JP2697928B2 - Heat-melt stretching method for rod-shaped body - Google Patents

Heat-melt stretching method for rod-shaped body

Info

Publication number
JP2697928B2
JP2697928B2 JP1286164A JP28616489A JP2697928B2 JP 2697928 B2 JP2697928 B2 JP 2697928B2 JP 1286164 A JP1286164 A JP 1286164A JP 28616489 A JP28616489 A JP 28616489A JP 2697928 B2 JP2697928 B2 JP 2697928B2
Authority
JP
Japan
Prior art keywords
rod
outer diameter
melt
shaped body
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1286164A
Other languages
Japanese (ja)
Other versions
JPH03146433A (en
Inventor
恭宏 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17700769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2697928(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP1286164A priority Critical patent/JP2697928B2/en
Publication of JPH03146433A publication Critical patent/JPH03146433A/en
Application granted granted Critical
Publication of JP2697928B2 publication Critical patent/JP2697928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01242Controlling or regulating the down-draw process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明は加熱により溶融(軟化も含む)する棒状体の
加熱溶融延伸方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot-melt drawing of a rod-shaped body that is melted (including softened) by heating.

『従来の技術』 周知の通り、ガラス製の棒状体などは、これを加熱溶
融することにより、所要の外径に減径することができ
る。
2. Description of the Related Art As is well known, a glass rod or the like can be reduced to a required outer diameter by heating and melting the rod.

ちなみに、石英系の光ファイバ母材を減径するとき、
光ファイバ母材をその一端部から他端部にわたり加熱溶
融しつつ、加熱溶融された光ファイバ母材の端部をその
軸方向へ延伸している。
By the way, when reducing the diameter of the quartz optical fiber preform,
While the optical fiber preform is heated and melted from one end to the other end, the end of the heat-fused optical fiber preform is stretched in the axial direction.

この際、光ファイバ母材の溶融部分は、その延伸方向
へ向かうにしたがい外径が縮小し、紡錘の先端形状のよ
うに変形する。
At this time, the outer diameter of the melted portion of the optical fiber preform decreases in the direction in which the optical fiber preform is stretched, and deforms like the tip shape of the spindle.

したがって、光ファイバ母材の原形部と仕上部との間
には、メニスカス(meniscus)と称するテーパ状にくび
れた溶融変形部が生じる。
Therefore, a tapered constricted fusion deformation called a meniscus is generated between the original shape portion of the optical fiber preform and the finish.

このようにして光ファイバ母材を加熱溶融下で延伸す
るとき、上記溶融変形部の外径を測定し、かつ、その外
径測定値を光ファイバ母材の延伸系へフィードバックし
て、光ファイバ母材の仕上部外径を目標値に制御する。
When the optical fiber preform is stretched while being heated and melted in this manner, the outer diameter of the melt-deformed portion is measured, and the measured outer diameter is fed back to the optical fiber preform stretching system, and the optical fiber preform is stretched. Control the finish outer diameter of the base material to the target value.

かかる技術の公知文献としては、たとえば、特公昭59
−18325号公報をあげることができる。
Known documents of such technology include, for example,
-18325.

『発明が解決しようとする課題』 従来におけるこの種の技術は、先に例示した公知文献
をはじめ、きわめて上位の概念が示されているのみであ
り、実用上の具体性に欠ける。
[Problem to be Solved by the Invention] This kind of conventional technology only shows extremely high-level concepts, including the publicly known documents exemplified above, and lacks practical concreteness.

殊に、光ファイバ母材の溶融変形部から外径情報を採
取すべき位置、すわち、溶融変形部の外径測定位置につ
いて、その測定位置が熱源に近いときは、応答性、制御
性が良好であるものの、溶融変形部の外径測定値と母材
仕上部との差が大きく、母材原形部の外径変動をそのま
ま吸収できない難点があり、逆に、その測定位置が母材
仕上部に近いときは、溶融変形部の外径測定値と母材仕
上部との差が小さいものの、応答性が悪く、ハンチング
により制御不能をきたす。
In particular, when the outer diameter information is to be collected from the melt deformed portion of the optical fiber preform, that is, when the outer diameter measurement position of the melt deformed portion is close to the heat source, the responsiveness and controllability are poor. Although good, the difference between the measured outer diameter of the molten deformed part and the base metal finish is large, and there is a problem that the fluctuation of the outer diameter of the base material original part cannot be absorbed as it is. When it is close to the portion, although the difference between the measured outer diameter of the molten deformed portion and the base material finish is small, the response is poor and hunting causes loss of control.

