JP2697751B2 - Method of coating diamond film - Google Patents

Method of coating diamond film

Info

Publication number
JP2697751B2
JP2697751B2 JP6391392A JP6391392A JP2697751B2 JP 2697751 B2 JP2697751 B2 JP 2697751B2 JP 6391392 A JP6391392 A JP 6391392A JP 6391392 A JP6391392 A JP 6391392A JP 2697751 B2 JP2697751 B2 JP 2697751B2
Authority
JP
Japan
Prior art keywords
diamond
film
diamond film
substrate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6391392A
Other languages
Japanese (ja)
Other versions
JPH0656585A (en
Inventor
和明 栗原
元信 河原田
謙一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6391392A priority Critical patent/JP2697751B2/en
Publication of JPH0656585A publication Critical patent/JPH0656585A/en
Application granted granted Critical
Publication of JP2697751B2 publication Critical patent/JP2697751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は被処理基板へのダイヤモ
ンド膜の被覆方法に関し、更に詳しくは高い密着力で被
処理基板上に気相合成ダイヤモンド膜を被覆する方法に
関する。ダイヤモンドは炭素(C)の同素体であり、所
謂ダイヤモンド構造を示し、ビッカース硬度は10,000kg
/mm2と大きく、また熱伝導度は2000W/mK と他の材料に
較べて格段に優れており、またバルクを伝播する音速は
18,000m/sと他の材料に較べて格段に速いなどの特徴を
もっている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a diamond film on a substrate to be processed, and more particularly to a method for coating a vapor-phase synthetic diamond film on a substrate to be processed with high adhesion. Diamond is an allotrope of carbon (C), showing a so-called diamond structure, and a Vickers hardness of 10,000 kg
/ mm 2 and greater, and the thermal conductivity is remarkably excellent as compared with the 2000 W / mK and other materials, also speed of sound propagating bulk
It has features such as 18,000m / s, which is much faster than other materials.

【0002】そのため、この性質を利用して各種の用途
が検討されている。例えば、硬度が高いのを利用してド
リルの刃やバイトへの使用や耐摩耗性コーティングとし
ての利用が検討されている。
[0002] Therefore, various uses are being studied by utilizing this property. For example, the use of high hardness for drill blades and cutting tools and for use as a wear-resistant coating are being studied.

【0003】また、熱伝導度の高いのを利用して半導体
素子のヒートシンク(Heat-sink) の構成材としての利用
が考えられており、また音速が速いことを利用してスピ
ーカーの振動板などへの実用化が進められている。
Further, it is considered to be used as a component material of a heat-sink of a semiconductor device by utilizing its high thermal conductivity, and to utilize a high sound speed to make a diaphragm of a speaker or the like. Is being put to practical use.

【0004】[0004]

【従来の技術】ダイヤモンド膜の合成法としては高圧合
成法と低圧合成法があることは周知の通りである。高圧
合成法は大型の単結晶を育成するのに適した方法である
が、高温高圧を要するために装置が大掛かりとなり、ま
た成長速度が著しく遅く、そのためにコストが高くなる
と云う問題があり、デバイス形成には向かない。
2. Description of the Related Art It is well known that a diamond film is synthesized by a high-pressure synthesis method or a low-pressure synthesis method. The high-pressure synthesis method is a method suitable for growing large single crystals, but it requires high temperature and high pressure, so that the equipment becomes large-scale, and the growth rate is extremely slow. Not suitable for formation.

【0005】これに対し、低圧合成法には熱フィラメン
ト法、燃焼炎法、マイクロ波プラズマ気相成長法(略し
てマイクロ波プラズマCVD法)、DCプラズマジェッ
トCVD法など各種の方法があり、何れも被処理基板上
に微結晶の形でダイヤモンド膜を成長させることができ
る。
On the other hand, there are various low pressure synthesis methods such as a hot filament method, a combustion flame method, a microwave plasma vapor phase growth method (abbreviated to microwave plasma CVD method), and a DC plasma jet CVD method. Also, a diamond film can be grown in the form of microcrystals on the substrate to be processed.

【0006】ここで、マイクロ波プラズマCVD法はマ
グネトロンなどより発生するマイクロ波(μ波)を導波
管によりプラズマ発生室に導き、メタン(CH4) など炭化
水素よりなるソースガスを分解してプラズマ化させ、こ
れを加熱されている被処理基板上に導くことにより炭素
ラジカルがダイヤモンドとなって微結晶を成長させる方
法である。
Here, the microwave plasma CVD method guides a microwave (μ wave) generated from a magnetron or the like to a plasma generation chamber by a waveguide, and decomposes a source gas made of a hydrocarbon such as methane (CH 4 ). This is a method in which a plasma is formed and guided on a heated substrate to be processed, whereby carbon radicals are turned into diamond to grow microcrystals.

【0007】また、DCプラズマジェットCVD法は陽
極と陰極の間から水素(H2)と炭化水素、例えば CH4
の混合ガスを反応室に供給すると共に、排気系を動作し
て反応室内を低真空に保持した状態で陽極陰極間にアー
ク放電を生じさせ、混合ガスを分解させてプラズマ化さ
せると、炭素プラズマを含むプラズマジェットは被処理
基板に衝突し、微結晶からなるダイヤモンド膜を成長さ
せる方法である。
In the DC plasma jet CVD method, a mixed gas of hydrogen (H 2 ) and a hydrocarbon, for example, CH 4 is supplied to the reaction chamber from between the anode and the cathode, and the exhaust system is operated to operate the reaction chamber. When arc discharge is generated between the anode and cathode while maintaining a low vacuum, the mixed gas is decomposed into plasma, and the plasma jet containing carbon plasma collides with the substrate to be processed, growing a diamond film composed of microcrystals It is a way to make it.

【0008】前述の如く、プラズマCVD法により被処
理基板上にダイヤモンド膜を成長させることができる
が、プラズマCVD法には被処理基板との密着性が良く
ないと云う問題がある。
As described above, a diamond film can be grown on a substrate to be processed by the plasma CVD method, but the plasma CVD method has a problem that the adhesion to the substrate to be processed is not good.

