779A (en) | Solid-state electrolytic capacitor | |
JP2005252141A (en) | Electronic component, and manufacturing method thereof | |
JP3168584B2 (en) | Solid electrolytic capacitors | |
JPH11260653A (en) | Laminated electronic component and manufacturing method therefor | |
CN219677248U (en) | High-frequency electronic component and module | |
JP2004047817A (en) | Laminated ferrite substrate, thin coil component, and circuit device using the same | |
US20240331911A1 (en) | Coil component | |
JPS5961116A (en) | Method of producing chip type solid electrolytic condenser | |
JP6790628B2 (en) | Solid electrolytic capacitors and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970805 |