JP2697274B2 - Microwave plasma processing apparatus and operation method thereof - Google Patents

Microwave plasma processing apparatus and operation method thereof

Info

Publication number
JP2697274B2
JP2697274B2 JP2253730A JP25373090A JP2697274B2 JP 2697274 B2 JP2697274 B2 JP 2697274B2 JP 2253730 A JP2253730 A JP 2253730A JP 25373090 A JP25373090 A JP 25373090A JP 2697274 B2 JP2697274 B2 JP 2697274B2
Authority
JP
Japan
Prior art keywords
microwave
plasma
plasma generation
generation chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2253730A
Other languages
Japanese (ja)
Other versions
JPH04132215A (en
Inventor
久道 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2253730A priority Critical patent/JP2697274B2/en
Publication of JPH04132215A publication Critical patent/JPH04132215A/en
Application granted granted Critical
Publication of JP2697274B2 publication Critical patent/JP2697274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波プラズマを用いた被処理物の
表面に薄膜を形成し、あるいは表面をエッチングするマ
イクロ波プラズマ処理装置の構成と、このマイクロ波プ
ラズマ処理装置を用いて被処理物の表面処理を行う際の
装置の操作方法とに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a configuration of a microwave plasma processing apparatus for forming a thin film on a surface of an object to be processed using microwave plasma or etching a surface thereof, and The present invention relates to a method of operating an apparatus when performing a surface treatment of an object to be processed using a microwave plasma processing apparatus.

〔従来の技術〕[Conventional technology]

従来のマイクロ波プラズマ処理装置の一例としてECR
(電子サイクロトロン共鳴)プラズマCVD装置を第3図
に示す。図示されないマイクロ波源で発振されたマイク
ロ波が導波管1を通り、マイクロ波透過窓2を通過し
て、図示されない真空排気装置で真空に保たれたプラズ
マ生成室3に導入される。プラズマ生成室3内にはガス
導入管4を通してプラズマ生成ガスが供給され、前記マ
イクロ波と、プラズマ生成室3を囲んで配置された励磁
コイル5がプラズマ生成室3内に形成する磁界との作用
でマイクロ波プラズマが生じる。
ECR as an example of conventional microwave plasma processing equipment
(Electron cyclotron resonance) A plasma CVD apparatus is shown in FIG. Microwaves oscillated by a microwave source (not shown) pass through the waveguide 1, pass through the microwave transmission window 2, and are introduced into the plasma generation chamber 3 kept in a vacuum by a vacuum exhaust device (not shown). The plasma generation gas is supplied into the plasma generation chamber 3 through the gas introduction pipe 4, and the action of the microwave and the magnetic field formed in the plasma generation chamber 3 by the excitation coil 5 surrounding the plasma generation chamber 3. Generates microwave plasma.

このプラズマは、前記励磁コイル5の形成する発散磁
界に沿って下向きに移動し、反応室7内にあって反応室
外部のRF電源からRF電力が印加できるステージ8上に載
置されたウエーハ9に照射される。反応室7にはガス導
入管10を通して反応ガスが供給される。
This plasma moves downward along the divergent magnetic field formed by the exciting coil 5 and is placed in a reaction chamber 7 on a wafer 9 placed on a stage 8 to which RF power can be applied from an RF power supply outside the reaction chamber. Is irradiated. A reaction gas is supplied to the reaction chamber 7 through a gas introduction pipe 10.

マイクロ波を効率よくプラズマに吸収させるため、プ
ラズマ生成室3は円筒空洞共振器構造をとり、反応室7
との間にある大きさの開口を持った金属製の窓6が設置
されている。
In order to efficiently absorb microwaves into the plasma, the plasma generation chamber 3 has a cylindrical cavity structure, and the reaction chamber 7
Is provided with a metal window 6 having an opening of a certain size.