【0009】被処理基板上にCVD法により成長させた
ダイヤモンド膜の基板との密着力を向上させる方法とし
て、 炭化物層などの中間層を設ける、 下地面を凹凸にしアンカー効果を利用する、 などの方法が試みられている。
As a method of improving the adhesion of the diamond film grown on the substrate to be processed by the CVD method to the substrate, there are provided an intermediate layer such as a carbide layer, and the use of an anchor effect by making the underground uneven. A method has been tried.

【0010】すなわち、上記の方法ではタングステン
・カーバイド(WC)やモリブデン・カーバイト(MoC) な
どダイヤモンドとの化学親和力が強い炭化物よりなる中
間層を設けて密着力の向上を図っているが良い結果は得
られていない。
That is, in the above-mentioned method, an intermediate layer made of carbide having a strong chemical affinity with diamond, such as tungsten carbide (WC) or molybdenum carbide (MoC), is provided to improve the adhesion. Has not been obtained.

【0011】また、の方法では従来のCVD法は核発
生密度と成膜速度が低く、そのために下地面の凹凸を埋
めて充分なアンカー効果を発揮するほどの厚さにまでダ
イヤモンド膜を成長させることが困難であり、実用化に
は至っていない。
In the conventional method, the conventional CVD method has a low nucleation density and a low film forming rate, so that the diamond film is grown to a thickness sufficient to fill the irregularities on the underlying surface and exhibit a sufficient anchor effect. It is difficult to do so and it has not been put to practical use.

【0012】[0012]

【発明が解決しようとする課題】前記した通り、CVD
法により被処理基板上にダイヤモンド膜をかなりの成長
速度で成長させることはできるが、成長したダイヤモン
ド膜と基板との密着力が弱く、その改良法が種々試みら
れているが未だ成功するに至っていない。
As mentioned above, the CVD
Although a diamond film can be grown on a substrate to be processed at a considerable growth rate by the method, the adhesion between the grown diamond film and the substrate is weak, and various improvement methods have been tried, but have been successful. Not in.

【0013】従って、本発明はプラズマCVD法により
基板上にダイヤモンド膜を成長させるにあたり、成長し
たダイヤモンド膜と基板との密着力を向上させることを
目的とする。
Accordingly, an object of the present invention is to improve the adhesion between the grown diamond film and the substrate when the diamond film is grown on the substrate by the plasma CVD method.

【0014】[0014]

【課題を解決するための手段】本発明に従えば、ダイヤ
モンド膜を成長させる被処理基板上に空隙率が5〜30%
の溶射膜を中間層として形成し、該中間層にダイヤモン
ド膜を気相成長させることを特徴とするダイヤモンド膜
の被覆方法が提供される。
According to the present invention, a porosity of 5 to 30% is formed on a substrate on which a diamond film is to be grown.
Is formed as an intermediate layer, and a diamond film is vapor-phase grown on the intermediate layer.

【0015】本発明に従えば、被処理基板上に低融点材
料と高融点材料の混合粉末を溶射して高融点の溶射材を
溶射膜表面に粒子状に分散させることにより、その表面
に凹凸を設け、その上にダイヤモンド膜を気相成長させ
ることを特徴とするダイヤモンド膜の被覆方法が提供さ
れる。
According to the present invention, a mixed powder of a low-melting-point material and a high-melting-point material is sprayed on a substrate to be processed, and the high-melting-point sprayed material is dispersed in the form of particles on the surface of the sprayed film, whereby irregularities are formed on the surface. Is provided, and a diamond film is vapor-phase grown thereon.

【0016】本発明に従えば、ダイヤモンド膜を成長さ
せる被処理基板の表面をブラスト処理し、そのブラスト
処理面にダイヤモンド膜を気相合成させることを特徴と
するダイヤモンド膜の被覆方法が提供される。
According to the present invention, there is provided a method for coating a diamond film, comprising blasting the surface of a substrate on which a diamond film is to be grown, and synthesizing a diamond film on the blasted surface. .

【0017】[0017]

【作用】本発明の第一の態様は図1に示すように基板1
の上に細かな凹凸のある溶射膜2を薄く形成し、この上
にCVD法によりダイヤモンド膜3を成長させるもので
ある。
According to the first aspect of the present invention, as shown in FIG.
A thin sprayed film 2 having fine irregularities is formed on the thin film, and a diamond film 3 is grown thereon by a CVD method.

【0018】ここで、通常の溶射では平坦な膜が得られ
るが、本発明は空隙率が5〜30%の細かい凹凸のある溶
射膜を用いるもので、この溶射膜の凹部の中にもダイヤ
モンドを核発生させ、成長させてアンカー効果によりダ
イヤモンド膜を強固に結合させるものである。
Here, a flat film can be obtained by ordinary thermal spraying. However, the present invention uses a thermal sprayed film having a fine unevenness with a porosity of 5 to 30%. Are generated and grown to firmly bond the diamond film by the anchor effect.

【0019】ここで、実験の結果によれば、空隙率が5
%より少ないと表面の凹凸が少なすぎて良好なアンカー
効果を得ることができず、また30%を越すと溶射膜自体
の強度が低下してしまうので好ましくない。
Here, according to the results of the experiment, the porosity was 5%.
If the amount is less than 30%, the surface irregularities are too small to obtain a good anchoring effect, and if it exceeds 30%, the strength of the sprayed film itself is undesirably reduced.