したがって、現状では、溶融変形部に関する適切な位
置での外径測定に基づき、母材の仕上部外径を目標値に
仕上げるのが困難であり、試行錯誤を繰り返している。
Therefore, under the present circumstances, it is difficult to finish the finish outer diameter of the base material to the target value based on the outer diameter measurement at an appropriate position with respect to the melt deformed portion, and trial and error has been repeated.

本発明はこのような技術的課題に鑑み、加熱溶融手段
と延伸手段とを併用して棒状体を減径するとき、その棒
状体の溶融変形部における外径測定位置を適切に設定
し、その適切な測定位置から得たデータを棒状体の延伸
系へフィードバックすることにより、外径精度の高い減
径棒状体を歩留りよく得ることのできる方法を提供しよ
うとするものである。
In view of the above technical problems, the present invention, when reducing the diameter of a rod using a combination of the heating and melting means and the stretching means, appropriately set the outer diameter measurement position in the melt deformation portion of the rod, It is an object of the present invention to provide a method capable of obtaining a reduced-diameter rod with high accuracy in outer diameter with good yield by feeding back data obtained from an appropriate measurement position to a stretching system of the rod.

『課題を解決するための手段』 本発明は、所期の目的を達成するため、棒状体をその
端部から順次加熱溶融しつつ、加熱溶融された棒状体の
端部をこれの軸方向へ延伸して、棒状体の延伸端側に減
径された仕上部を形成するとともに、棒状体の原形部か
ら仕上部にわたる溶融変形部の外径を一点測定し、その
外径測定値とその溶融変形部分における目標外径との差
を棒状体の延伸制御系へフィードバックして、棒状体の
仕上部外径を制御する方法において、加熱溶融下におけ
る棒状体の定常延伸運転時、その溶融変形部における粘
度が106.2〜107ポアズである仕上径側の部位の外径を測
定することを特徴とする。
[Means for Solving the Problems] In order to achieve the intended purpose, the present invention sequentially heats and melts the rod from its end, and moves the end of the heated and melted rod in the axial direction thereof. The rod is stretched to form a reduced-diameter finish on the extension end side of the rod, and the outer diameter of the melt-deformed portion from the original part of the rod to the finish is measured at one point, and the measured outer diameter and its melting point are measured. In the method of controlling the finish outer diameter of the rod-like body by feeding back the difference from the target outer diameter in the deformed portion to the rod-like body stretching control system, during the steady stretching operation of the rod-like body under heating and melting, the molten deformed part viscosity and measuring the outside diameter of the portion of finish diameter is 6.2 to 107 poise at.

『作 用』 本発明方法は、既述の通り、棒状体をその端部から順
次加熱溶融しつつ、加熱溶融された棒状体の端部をこれ
の軸方向へ延伸する。
[Operation] As described above, in the method of the present invention, the rod-shaped body is sequentially heated and melted from its end, and the end of the heated and melted rod-like body is stretched in the axial direction.

こうして棒状体を加熱溶融し延伸すると、棒状体の原
形部と、延伸のより生じた棒状体の仕上部との間には、
溶融変形部(メニスカス)が必然的に生じる。
When the rod-shaped body is heated and melted and stretched in this way, between the original shape portion of the rod-shaped body and the finish of the rod-shaped body generated by the stretching,
Melt deformation (meniscus) is inevitably generated.

本発明方法の場合、上記棒状体の溶融変形部における
粘度ηに着目して、粘度ηが106.2ポアズ≦η≦107ポア
ズの範囲内にある部位の外径を一点測定し、その外径測
定値と、その溶融変形部分における目標外径、すなわ
ち、仕上部を目標外径値に仕上げるために其溶融変形部
分に求められる目標外径との差を棒状体の延伸制御径へ
フィードバックして、棒状体の仕上部外径を制御するか
ら、以下のようになる。
For the present invention a method, by paying attention to the viscosity eta at melt deformation portion of the rod-like body, the outer diameter of a portion viscosity eta is in the range of 10 6.2 poise ≦ eta ≦ 10 7 poise measured one point, the outer diameter thereof The measured value and the target outer diameter in the melt deformed portion, that is, the difference between the target outer diameter required for the melt deformed portion to finish the finish to the target outer diameter value is fed back to the stretching control diameter of the rod-shaped body. Since the outer diameter of the finish of the rod is controlled, the following is obtained.