このような装置において、例えばマイクロ波の周波数
として通常工業的に用いられてる2.45GHzを用い、プラ
ズマ生成室内に磁束密度875ガウスの領域を形成して、
プラズマ生成ガスに窒素、反応ガスにシランを用いる
と、マイクロ波電界と磁界とによる電子サイクロトロン
共鳴効果によりプラズマ生成ガスが効率よく電離され、
ウエーハ上にシリコン窒化膜が効率よく形成される。な
お、前記RF電力をステージに印加して膜形成を行うと、
膜の緻密化,段差被膜の改善,段差部の膜の平坦化等、
目的に応じた成膜が可能である。
In such a device, for example, using 2.45 GHz, which is usually used industrially as a microwave frequency, a region of 875 gauss of magnetic flux density is formed in the plasma generation chamber,
When nitrogen is used for the plasma generation gas and silane is used for the reaction gas, the plasma generation gas is efficiently ionized by the electron cyclotron resonance effect of the microwave electric field and the magnetic field,
A silicon nitride film is efficiently formed on the wafer. Incidentally, when the film is formed by applying the RF power to the stage,
Densification of film, improvement of step coating, flattening of film at step, etc.
Film formation according to the purpose is possible.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記マイクロ波プラズマ処理装置において成膜速度を
増すためには、ステージ8をプラズマ生成室3方向に近
付け、ウエーハ表面に密度の高いプラズマ照射を受けさ
せることが有効である。ところがプラズマ生成室3と反
応室7とは窓6によって分離されているため近付けうる
距離に制限があり、従って成膜速度はある程度以上は得
られなかった。
In order to increase the film formation rate in the microwave plasma processing apparatus, it is effective to bring the stage 8 closer to the plasma generation chamber 3 and to irradiate the wafer surface with high-density plasma. However, since the plasma generation chamber 3 and the reaction chamber 7 are separated by the window 6, the distance that can be approached is limited, so that the film formation rate cannot be obtained to a certain degree or more.

この発明の目的は、装置の複雑化や大形化等、コスト
上昇を招くような構成変更を伴うことなく、上記限界を
超えて成膜速度を高めうるマイクロ波プラズマ処理装置
の構成と、この装置により被処理物を処理する際の装置
の操作方法とを提供することである。
An object of the present invention is to provide a configuration of a microwave plasma processing apparatus capable of increasing a film forming rate beyond the above-mentioned limit without accompanying a configuration change that causes an increase in cost, such as an increase in complexity and size of the apparatus. It is an object of the present invention to provide a method of operating an apparatus when processing an object to be processed by the apparatus.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、この発明においては、軸
対称に形成されプラズマ生成ガスが導入されるプラズマ
生成室にマイクロ波透過窓を通してマイクロ波を導入す
るとともに該プラズマ生成室内に磁界を形成してマイク
ロ波プラズマを生成し、このプラズマをステージに載置
された被処理物の表面に照射して表面を処理するマイク
ロ波プラズマ処理装置を、前記プラズマ生成室の反マイ
クロ波透過窓側がステージおよび被処理物が空隙を保っ
て軸方向に通過可能に形成されるとともに、該反マイク
ロ波透過窓側に、ステージをプラズマ生成室の軸方向に
進退させる直線駆動機構を備えるとともにロードロック
室と仕切り弁を介して連通して内部でステージへの被処
理物の受渡しが行われる受渡し室を備えた構成とし、被
処理物の処理を、被処理物の被処理面をプラズマ生成室
内に位置させて行う装置とするものとする。そして、こ
の構成原理に基づく具体的な装置を、プラズマ生成室が
マイクロ波透過窓のプラズマ生成室内部側の面から反マ
イクロ波透過窓側端面に到る軸方向の長さをマイクロ波
波長の1/2以上に形成され、被処理物の処理時に被処理
面とマイクロ波透過窓との間隔をマイクロ波波長の1/2
以下に設定する装置とすれば好適である。
In order to solve the above-mentioned problem, in the present invention, microwaves are introduced through a microwave transmission window into a plasma generation chamber into which a plasma generation gas is introduced, and a magnetic field is formed in the plasma generation chamber. A microwave plasma processing apparatus that generates microwave plasma and irradiates the surface of a processing object mounted on a stage with the plasma to process the surface is provided. The processing object is formed so as to be able to pass in the axial direction while maintaining a gap, and a linear drive mechanism for moving the stage forward and backward in the axial direction of the plasma generation chamber is provided on the anti-microwave transmission window side, and the load lock chamber and the gate valve are provided. And a delivery chamber in which delivery of the processing object to the stage is performed. The treated surface of the physical object is positioned in the plasma generating chamber shall be a device performed. The specific length of the microwave generation window is defined as the axial length from the surface of the microwave transmission window inside the plasma generation chamber to the end face of the microwave transmission window on the side opposite to the microwave transmission window. / 2 or more, and the distance between the surface to be processed and the microwave transmission window is set to 1/2 of the microwave wavelength when processing the object.
It is preferable that the apparatus be set as follows.