【0020】次に、溶射膜2を形成する溶射材としては
基板1と同じ材料を用いると、基板1と溶射膜2との密
着がよく理想的であるが、基板1が鉄(Fe)、ニッケル
(Ni) 、コバルト (Co) 、クローム (Cr) など炭素
(C)を固溶してダイヤモンドが成長しにくい材料から
なる場合には、溶射材としてタングステン(W)、モリ
ブデン(Mo) などの材料を用いれば密着性よくダイヤモ
ンドを成長させることができる。その他の溶射材の例と
してはCu,Ti,Nb,Al2O3 ,ZrO2をあげることができ
る。
Next, if the same material as that of the substrate 1 is used as the thermal spray material for forming the thermal spray film 2, the substrate 1 and the thermal spray film 2 are ideally well adhered to each other. In the case of a material such as nickel (Ni), cobalt (Co), and chromium (Cr) that forms a solid solution of carbon (C) so that diamond is difficult to grow, tungsten (W), molybdenum (Mo), etc. If a material is used, diamond can be grown with good adhesion. Examples of other thermal spray materials include Cu, Ti, Nb, Al 2 O 3 , and ZrO 2 .

【0021】また、基板としてダイヤモンドと熱膨張係
数の大きく異なる材料を用いる場合には溶射層の構成材
料として中間の熱膨張係数をもつ材料を用いて溶射層を
構成すれば熱応力を緩和することができる。また、この
場合に溶射膜を一層でなく複数層の構成とすれば更に熱
応力の影響を緩和することができる。なお、アンカー効
果を高めるためには溶射膜表面でのダイヤモンドの核発
生密度を向上することが必要であって、溶射膜の表面に
傷付け処理を行った後にダイヤモンドのCVD成長を行
うことが好ましい。
When a material having a thermal expansion coefficient greatly different from that of diamond is used as the substrate, the thermal stress can be reduced by forming the thermal spray layer using a material having an intermediate thermal expansion coefficient as a constituent material of the thermal spray layer. Can be. Further, in this case, if the sprayed film is constituted by a plurality of layers instead of a single layer, the influence of thermal stress can be further reduced. In order to enhance the anchor effect, it is necessary to increase the nucleation density of diamond on the surface of the sprayed film, and it is preferable that the surface of the sprayed film is scratched before the CVD growth of diamond.

【0022】前述の如く、本発明の第二の態様では基板
表面に、凹凸のある層を溶射により形成し、その上にダ
イヤモンド膜を成長させることにより、この溶射中間層
の凹部の中にもダイヤモンドを核発生、成長させ、アン
カー効果によりダイヤモンド膜を下地基板と強固に結合
させんとするものであり、具体的には溶射粉末を低融点
の材料と高融点の材料との混合物とし、高融点材料粉末
が粒子状に溶射膜中および表面に存在するようにするこ
とで、溶射膜の表面の凹凸を強調し、高いアンカー効果
が得られるようにしたものである。
As described above, in the second embodiment of the present invention, an uneven layer is formed on the substrate surface by thermal spraying, and a diamond film is grown thereon, so that the concave portion of the thermal sprayed intermediate layer is also formed. The diamond is nucleated and grown, and the diamond film is firmly bonded to the underlying substrate by the anchor effect. Specifically, the sprayed powder is made of a mixture of a material having a low melting point and a material having a high melting point. By making the melting point material powder exist in the sprayed film and on the surface in the form of particles, unevenness on the surface of the sprayed film is emphasized, and a high anchor effect is obtained.

【0023】図2は本発明の第二の態様によるダイヤモ
ンド被覆膜の断面の構造を示すもので、図において、4
は下地基板、5は溶射膜、6は高融点溶射材粒子、7は
低融点溶射材、8はダイヤモンド膜を示す。
FIG. 2 shows a cross-sectional structure of a diamond coating film according to the second embodiment of the present invention.
Denotes a base substrate, 5 denotes a sprayed film, 6 denotes high melting point sprayed material particles, 7 denotes a low melting point sprayed material, and 8 denotes a diamond film.

【0024】本発明の第二の態様では、溶射膜5表面の
凹部にダイヤモンドが入り込むことにより、アンカー効
果でダイヤモンド膜は強固に下地基板と接着される。こ
こで重要なのは溶射膜の内部組織および表面の構造であ
る。通常溶射では、プラズマの高温で溶融した溶射粉末
が液滴となって基板表面に衝突し、そこで液滴が偏平し
広がって膜が形成される。偏平率が高い程、緻密な膜と
なり表面平滑度は高い。偏平率が低いと膜はポーラスと
なり表面の凹凸が大きくなる。従って、アンカー効果を
高めるため溶射膜表面の凹凸を大きくしようとすると、
膜はポーラスとなり強度が低下するおそれがある。
In the second embodiment of the present invention, the diamond film is firmly adhered to the base substrate by the anchor effect by the diamond entering into the concave portion on the surface of the sprayed film 5. What is important here is the internal structure and surface structure of the sprayed film. In general thermal spraying, sprayed powder melted at a high temperature of plasma collides with a substrate surface as droplets, where the droplets flatten and spread to form a film. The higher the flatness, the denser the film, and the higher the surface smoothness. If the flatness is low, the film becomes porous and the surface irregularities become large. Therefore, when trying to increase the unevenness of the sprayed film surface to enhance the anchor effect,
The film becomes porous, and the strength may be reduced.

【0025】本発明はこのような問題点を解決し、緻密
で表面の凹凸が大きい溶射膜を形成するようにしたもの
である。具体的には高融点の粉末6と低融点の粉末7と
を同時に溶射し、高融点材6を粒子状に低融点材7の溶
射膜に分散させることで、緻密な溶射膜を得るとともに
高融点材粒子6が表面に出っ張った凹凸の大きい状態を
得るようにしたものであ。
The present invention has been made to solve such a problem and to form a sprayed film which is dense and has large surface irregularities. Specifically, the high-melting powder 6 and the low-melting powder 7 are simultaneously sprayed, and the high-melting material 6 is dispersed in the sprayed film of the low-melting material 7 in the form of particles. This is to obtain a state in which the melting point material particles 6 protrude from the surface and have large irregularities.

【0026】更に溶射膜形成後、表面の低融点材だけま
たは、高融点材だけをエッチングにより除去すると、表
面の凹凸はさらに大きくなり都合が良い。
Further, if only the low-melting material or the high-melting material on the surface is removed by etching after the formation of the sprayed film, the unevenness on the surface is further increased, which is convenient.