その一つとして、粘度が上記の範囲内にある溶融変形
部の測定部位(測定点)は、これの温度が十分に高く、
かつ、粘度が低いので、外径制御時の応答性がよくな
る。
As one of them, the measurement site (measurement point) of the melt deformed part whose viscosity is within the above range has a sufficiently high temperature,
In addition, since the viscosity is low, the response at the time of controlling the outer diameter is improved.

他の一つとして、粘度が上記の範囲内にある溶融変形
部の測定部位は、固化する仕上部に近いので、かつ外径
測定値と仕上部外径との差が小さく、かつ、棒状体の原
形部からも離れているので、当該原形部の影響(外径変
動)が仕上部にまで波及しがたく、その仕上部の外径変
動が小さい。
As another one, the measurement site of the melt deformed portion whose viscosity is within the above range is close to the solidified finish, and the difference between the measured outer diameter and the outer diameter of the finished portion is small, and the rod-shaped body Is also separated from the original shape portion, the influence (outer diameter variation) of the original shape portion hardly spreads to the finish, and the outer diameter variation of the finish is small.

かくて、加熱溶融延伸により減径された棒状体の仕上
部は、その外径目標値に対し精度高く仕上がる。
Thus, the finish of the rod-shaped body reduced in diameter by the heat-melting stretching is finished with high accuracy with respect to the outer diameter target value.

『実 施 例』 本発明方法の実施例につき、図形を参照して説明す
る。
"Example" An example of the method of the present invention will be described with reference to figures.

第1図、第2図は、太径の棒状体11を細径の棒状体に
減径する際の実施例である。
1 and 2 show an embodiment in which the diameter of the large-diameter rod 11 is reduced to a small diameter.

この棒状体11は、たとえば、石英系の光ファイバ母材
からなり、コア部とクラッド部とを備えている。
The rod 11 is made of, for example, a quartz-based optical fiber preform and has a core portion and a clad portion.

第1図、第2図において、軸方向の動きを拘束されて
回転する棒状体11の一端すなわち基端は、回転自在な定
置チャック(図示せず)により保持され、回転しながら
軸方向へ移動する棒状体11の他端すなわち延伸端は、軸
方向に往復動自在かつ回転自在な移動チャック(図示せ
ず)により保持される。
In FIG. 1 and FIG. 2, one end, that is, a base end of a rod 11 which is rotated while being restricted in axial movement is held by a rotatable stationary chuck (not shown), and moves in the axial direction while rotating. The other end of the rod-shaped body 11, that is, the extended end, is held by a movable chuck (not shown) that is reciprocally movable and rotatable in the axial direction.

場合により、棒状体11の基端は、回転自在で軸方向へ
低速移動するチャックにより保持され、棒状体11の延伸
端は、回転自在で軸方向へ高速移動するチャックにより
保持される。
In some cases, the base end of the rod 11 is held by a chuck that is rotatable and moves at a low speed in the axial direction, and the extended end of the rod 11 is held by a chuck that is rotatable and moves at a high speed in the axial direction.

これら対をなすチャックは、いずれも、公知ないし周
知のものが採用される。
Known or well-known chucks are used for these pairs of chucks.

第1図、第2図において、熱源としてのバーナ21は、
そのバーナ角度が調整自在な公知ないし周知の酸水素炎
バーナからなり、当該バーナ21は、所定位置に配置され
て図示しない移動型の支持手段により支持されている。
In FIGS. 1 and 2, the burner 21 as a heat source is
The burner 21 is composed of a known or well-known oxyhydrogen flame burner whose burner angle is adjustable, and the burner 21 is arranged at a predetermined position and supported by a movable supporting means (not shown).