また、この具体的な装置を用いて被処理物を処理する
際の該装置の操作方法を、プラズマ生成室内を真空引き
してロードロック室から受渡し室内で待機中のステージ
へ被処理物を受け渡した後、直線駆動機構を操作してス
テージをマイクロ波透過窓方向へ微小ピッチで前進させ
て被処理物の被処理面とマイクロ波透過窓との間隔がマ
イクロ波波長の1/2以下となる適宜の位置に停止させ、
プラズマ生成室内に処理に用いるすべてのガスを導入し
つつ被処理物を処理する方法とするものとする。
Further, the method of operating the apparatus when processing the object to be processed using this specific apparatus is described in terms of evacuation of the plasma generation chamber and transfer of the object from the load lock chamber to the stage in the transfer chamber which is on standby. After that, operate the linear drive mechanism to advance the stage at a small pitch in the direction of the microwave transmission window, so that the distance between the processing surface of the object to be processed and the microwave transmission window becomes less than half the microwave wavelength. Stop at the appropriate position,
A method for treating an object to be treated while introducing all the gases used for the treatment into the plasma generation chamber.

〔作用〕[Action]

マイクロ波プラズマ処理装置をこのように構成し、被
処理物の処理を、プラズマ生成室内に被処理面を位置さ
せて行うことにより、被処理面は、プラズマ生成室内の
密度の高いプラズマ照射を受け、従って、成膜時には反
応ガスをプラズマ生成室内に導入することにより、プラ
ズマ生成ガスと反応ガスとを成分とする薄膜が、従来装
置で可能な限界を超えて高速度で形成される。この場
合、プラズマ生成室の反マイクロ波透過窓側は従来のよ
うな窓を必ずしも必要としない。これは、従来のプラズ
マ生成室がマイクロ波を効率よくプラズマに吸収させる
ために窓を備えた空洞共振器として形成され、窓を一方
の反射面としてプラズマ生成室内にマイクロ波の定在波
を形成した状態でプラズマ生成ガスがプラズマ化される
のであるが、本発明者の実験によれば、窓を除去して
も、プラズマ生成室から発散磁界に沿って反応室内へ移
動するプラズマの密度に変化はなく、プラズマ生成室内
でのプラズマ生成量が一定に保たれるからである。この
ように、窓の有無にかかわらず、プラズマ生成量が一定
に保たれる理由は、実施例の項で詳細を説明するよう
に、プラズマを生成室内に一旦プラズマが形成される
と、プラズマ生成室内のマイクロ波の波長が短くなり、
窓が定在波を成立させる位置的条件を満たさなくなると
ともに、マイクロ波がプラズマに吸収されて先へ進まな
くなるためである。従って、プラズマの生成はマイクロ
波透過窓に近いほど活発に行われる。この発明はこのよ
うなマイクロ波の波長の変化と進行方向の減衰とに着目
したものである。
By configuring the microwave plasma processing apparatus as described above and processing the object to be processed by positioning the surface to be processed in the plasma generation chamber, the surface to be processed is subjected to high density plasma irradiation in the plasma generation chamber. Therefore, by introducing the reaction gas into the plasma generation chamber at the time of film formation, a thin film containing the plasma generation gas and the reaction gas as components is formed at a high speed exceeding the limit possible with the conventional apparatus. In this case, an anti-microwave transmitting window side of the plasma generation chamber does not necessarily require a conventional window. This is because the conventional plasma generation chamber is formed as a cavity resonator with a window to efficiently absorb microwaves into the plasma, and a microwave standing wave is formed in the plasma generation chamber using the window as one reflection surface. The plasma generated gas is turned into a plasma in a state where the plasma is generated, but according to the experiments of the present inventor, even if the window is removed, the density of the plasma moving from the plasma generation chamber to the reaction chamber along the diverging magnetic field changes. This is because the amount of plasma generated in the plasma generation chamber is kept constant. As described above, the reason why the plasma generation amount is kept constant regardless of the presence or absence of the window is that once the plasma is formed in the generation chamber, the plasma generation The wavelength of the microwave in the room becomes shorter,
This is because the window no longer satisfies the positional condition for establishing a standing wave, and the microwave is absorbed by the plasma and does not proceed further. Therefore, the plasma is generated more actively as it is closer to the microwave transmission window. The present invention focuses on such a change in the wavelength of the microwave and attenuation in the traveling direction.