【0027】溶射材はダイヤモンド合成時の温度 (600
℃以上) で安定であれば、原則としてどのようなもので
も構わないが、炭素を固溶しやすい金属 (Fe,Ni,Co,
Cr等) はあまり好ましくない。好ましい溶射材を融点の
低い順に例示すれば、Al,Cu,Si,Nb,Ti,Mo,W,Si
O2,Al2O3 ,ZrO2,SiC ,WC,Mo2C等である。
The temperature of the thermal spraying material at the time of diamond synthesis (600
In principle, any material can be used as long as it is stable at a temperature of at least (° C), but metals (Fe, Ni, Co,
Cr, etc.) are not so preferred. Preferred thermal spraying materials are shown in the order of decreasing melting point, for example, Al, Cu, Si, Nb, Ti, Mo, W, Si.
O 2 , Al 2 O 3 , ZrO 2 , SiC, WC, Mo 2 C and the like.

【0028】溶射粉末は、図3の(A) に示すように、低
融点材粉末7と高融点材粉末6がまざったものでなくと
も良く、むしろ、図3の(B) に示すように、高融点材粉
末6が低融点材7中に分散してできている粉末や、図3
の(C) に示すように、低融点材粒子7と高融点材粒子6
とが均一に凝集して二次粒子となっている粉末の方が、
粉末供給の点で好ましい。溶射材は低融点と高融点の2
種類だけでなく、融点の異なる3種類又はそれ以上の材
料を用いることもできる。更に低融点溶射材7は基板4
と同じ材料であると、基板4と溶射膜5との間の密着性
が一層高く、本発明の目的に対して都合が良い。
As shown in FIG. 3A, the sprayed powder does not have to be a mixture of the low melting point material powder 7 and the high melting point material powder 6, but rather, as shown in FIG. 3B. A powder made by dispersing a high melting point material powder 6 in a low melting point material 7;
As shown in (C) of FIG.
And the powder that is uniformly agglomerated into secondary particles,
It is preferable in terms of powder supply. Thermal spraying material has low melting point and high melting point.
Not only the types but also three or more materials having different melting points can be used. Further, the low-melting thermal spray material 7 is
When the same material is used, the adhesion between the substrate 4 and the sprayed film 5 is further enhanced, which is convenient for the object of the present invention.

【0029】通常の溶射と同じように、基板4の表面を
ブラスト処理することによって、基板4と溶射膜5との
密着性を更に上げることができる。
By blasting the surface of the substrate 4 in the same manner as in normal thermal spraying, the adhesion between the substrate 4 and the thermal spray film 5 can be further improved.

【0030】基板がダイヤモンドが成長しにくいような
材料(例えば、炭素を固溶しやすいFe,Ni,Co,Cr等)
の場合には、溶射材として他の材料を選択すれば、この
ようなダイヤモンドが形成しにくい基板の上にも、密着
性良くダイヤモンドを成長させることができる。更に基
板が熱膨張係数がダイヤモンドと大きく異なる材料の場
合、溶射層をダイヤモンドと基板材料との間の熱膨張係
数を持つようにすることで、熱応力を緩和させることが
できる。なお、溶射層は一層だけでなく、組成や材料の
異なる多層構造でも構わない。
A material whose substrate is unlikely to grow diamond (for example, Fe, Ni, Co, Cr, etc., which easily dissolves carbon)
In this case, if another material is selected as the thermal spraying material, diamond can be grown with good adhesion even on a substrate on which such diamond is difficult to be formed. Further, when the substrate is made of a material whose coefficient of thermal expansion is significantly different from that of diamond, thermal stress can be reduced by making the thermal spray layer have a coefficient of thermal expansion between diamond and the substrate material. The thermal spray layer is not limited to a single layer, and may have a multilayer structure having different compositions and materials.

【0031】アンカー効果を高めるためには溶射膜表面
でのダイヤモンドの核発生密度を高くすることが重要で
あるので、ダイヤモンドを製膜する前に、溶射膜表面に
傷付け処理することが好ましい。
It is important to increase the density of diamond nuclei generated on the surface of the sprayed film in order to enhance the anchor effect. Therefore, it is preferable that the surface of the sprayed film be scratched before diamond is formed.

【0032】前述の如く、本発明の第三の態様では基板
表面をブラスト処理した後にダイヤモンド膜を成長させ
ることで、ダイヤモンド膜を基板と強固に結合させよう
とするものである。
As described above, in the third embodiment of the present invention, a diamond film is grown after blasting the substrate surface, so that the diamond film is firmly bonded to the substrate.

【0033】本発明においてブラスト処理とは、通常、
溶射の前処理として溶射膜と基板との密着性を高めるた
めに行われる表面処理方法でダイヤモンド粉末、窒化物
粉末、炭化物粉末、炭窒素化物粉末及びこれらの混合物
を主材料とした粉末、特に、炭化ケイ素(SiC) やタング
ステンカーバイド (WC) などの研磨材を高速で基板表面
にぶつけ、その表面に細かい凹凸を形成し、アンカー効
果で溶射膜と基板との密着性を高めるものである。本発
明はこのブラスト処理をダイヤモンド膜被覆に応用し、
アンカー効果により高い密着力を得ようとするものであ
る。また、ブラスト処理により基板表面に導入された傷
や欠陥はダイヤモンドの核発生サイトとなるためダイヤ
モンドの核発生密度を高めて、やはり密着性を向上させ
る効果になる。
In the present invention, blast processing is usually
A powder mainly composed of diamond powder, nitride powder, carbide powder, carbonitride powder and a mixture thereof, particularly in a surface treatment method performed to enhance the adhesion between the sprayed film and the substrate as a pretreatment for thermal spraying, Abrasives such as silicon carbide (SiC) and tungsten carbide (WC) are blasted onto the surface of the substrate at high speed to form fine irregularities on the surface, and the adhesion between the sprayed film and the substrate is enhanced by the anchor effect. The present invention applies this blasting to diamond film coating,
The purpose is to obtain a high adhesion force by the anchor effect. In addition, the scratches and defects introduced into the substrate surface by the blasting process become sites for generating nuclei of diamond, so that the nucleation density of diamond is increased, and this also has the effect of improving the adhesion.