外径測定装置22は、レーザビームの照射機能、受光検
知機能を有する光学系からなり、対をなす光照射器23お
よび受光検知器24と、これら両器を連結するための連結
具25とを備えている。
The outer diameter measuring device 22 is composed of an optical system having a laser beam irradiation function and a light receiving detection function, and includes a pair of a light irradiator 23 and a light receiving detector 24, and a connecting tool 25 for connecting these two devices. Have.

外径測定装置22において、光照射器23と受光検知器24
とは、連結具25を介して相互に連結され、互いに対面し
ている。
In the outer diameter measuring device 22, the light irradiator 23 and the light receiving detector 24
Are connected to each other via the connecting tool 25 and face each other.

さらに、外径測定装置22は、送り軸(ネジ軸)26と軸
受スタンド27とを主体にした移動調整機構28を介して、
水平方向へ移動自在なるよう支持されている。
Further, the outer diameter measuring device 22 is provided with a movement adjusting mechanism 28 mainly including a feed shaft (screw shaft) 26 and a bearing stand 27,
It is supported so that it can move in the horizontal direction.

第1図、第2図において、太径の棒状体11を所要の細
径に加工するとき、バーナ21を介して棒状体11をその一
端から他端へと順次加熱溶融し、当該棒状体11の延伸端
を保持しているチャックを第2図の矢印方向へ移動させ
る。
1 and 2, when a large-diameter rod 11 is processed into a required small diameter, the rod 11 is sequentially heated and melted from one end to the other end via a burner 21, and the rod 11 is processed. Is moved in the direction of the arrow in FIG.

かかる加熱溶融と延伸により、棒状体11の延伸側が順
次所定の外径に減径されて固化する。
By the heat melting and the stretching, the stretching side of the rod 11 is sequentially reduced to a predetermined outer diameter and solidified.

この場合、棒状体11の原形部12から仕上部14までの部
分が、紡錘の先端形状のように変形した溶融変形部13と
なる。
In this case, a portion from the original shape portion 12 of the rod-shaped body 11 to the finish 14 becomes a melt deformed portion 13 deformed like the tip shape of the spindle.

こうして棒状体11を減径加工するとき、前述した所定
の位置において、溶融変形部13の外径を測定する。
When the rod-shaped body 11 is reduced in diameter in this way, the outer diameter of the melt-deformed portion 13 is measured at the aforementioned predetermined position.

これに際しては、外径測定装置22の光照射器23から溶
融変形部13の測定位置(測定点)に向けてレーザビーム
を照射し、その透過光を外径測定装置22の受光検知器24
で受光することにより、溶融変形部13の外径を測定す
る。
At this time, a laser beam is irradiated from the light irradiator 23 of the outer diameter measuring device 22 toward the measurement position (measurement point) of the melt deformation portion 13, and the transmitted light is received by the light detector 24 of the outer diameter measuring device 22.
, The outer diameter of the melt-deformed portion 13 is measured.

かくて、測定された溶融変形部13の外径測定値が、外
径測定装置22の受光検知器24から棒状体11の延伸制御
系、すなわち、棒状体の延伸端を保持して移動する軸方
向の駆動系統(図示せず)へ入力され、棒状体11の延伸
速度が適切な制御されるので、棒状体11の仕上部14が高
精度に仕上げられる。
Thus, the measured outer diameter measurement value of the melt deformed portion 13 is transmitted from the light receiving detector 24 of the outer diameter measuring device 22 to the extension control system of the rod 11, that is, the axis that moves while holding the extension end of the rod. The direction is input to a drive system (not shown), and the stretching speed of the rod 11 is appropriately controlled, so that the finish 14 of the rod 11 is finished with high precision.

なお、溶融変形部13の温度および粘度は、つぎによう
にして求まる。
The temperature and the viscosity of the melt deformation portion 13 are obtained as follows.

たとえば、光ファイバ母材の代表的な材料である石英
系ガラス(シラカガラス)は、粘性力と張力との釣り合
いが支配的であるから、下記に示す体積流量の連続式
[(1)式]と運動量の式[(2)式]とが成立する。
For example, in quartz-based glass (silaka glass), which is a typical material of an optical fiber preform, the balance between viscous force and tension is dominant. Therefore, the following volume flow rate continuous equation [Equation (1)] is used. The equation of momentum [Equation (2)] holds.