従ってマイクロ波プラズマ装置の具体構成として、プ
ラズマ生成室をマイクロ波透過窓のプラズマ生成室内部
側の面から反マイクロ波透過窓側端面に到る軸方向の長
さがマイクロ波波長の1/2以上となるように形成すると
ともに、被処理物の被処理面とマイクロ波透過窓との間
隔をプラズマ形成前のマイクロ波波長,すなわち真空中
のマイクロ波波長に等しい波長の1/2以下の適宜の間隔
とすることにより、この間隔内にマイクロ波の電界強度
が最大の、従ってプラズマ生成量が最大の位置が含ま
れ、成膜速度を可能最大とすることができる。しかも、
プラズマ生成室は定在波の半波数を3個とした通常の大
きさのものと比較して高さが大幅に低くなり、また、従
来の反応室は被処理物受渡しのための受渡し室としてよ
り小形化されるため、装置本体が小さくなり、直線駆動
機構がステージの軸方向移動量の増加分やや大形化する
欠点を十分補って装置のコスト上昇を抑えることができ
る。
Therefore, as a specific configuration of the microwave plasma apparatus, the length of the plasma generation chamber in the axial direction from the surface of the microwave transmission window inside the plasma generation chamber to the end face on the anti-microwave transmission window side is equal to or more than の of the microwave wavelength. And the distance between the surface of the object to be processed and the microwave transmission window is set to an appropriate wavelength equal to or less than 1/2 of the microwave wavelength before plasma formation, that is, the wavelength equal to the microwave wavelength in vacuum. By setting the interval, a position where the electric field strength of the microwave is maximum and thus the amount of plasma generation is maximum is included in the interval, and the film forming speed can be maximized. Moreover,
The height of the plasma generation chamber is much lower than that of the normal size with three half-waves of the standing wave, and the conventional reaction chamber is used as a delivery chamber for delivery of workpieces. Since the size is further reduced, the size of the apparatus body is reduced, and the linear drive mechanism can sufficiently compensate for the increase in the amount of movement of the stage in the axial direction and a relatively large size, thereby suppressing an increase in the cost of the apparatus.

また、この小形化された装置本体を有するマイクロ波
プラズマ処理装置を用いて被処理物を処理する際に、ス
テージをマイクロ波透過窓方向へ微小ピッチ,例えば1m
mピッチで前進させることにより、ガス種,ガス流量,
ガス圧力等の成膜条件が変わっても、成膜速度が最大と
なる被処理面の位置、あるいは成膜速度が十分に大きく
かつ膜厚分布がより一様になる位置等、目的に最も適し
た被処理面の位置を精度よく求めることができる。
Also, when processing an object to be processed using the microwave plasma processing apparatus having the miniaturized apparatus main body, the stage is moved at a fine pitch, for example, 1 m, in the direction of the microwave transmission window.
The gas type, gas flow rate,
Even if the film forming conditions such as gas pressure change, the position of the processing surface where the film forming speed is maximum, or the position where the film forming speed is sufficiently large and the film thickness distribution becomes more uniform, etc., is most suitable for the purpose. The position of the processed surface can be accurately obtained.