【0034】アンカー効果を高めるためには基材表面に
均一に高い密度でダイヤモンドの核を発生させることが
重要であるのでダイヤモンドを製膜する前に、核発生密
度を高めるための表面処理を更に行ってもかまわない。
このような表面処理は、例えば、ダイヤモンド粉末を分
散させた液中に基板を浸漬して超音波処理などを施すこ
とにより、基板表面上に微細な傷をつけることができ
る。
In order to enhance the anchor effect, it is important to generate diamond nuclei uniformly at a high density on the surface of the base material. Therefore, before forming the diamond film, a surface treatment for increasing the nucleation density is further performed. You can go.
In such a surface treatment, for example, a substrate can be immersed in a liquid in which diamond powder is dispersed and subjected to an ultrasonic treatment or the like, whereby fine scratches can be made on the substrate surface.

【0035】[0035]

【実施例】以下、実施例に従って本発明を更に詳細に説
明するが、本発明の範囲をこれらの実施例に限定するも
のでないことはいうまでもない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the scope of the present invention is not limited to these Examples.

【0036】実施例1 本発明では基板として、20mm角で厚さが5mmのタングス
テン板を用いた。そして、平均粒径が50μm のタングス
テンを用い、溶射ガスとしてアルゴンを用い、出力10kW
の条件でプラズマ溶射を行い、厚さが約50μm で空隙率
が20%の溶射膜を形成した。
Example 1 In the present invention, a 20 mm square tungsten plate having a thickness of 5 mm was used as a substrate. Then, using tungsten having an average particle size of 50 μm, argon as a spray gas, and an output of 10 kW
Plasma spraying was performed under the conditions described above to form a sprayed film having a thickness of about 50 μm and a porosity of 20%.

【0037】次に、この基板を平均粒径2μm のダイヤ
モンド粒子を分散させたアルコールに浸漬し、15分間に
亙って超音波振動を加えて基板上の溶射膜を傷付け処理
した。次に、この基板を本発明者らが開発したDCプラ
ズマジェットCVD装置(特開昭64-33096号公報参照)
に装着し、CVD成長を行って基板上の溶射膜表面に厚
さ50μm のダイヤモンド膜を形成した。
Next, the substrate was immersed in alcohol in which diamond particles having an average particle size of 2 μm were dispersed, and ultrasonically applied for 15 minutes to damage the sprayed film on the substrate. Next, a DC plasma jet CVD device developed by the present inventors using this substrate (see Japanese Patent Application Laid-Open No. 64-33096).
Then, a diamond film having a thickness of 50 μm was formed on the surface of the sprayed film on the substrate by CVD growth.

【0038】この試料についてダイヤモンド膜の密着強
度を測定したところ、約 100kg/cm2以上でダイヤモンド
膜の表面に付けた治具が剥がれてしまい、正しい値を得
ることができなかった。
When the adhesion strength of the diamond film was measured for this sample, the jig attached to the surface of the diamond film at about 100 kg / cm 2 or more was peeled off, and a correct value could not be obtained.

【0039】一方、溶射膜の形成及び超音波傷付け処理
を行わなかった以外は実施例1と同様にして、上記タン
グステン板に直接DCプラズマジェットCVD法により
ダイヤモンド膜を形成した。得られたダイヤモンド膜の
密着力は 1.0kg/cm2以下であり、本発明方法によりダイ
ヤモンド膜の密着力が大幅に向上していることが判っ
た。
On the other hand, a diamond film was directly formed on the tungsten plate by DC plasma jet CVD in the same manner as in Example 1 except that the sprayed film was not formed and the ultrasonic damage treatment was not performed. The adhesion of the obtained diamond film was 1.0 kg / cm 2 or less, and it was found that the adhesion of the diamond film was greatly improved by the method of the present invention.

【0040】実施例2 本例では、基板として20mm角で厚さが5mmのインコネル
(Ni-16Cr-8Fe) を用いた。そして、溶射材として平均
粒径が5μm のモリブデンを用い、溶射ガスとしてアル
ゴンを用い、出力10kWの条件でプラズマ溶射を行い、基
板上に厚さが約50μm で空隙率が15%の溶射膜を形成し
た。
Example 2 In this example, 20 mm square and 5 mm thick Inconel (Ni-16Cr-8Fe) was used as a substrate. Then, using a molybdenum having an average particle size of 5 μm as a thermal spraying material and using argon as a thermal spraying gas, plasma spraying is performed under the condition of an output of 10 kW. Formed.

【0041】以下、実施例1と同様にしてダイヤモンド
粒子による超音波傷付け処理を施し、その表面に厚さが
50μm のダイヤモンド膜を形成した。この試料について
ダイヤモンド膜の密着強度を測定したところ、100kg/cm
2 以上であった。一方、溶射膜の形成及び超音波傷付け
処理を行わなかった以外は実施例2と同様にしてインコ
ネルに直接ダイヤモンド膜を形成しようとした場合には
成膜することができなかった。
Thereafter, an ultrasonic scratching treatment was performed using diamond particles in the same manner as in Example 1, and the thickness of the surface was reduced.
A 50 μm diamond film was formed. When the adhesion strength of the diamond film was measured for this sample, 100 kg / cm
2 or more. On the other hand, a diamond film could not be formed when an attempt was made to form a diamond film directly on Inconel in the same manner as in Example 2 except that the formation of the sprayed film and the ultrasonic damage treatment were not performed.

【0042】実施例3 基板として20mm角で厚さが5mmの窒化アルミニウム(Al
N) を用いた。次に、この基板上にプラズマ溶射法を用
いてアルミナ50μm, Cu 30μm, Ti 50μm からなる三層
の溶射膜を形成した。なお、Ti膜の空隙率は10%であっ
た。
Example 3 A 20 mm square aluminum nitride (Al) having a thickness of 5 mm was used as a substrate.
N) was used. Next, a three-layer sprayed film composed of 50 μm of alumina, 30 μm of Cu, and 50 μm of Ti was formed on the substrate by plasma spraying. The porosity of the Ti film was 10%.