D2 v=一定 ‥‥‥(1) πD2/4×3η(∂v/∂Z)=F=一定 ‥‥‥(2) (1)(2)式中、Dは溶融変形部の外径、Zは棒状
体の軸方向、vは溶融変形部のZ軸方向の速度、FはZ
軸方向の延伸張力、ηは溶融変形部の粘度である。
D 2 v = constant ‥‥‥ (1) πD 2/4 × 3η (∂v / ∂Z) = F = constant ‥‥‥ (2) (1) ( 2) wherein, D is the outside of the melt deformation portion Diameter, Z is the axial direction of the rod, v is the velocity of the molten deformed part in the Z-axis direction, F is Z
The axial stretching tension, η, is the viscosity of the melt deformed portion.

したがって、溶融変形部の粘度ηを求めるときは、溶
融変形部の外径Dを測定し、その外径測定値を(1)式
に代入して速度vを求め、求めたvを(2)式に代入す
ればよい。
Therefore, when determining the viscosity η of the melt-deformed portion, the outer diameter D of the melt-deformed portion is measured, and the measured value of the outer diameter is substituted into the equation (1) to obtain the velocity v. What is necessary is just to substitute in an expression.

さらに、溶融変形部の温度は、棒状体材料の温度−粘
度の関係式から求められる。
Further, the temperature of the melt-deformed portion is obtained from the temperature-viscosity relational expression of the rod-shaped material.

その他、溶融変形部の温度は、赤外線放射温度計によ
っても測定することができる。
In addition, the temperature of the melt deformation portion can be measured by an infrared radiation thermometer.

つぎに、本発明方法のより具体的な例について述べ
る。
Next, a more specific example of the method of the present invention will be described.

棒状体11として、原形部12の外径23.5mmφの石英系外
光ファイバ母材を用い、これを外径13.0mmφの仕上部14
に仕上げることとした。
As the rod-shaped body 11, a quartz-based external optical fiber preform having an outer diameter of 23.5 mmφ of the original form part 12 is used,
It was decided to finish.

さらに、バーナ21の移動速度VBは10mm/minとした。Further, the moving velocity V B of the burner 21 was 10 mm / min.

第3図は、この具体例における棒状体11の外径実測値
と、溶融変形部13の外径測定位置(基準点0=バーナ21
の中心)とを示し、第4図は、溶融変形部13の温度分配
と外径測定位置との関係を示す。
FIG. 3 shows the actual measured value of the outer diameter of the rod 11 in this specific example, and the measured position of the outer diameter of the molten deformation portion 13 (reference point 0 = burner 21).
FIG. 4 shows the relationship between the temperature distribution of the melt deformation portion 13 and the outer diameter measurement position.

第3図の測定位置P1、P2、P3と、第4図の測定位置
P1、P2、P3とは互いに対応する。
Measurement positions P 1 , P 2 and P 3 in FIG. 3 and measurement positions in FIG.
P 1 , P 2 , and P 3 correspond to each other.

第3図において、溶融変形部13に測定位置をP2とし、
この測定位置から得た測定データに基づいて所定の外径
制御を行なったとき、仕上部14の外径(目標値13.0mm
φ)が、13.0±0.05mmφに仕上がった。
In FIG. 3, the measurement position is set to P 2 in the melt deformation portion 13,
When the predetermined outer diameter control is performed based on the measurement data obtained from the measurement position, the outer diameter of the finish 14 (the target value is 13.0 mm
φ) was finished to 13.0 ± 0.05 mmφ.

溶融変形部13の測定位置について、第3図、第4図を
内容をまとめると、つぎに示す表のようになる。
FIG. 3 and FIG. 4 summarize the contents of the measurement positions of the melt deformation portion 13 as shown in the following table.

上記表から明らかなように、溶融変形部13の測定点を
粘度106.2〜107ポアズ(温度範囲1700〜1800℃)のとこ
ろに設定して当該溶融変形部13の外径を測定し、その外
径測定値とその溶融変形部分における目標外径との差を
棒状体11の延伸制御系へフィーバックして、仕上部14の
外径を制御するときは、外径変動の小さい仕上部14が得
られる。
As apparent from the above table, by setting the measuring points of the melt deformation portion 13 at the viscosity 6.2 to 107 poise (temperature range 1700 to 1800 ° C.) to measure the outside diameter of the melt deformation portion 13, the When the difference between the measured outer diameter and the target outer diameter in the melt-deformed portion is fed back to the stretching control system of the rod 11 to control the outer diameter of the finish 14, the finish 14 having a small outer diameter variation is controlled. Is obtained.

それに対し、上記粘度が106.2ポアズ未満のところを
測定点とした場合、たとえば、測定点が第3図、第4図
に示すP1のとき、溶融変形部13の外径測定値と仕上部14
外径との差が大きく、原形部12の外径変動を吸収するこ
とができず、さらに、上記粘度が107ポアズを越えると
ころを測定点とした場合、たとえば、測定点が第3図、
第4図に示すP3のとき、外径制御時の応答性が悪く、ハ
ンチングによる制御不能をきたす。
In contrast, if the viscosity was measured point at less than 10 6.2 poise, for example, the measurement point is Figure 3, when the P 1 shown in FIG. 4, the finish and an outer size measurements of melt deformable portion 13 14
Large difference between the outer diameter, can not absorb the outside diameter variation of the original section 12, further, when the viscosity was measured point where more than 10 7 poise, for example, the measurement point is Figure 3,
When P 3 shown in Figure 4, the response in external diameter control is poor, leading to loss of control by the hunting.

したがって、棒状体11を加熱溶融してこれを延伸する
とき、粘度106.2〜107ポアズのところを測定点として溶
融変形部13の外径Dを測定することは技術的に有効であ
り、それが上記具体例により実証された。
Therefore, when the rod-shaped body 11 is heated and melted and stretched, it is technically effective to measure the outer diameter D of the melt-deformed portion 13 with the viscosity of 106.2 to 10 7 poise as a measurement point. Was demonstrated by the above example.

『発明の効果』 以上の通り、本発明方法は棒状体を加熱溶融ならびに
延伸して棒状体の延伸端側に減径された仕上部を形成す
るとき、溶融変形部を測定点を粘度106.2〜107ポアズの
ところに測定して当該溶融変形部の外径を測定し、その
測定データに基づくフィードバック制御により、棒状体
の仕上部外径を制御するから、仕上げ精度の高い減径棒
状体が安定して得られる。
[Effects of the Invention] As described above, when the method of the present invention heat-melts and stretches a rod-shaped body to form a reduced-diameter finish on the stretched end side of the rod-shaped body, the melt-deformed portion is measured at a viscosity of 10 6.2 ~ 10 7 poises to measure the outer diameter of the molten deformed part, and feedback control based on the measurement data to control the finishing outer diameter of the rod, so that the reduced diameter rod with high finishing accuracy Is obtained stably.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明方法の一実施例を略示した要部
正面図と要部縦断側面図、第3図は棒状体における外径
実測値と外径測定点との関係を示した図、第4図は溶融
変形部の温度勾配と外径測定点との関係を示した図であ
る。 11……棒状体 12……棒状体の原形部 13……棒状体の溶融変形部 14……棒状体の仕上部 21……バーナ 22……外径測定装置 23……外径測定装置の光照射器 24……外径測定装置の受光検知器
1 and 2 are a front view and a longitudinal sectional side view of a main part schematically showing an embodiment of the method of the present invention, and FIG. 3 shows a relationship between an outer diameter measured value and an outer diameter measurement point of a rod-shaped body. FIG. 4 is a diagram showing the relationship between the temperature gradient of the melt deformed portion and the outer diameter measurement point. 11 ... rod-shaped body 12 ... original part of rod-shaped body 13 ... molten-deformed part of rod-shaped body 14 ... finish of rod-shaped body 21 ... burner 22 ... outer diameter measuring device 23 ... light of outer diameter measuring device Irradiator 24 …… Receiver detector of outer diameter measuring device