【0043】以下、実施例1と同様にしてダイヤモンド
粒子による超音波傷付け処理を施し、その表面に厚さが
50μm のダイヤモンド膜を形成し、この試料についてダ
イヤモンド膜の密着強度を測定したところ、100kg/cm2
以上であった。一方、溶射膜の形成及び超音波傷付け処
理を行わなかった以外は実施例3と同様にして、AlN 基
板に直接ダイヤモンド膜を形成した場合の密着力は 1.0
kg/cm2以下であった。
Thereafter, an ultrasonic scratching treatment was performed using diamond particles in the same manner as in Example 1, and the thickness of the surface was reduced.
When forming a diamond film of 50 [mu] m, was measured the adhesion strength of the diamond film on the sample, 100 kg / cm 2
That was all. On the other hand, in the same manner as in Example 3 except that the sprayed film was not formed and the ultrasonic damage treatment was not performed, the adhesion when the diamond film was formed directly on the AlN substrate was 1.0.
kg / cm 2 or less.

【0044】実施例4 基板として20mm角、厚さ5mmのCu板を用い、その表面を
タングステンカーバイド(WC)粒子を用いてブラスト処
理し、その上に厚さ約50μm の溶射膜をプラズマ溶射に
て形成した。溶射粉末としては、図3(B) のように、平
均粒径5μm のモリブデン(Mo)粒子が銅(Cu)中に分
散している平均粒径50μm の粉末を用い、Moの体積比は
50%であった。溶射条件は大気中で溶射ガスとしてアル
ゴンを用い、出力10kWであった。次にCu用のエッチング
液(硝酸水溶液)を用いて、溶射膜表面のCuのみを約2
μm エッチングし、Mo粒子が表面に出るようにして、表
面の凹凸を更に大きくした。これを平均粒径2μm のダ
イヤモンド粒子を分散させたアルコール中に浸し、室温
で15分間、超音波振動を加え、傷付け処理した。得られ
た基板を、本発明者らの開発したDCプラズマジェット
CVD装置(特開昭64-33096号公報参照) に装着し、表
面に厚さ約 100μm のダイヤモンド膜を被覆した。ダイ
ヤモンド膜の被覆条件は水素50リットル/min、メタン1
リットル/min、圧力50Torr、放電出力6kW、合成時間1
hrとした。上で得られた試料についてダイヤモンド膜の
密着強度を測定したところ、約 200kg/cm2以上で、ダイ
ヤモンド膜の表面につけた治具がはがれてしまい、正し
い値を得ることができなかった。
Example 4 A 20 mm square, 5 mm thick Cu plate was used as a substrate, the surface of which was blasted using tungsten carbide (WC) particles, and a sprayed film having a thickness of about 50 μm was formed thereon by plasma spraying. Formed. As the thermal spray powder, as shown in FIG. 3 (B), a powder having an average particle size of 50 μm in which molybdenum (Mo) particles having an average particle size of 5 μm are dispersed in copper (Cu) is used.
50%. The thermal spraying conditions used argon as a thermal spray gas in the atmosphere, and the output was 10 kW. Next, using a Cu etching solution (aqueous nitric acid solution), only Cu on the
Etching was performed by μm so that Mo particles appeared on the surface to further increase the surface irregularities. This was immersed in alcohol in which diamond particles having an average particle diameter of 2 μm were dispersed, and ultrasonically applied at room temperature for 15 minutes to perform a scratching treatment. The obtained substrate was mounted on a DC plasma jet CVD device developed by the present inventors (see JP-A-64-33096), and the surface was coated with a diamond film having a thickness of about 100 μm. Diamond film coating conditions are 50 liters / min of hydrogen, methane 1
Liter / min, pressure 50 Torr, discharge output 6 kW, synthesis time 1
hr. When the adhesion strength of the diamond film was measured for the sample obtained above, the jig attached to the surface of the diamond film was peeled off at about 200 kg / cm 2 or more, and a correct value could not be obtained.

【0045】一方、プラズマ溶射膜の溶射並びにそれに
続くエッチング及び超音波傷付け処理を行わなかった以
外は実施例4と同様にしてCu板に直接ダイヤモンド膜を
被覆させた試料は、製膜後、試料を室温に下げる間に剥
離してしまい密着強度を測定することさえできなかっ
た。
On the other hand, a sample in which a diamond film was directly coated on a Cu plate in the same manner as in Example 4 except that the plasma sprayed film was not sprayed and the subsequent etching and ultrasonic scratching treatment were not performed, Was peeled off during lowering to room temperature, and the adhesion strength could not even be measured.

【0046】実施例5 基板として、20mm角、厚さ5mmのインコネル(Ni-16Cr-
8Fe) 、溶射材として平均粒径5μm のWC粒子 80vol%
と平均粒径1μm のCo粒子 20vol%を造粒した平均粒径
50μm の、図3(C) に示したような粉末を用い、実施例
4と同様にして、溶射層50μm 形成後、表面のCoをエッ
チングしてダイヤモンド膜を 100μm 形成したところ、
密着力が 200kg/cm2以上のダイヤモンド膜が得られた。
Example 5 A 20 mm square, 5 mm thick Inconel (Ni-16Cr-
8Fe), 80vol% of WC particles with an average particle size of 5μm as a thermal spraying material
And average particle diameter of 20vol% of Co particles with average particle diameter of 1μm
Using a 50 μm powder as shown in FIG. 3 (C) and forming a sprayed layer of 50 μm and etching the surface Co to form a diamond film of 100 μm in the same manner as in Example 4,
A diamond film having an adhesion of 200 kg / cm 2 or more was obtained.