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】棒状体をその端部から順次加熱溶融しつ
つ、加熱溶融された棒状体の端部をこれの軸方向へ延伸
して、棒状体の延伸端側に減径された仕上部を形成する
とともに、棒状体の原形部から仕上部にわたる溶融変形
部の外径を一点測定し、その外径測定値とその溶融変形
部分における目標外径との差を棒状体の延伸制御系へフ
ィードバックして、棒状体の仕上部外径を制御する方法
において、加熱溶融下における棒状体の定常運転延伸
時、その溶融変形部における粘度が106.2〜107ポアズで
ある仕上径側の部位の外径を測定することを特徴とする
棒状体の加熱溶融延伸方法。
1. A finish whose diameter is reduced toward the extending end of the rod-shaped body while the rod-shaped body is sequentially heated and melted from its end, and the end of the heated and melted rod is stretched in the axial direction thereof. And at one point the outer diameter of the melt-deformed portion from the original part of the rod to the finish, and the difference between the measured outer diameter and the target outer diameter in the melt-deformed part is sent to the rod-elongation control system. and feedback, in the method of controlling the finish outside diameter of the rod-like body, the steady operation stretching of the rod-shaped body under heating and melting, the viscosity at the melt deformation part is finish sites diameter is 6.2 to 107 poises A method for heating and melting a rod-shaped body, comprising measuring an outer diameter.
JP1286164A 1989-11-02 1989-11-02 Heat-melt stretching method for rod-shaped body Expired - Lifetime JP2697928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286164A JP2697928B2 (en) 1989-11-02 1989-11-02 Heat-melt stretching method for rod-shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286164A JP2697928B2 (en) 1989-11-02 1989-11-02 Heat-melt stretching method for rod-shaped body

Publications (2)

Publication Number Publication Date
JPH03146433A JPH03146433A (en) 1991-06-21
JP2697928B2 true JP2697928B2 (en) 1998-01-19

Family

ID=17700769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286164A Expired - Lifetime JP2697928B2 (en) 1989-11-02 1989-11-02 Heat-melt stretching method for rod-shaped body

Country Status (1)

Country Link
JP (1) JP2697928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69502689T2 (en) * 1994-12-27 1999-01-14 Hoya Corp., Tokio/Tokyo Process for the production of polarizing glass
JP2003048732A (en) * 2001-07-31 2003-02-21 Nippon Electric Glass Co Ltd Method for forming precision glass tube
KR102365314B1 (en) * 2014-10-14 2022-02-22 헤래우스 쿼츠 노쓰 아메리카 엘엘씨 Apparatus and method for preform or tube drawing based on its viscosity

Also Published As

Publication number Publication date
JPH03146433A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
KR940014216A (en) Drawing method of glass product and its device
US9328012B2 (en) Glass base material elongating method
JP3437480B2 (en) Adjustment method of glass base material stretching device
JP2697928B2 (en) Heat-melt stretching method for rod-shaped body
US6550279B1 (en) Process for drawing optical fiber from a multiple crucible apparatus with a thermal gradient
JP2697927B2 (en) Heat-melt stretching method for rod-shaped body
US20110052121A1 (en) Fiber ball lens apparatus and method
JPS63195139A (en) Apparatus for drawing glass rod
JP2583321B2 (en) Method for measuring stretch melt viscosity of optical fiber preform
US4869745A (en) Apparatus for forming micropipette of controlled configuration by moving the point of heat application
US5320660A (en) Method of manufacturing an optical fibre
EP1559691A1 (en) Method for drawing glass parent material and drawing machine for use therein
US6722162B2 (en) Automatic quartz tube levelling device in optical fiber preform manufacturing system using modified chemical vapor deposition technique
JP4258610B2 (en) Drawing method of glass base material
JP3151387B2 (en) Manufacturing method of optical fiber preform
JPS60186431A (en) Apparatus for drawing optical fiber preform
JPH0794331B2 (en) Quartz tube or quartz rod manufacturing method
CN203947025U (en) The extension apparatus of base glass material
JPS61295250A (en) Drawing method for parent material for optical fiber
EP0530917A1 (en) Method of manufacturing an optical fibre
JPS60260441A (en) Device for preparing optical fiber
US20120047955A1 (en) Pipette puller using scanning laser
JPS62202830A (en) Automatic drawing machine for optical fiber parent material
JPH1081531A (en) Drawing method
JPH01133954A (en) Method for drawing optical fiber