【0047】一方、プラズマ溶射並びにこれに続くエッ
チング及び超音波傷付け処理を行わなかった以外は実施
例5と同様にして、インコネルに直接ダイヤモンド製膜
を試みたところダイヤモンドは製膜できなかった。
On the other hand, when a diamond film was directly formed on Inconel in the same manner as in Example 5 except that the plasma spraying and the subsequent etching and ultrasonic scratching treatment were not performed, no diamond could be formed.

【0048】実施例6 下地基板として20mm角、厚さ5mmのモリブデン(Mo) 板
を用い、その表面を炭化ケイ素(SiC) 粒子を用いてブラ
スト処理した。ブラスト条件は、粒度 100メッシュ、ブ
ラスト圧力3kg/cm2、時間は10分とした。このようにし
て得られたブラスト処理基板を平均粒径2μm のダイヤ
モンド粒子を分散させたアルコール中に浸し、15分間、
超音波振動を加え、さらに傷付け処理をした。次に、得
られた基板を本発明者らが先に開発したDCプラズマジ
ェットCVD装置(特開昭64-33096号公報)に装着し、
基板表面に厚さ約 100μm のダイヤモンド膜を被覆し
た。
Example 6 A 20 mm square, 5 mm thick molybdenum (Mo) plate was used as a base substrate, and its surface was blasted using silicon carbide (SiC) particles. The blast conditions were a particle size of 100 mesh, a blast pressure of 3 kg / cm 2 , and a time of 10 minutes. The blasted substrate thus obtained is immersed in alcohol in which diamond particles having an average particle size of 2 μm are dispersed, and the blasted substrate is
Ultrasonic vibration was applied to further perform a scratching treatment. Next, the obtained substrate was mounted on a DC plasma jet CVD device (JP-A-64-33096) developed earlier by the present inventors.
The substrate surface was coated with a diamond film having a thickness of about 100 μm.

【0049】この試料についてダイヤモンド膜の密着強
度を測定したところ、約 200kg/cm2以上で、ダイヤモン
ド膜の表面に付けた治具が剥がれてしまい、正しい値を
得ることができなかった。
When the adhesion strength of the diamond film was measured for this sample, the jig attached to the surface of the diamond film was peeled off at about 200 kg / cm 2 or more, and a correct value could not be obtained.

【0050】一方、ブラスト処理及び超音波傷付け処理
をしなかった以外は、実施例6と同様にして、モリブデ
ン(Mo)板に直接ダイヤモンド膜を被覆させた。得られ
た試料は、製膜後、試料を室温に下げる間に剥離してし
まい、密着強度を測定することさえできなかった。
On the other hand, a molybdenum (Mo) plate was directly coated with a diamond film in the same manner as in Example 6, except that the blast treatment and the ultrasonic scratching treatment were not performed. After the film was formed, the sample was peeled off while the sample was cooled to room temperature, and it was not even possible to measure the adhesion strength.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、本発明
により、基板とダイヤモンド膜との間の密着強度が 100
kg/cm2以上のダイヤモンド被膜を得ることができ、例え
ば本発明を適用してダイヤモンドを被覆した工具や治具
は従来のものに較べ数倍から数10倍の長寿命化が期待で
きることが明らかである。
As is clear from the above description, according to the present invention, the adhesion strength between the substrate and the diamond film is 100%.
It is possible to obtain a diamond coating of kg / cm 2 or more.For example, it is clear that a tool or a jig coated with diamond by applying the present invention can be expected to have a life several times to several tens times longer than that of a conventional tool. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したダイヤモンド膜の断面構造を
示す模式図である。
FIG. 1 is a schematic view showing a cross-sectional structure of a diamond film to which the present invention is applied.

【図2】本発明の第二の態様を適用したダイヤモンド膜
の断面構造を示す模式図である。
FIG. 2 is a schematic diagram showing a cross-sectional structure of a diamond film to which a second embodiment of the present invention is applied.

【図3】本発明の第二の態様で用いる溶射粉末の状態を
模式的に示す図面である。
FIG. 3 is a drawing schematically showing a state of a sprayed powder used in a second embodiment of the present invention.

【図4】本発明の第三の態様を適用したダイヤモンド膜
の断面構造を示す模式図である。
FIG. 4 is a schematic diagram showing a cross-sectional structure of a diamond film to which the third embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…基板 2…溶射膜 3…ダイヤモンド膜 4…基板 5…溶射膜 6…高融点溶射材(粒子) 7…低融点溶射材(粒子) 8…ダイヤモンド膜 9…基板 10…ブラスト処理面 11…ダイヤモンド膜 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Sprayed film 3 ... Diamond film 4 ... Substrate 5 ... Sprayed film 6 ... High melting point sprayed material (particles) 7 ... Low melting point sprayed material (particles) 8 ... Diamond film 9 ... Substrate 10 ... Blast processing surface 11 ... Diamond film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−219043(JP,A) 特開 平3−141193(JP,A) 特開 平3−141195(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 1-219043 (JP, A) JP-A 3-141193 (JP, A) JP-A 3-141195 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ダイヤモンド膜を成長させる被処理基板
上に空隙率が5〜30%の溶射膜を中間層として形成し、
該中間層上にダイヤモンド膜を気相成長させることを特
徴とするダイヤモンド膜の被覆方法。
A sprayed film having a porosity of 5 to 30% is formed as an intermediate layer on a substrate on which a diamond film is to be grown,
A method for coating a diamond film, wherein a diamond film is grown on the intermediate layer by vapor phase growth.
【請求項2】 前記記載の溶射膜に傷付け処理を施して
ダイヤモンド膜を気相成長させる請求項1記載のダイヤ
モンド膜の被覆方法。
2. The method for coating a diamond film according to claim 1, wherein said sprayed film is subjected to a scratching treatment to grow a diamond film in a vapor phase.
【請求項3】 前記記載の溶射膜が多層構造をとって構
成されている請求項1記載のダイヤモンド膜の被覆方
法。
3. The method for coating a diamond film according to claim 1, wherein said sprayed film has a multilayer structure.
【請求項4】 被処理基板上に低融点材料と高融点材料
の混合粉末を溶射して高融点の溶射材を溶射膜表面に粒
子状に分散させることにより、その表面に凹凸を設け、
その上にダイヤモンド膜を気相成長させることを特徴と
するダイヤモンド膜の被覆方法。
4. A method for spraying a mixed powder of a low-melting material and a high-melting material on a substrate to be processed and dispersing the high-melting material on the surface of the sprayed film in a particle form, thereby providing irregularities on the surface.
A diamond film coating method, wherein a diamond film is vapor-phase grown thereon.
【請求項5】 前記溶射膜形成の前に、基板表面をブラ
スト処理して溶射膜の密着性をあげる請求項1又は4記
載のダイヤモンド膜の被覆方法。
5. The method for coating a diamond film according to claim 1, wherein the surface of the substrate is blasted to increase the adhesion of the sprayed film before the formation of the sprayed film.
【請求項6】 前記溶射膜の形成後、表面の低融点材の
みもしくは高融点材のみをエッチングにより除去し、表
面の凹凸をさらに大きくする請求項4記載のダイヤモン
ド膜の被覆方法。
6. The method for coating a diamond film according to claim 4, wherein after forming the sprayed film, only the low melting point material or only the high melting point material on the surface is removed by etching to further increase the surface irregularities.
【請求項7】 前記溶射膜の形成後、その表面を傷付け
処理してダイヤモンドの核発生密度を上げた後にダイヤ
モンド膜を気相成長させる請求項4又は5に記載のダイ
ヤモンド膜の被覆方法。
7. The method for coating a diamond film according to claim 4, wherein, after the formation of the sprayed film, the surface of the diamond film is scratched to increase the nucleation density of diamond, and then the diamond film is vapor-phase grown.
【請求項8】 ダイヤモンド膜を成長させる被処理基板
の表面をブラスト処理し、そのブラスト処理面にダイヤ
モンド膜を気相合成させることを特徴とするダイヤモン
ド膜の被覆方法。
8. A method for coating a diamond film, comprising: blasting a surface of a substrate on which a diamond film is to be grown; and vapor-phase synthesizing the diamond film on the blasted surface.
【請求項9】 前記ブラスト処理に使用するブラスト粉
末が、ダイヤモンド、炭化物、窒化物、炭窒素化物及び
これらの混合物を主材料とした粉末である請求項8記載
のダイヤモンド膜の被覆方法。
9. The method for coating a diamond film according to claim 8, wherein the blast powder used for the blast treatment is a powder mainly composed of diamond, carbide, nitride, carbonitride, and a mixture thereof.
【請求項10】 前記被処理基板をダイヤモンド粉末を分
散させた液体中に浸して振動を与え、被処理基板表面に
微細な傷をつけた後、ダイヤモンドの気相成長を行う請
求項8又は9に記載のダイヤモンド膜の被覆方法。
10. The method according to claim 8, wherein the substrate is immersed in a liquid in which diamond powder is dispersed, vibrated to give fine scratches on the surface of the substrate, and then the diamond is vapor-grown. 3. The method for coating a diamond film according to item 1.
JP6391392A 1991-08-19 1992-03-19 Method of coating diamond film Expired - Lifetime JP2697751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6391392A JP2697751B2 (en) 1991-08-19 1992-03-19 Method of coating diamond film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-206655 1991-08-19
JP20665591 1991-08-19
JP6391392A JP2697751B2 (en) 1991-08-19 1992-03-19 Method of coating diamond film

Publications (2)

Publication Number Publication Date
JPH0656585A JPH0656585A (en) 1994-03-01
JP2697751B2 true JP2697751B2 (en) 1998-01-14

Family

ID=26405046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6391392A Expired - Lifetime JP2697751B2 (en) 1991-08-19 1992-03-19 Method of coating diamond film

Country Status (1)

Country Link
JP (1) JP2697751B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815052B2 (en) * 2000-12-01 2004-11-09 P1 Diamond, Inc. Filled diamond foam material and method for forming same
US20060147631A1 (en) * 2005-01-04 2006-07-06 Lev Leonid C Method for making diamond coated substrates, articles made therefrom, and method of drilling
JP5334085B2 (en) * 2007-11-19 2013-11-06 独立行政法人産業技術総合研究所 Substrate seeding method, diamond microstructure and manufacturing method thereof
JP2015100905A (en) * 2013-11-27 2015-06-04 学校法人慶應義塾 Member adhered with diamond coating film and method of manufacturing the same
CN116217270B (en) * 2022-12-26 2024-04-09 何思义 Production process of diamond film coated dielectric ball with surface of zirconia ball

Also Published As

Publication number Publication date
JPH0656585A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
US5260106A (en) Method for forming diamond films by plasma jet CVD
EP0378378B1 (en) Making diamond composite coated cutting tools.
US5180571A (en) Process for the preparation of diamond
EP0413834B1 (en) Diamond-covered member and process for producing the same
JP2938552B2 (en) Coating film manufacturing method and coating film manufacturing apparatus
CA1336704C (en) Method of producing sintered hard metal with diamond film
JPS63153275A (en) Diamond coated alumina
TWI718800B (en) Method of diamond nucleation and structure formed thereof
JPS61124573A (en) Diamond-coated base material and its production
JP2697751B2 (en) Method of coating diamond film
JPH1192934A (en) Hard carbon thick coating and its production
JPS62138395A (en) Preparation of diamond film
JPH06183890A (en) Artificial diamond-coated material
JPH0558784A (en) Method for depositing diamond
EP0721998B1 (en) Method for vapour deposition of diamond film
JP3082979B2 (en) Method for forming a-DLC-Si film
JP2978023B2 (en) Manufacturing method of synthetic diamond film
JP2737521B2 (en) Method of coating diamond film
US5492770A (en) Method and apparatus for vapor deposition of diamond film
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JPH01317112A (en) Polycrystalline diamond having high strength and production thereof
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof
JPH05124825A (en) Mold having diamondlike thin film protection film
JP2894168B2 (en) Pressure modulation film formation method
JPH04272179A (en) Manufacture of diamond-coated member

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970805