〔実施例〕〔Example〕

第1図に本発明の一実施例によるマイクロ波プラズマ
処理装置の構成を示す。図において、第3図と同一の部
材には同一符号が付されている。この実施例では第3図
における窓6が除去されて第3図と同一高さのプラズマ
生成室3が下方へ開放され、この開放端のフランジ3aに
真空中でウエーハの受渡しを行うための受渡し室11が取
り付けられている。この受渡し室11は図示されないロー
ドロック室と仕切り弁を介して結合される。この受渡し
室11には、プラズマ生成室3の軸線を外れた位置に排気
口13が形成され、軸線上には直線駆動機構と結合される
連結軸15が通る孔14が形成されている。連結軸15は、金
属ベローズ16の下方端に周縁が機密に接合されたフラン
ジ17を介して直線駆動機構22のねじ棒18と結合される。
ねじ棒18は、1回動方向にのみトルクを伝達するラチェ
ットレバー21を、1動作の回動角度を決めた上で繰返し
回動操作し、歯車20を介して固定ナット19を1方向に回
動させることにより、軸まわり非回転に微小ピッチで前
進または後退する。なお、ラチェットレバー21の代り
に、軸の回転量が入力パルスの数に比例して得られるパ
ルスモータを使用することにより、操作を容易にするこ
とも可能である。
FIG. 1 shows a configuration of a microwave plasma processing apparatus according to one embodiment of the present invention. In the figure, the same members as those in FIG. 3 are denoted by the same reference numerals. In this embodiment, the window 6 in FIG. 3 is removed, and the plasma generation chamber 3 having the same height as that in FIG. 3 is opened downward, and a delivery for delivering the wafer in vacuum to the flange 3a at the open end. Chamber 11 is attached. The transfer chamber 11 is connected to a load lock chamber (not shown) via a gate valve. In the transfer chamber 11, an exhaust port 13 is formed at a position off the axis of the plasma generation chamber 3, and a hole 14 through which a connecting shaft 15 coupled to a linear drive mechanism is formed is formed on the axis. The connection shaft 15 is coupled to a screw rod 18 of a linear drive mechanism 22 via a flange 17 whose peripheral edge is securely joined to a lower end of the metal bellows 16.
The screw rod 18 repeatedly rotates the ratchet lever 21 that transmits torque only in one rotation direction after determining the rotation angle of one operation, and turns the fixing nut 19 in one direction via the gear 20. By moving, it moves forward or backward at a fine pitch without rotating around the axis. The operation can be facilitated by using a pulse motor in which the amount of rotation of the shaft is obtained in proportion to the number of input pulses, instead of the ratchet lever 21.

また、プラズマ生成室3には、プラズマ生成ガス導入
管4のほかに反応ガス導入管10が取り付けられ、ウエー
ハ9の表面に薄膜を形成する際には、これら2つの導入
管からそれぞれプラズマ生成ガスと反応ガスとを同時に
導入する。
A reaction gas introduction pipe 10 is attached to the plasma generation chamber 3 in addition to the plasma generation gas introduction pipe 4, and when a thin film is formed on the surface of the wafer 9, the plasma generation gas is introduced from each of these two introduction pipes. And a reaction gas are introduced simultaneously.

ここでプラズマ生成室内でのマイクロ波の挙動とプラ
ズマ生成について説明する。プラズマ生成室内の偶存電
子はマイクロ波の電界Eと励磁コイルの作る外部磁界B
との作用でサイクロトロン運動を行い、ガス分子と衝突
してこれをイオン化する。マイクロ波の周波数f=2.45
GHz,磁界強度B=875ガウスのとき電子のサイクロトロ
ン周波数とマイクロ波の周波数とが一致するので電子サ
イクロトロン共鳴(ECR)をおこし、電子の工程が増
す。プラズマ生成室のガス圧力を1mTorr近辺にすること
でイオン化効率が向上し、高密度のプラズマが得られ
る。
Here, the behavior of microwaves and plasma generation in the plasma generation chamber will be described. The accidental electrons in the plasma generation chamber consist of the microwave electric field E and the external magnetic field B generated by the exciting coil.
Cyclotron motion is performed by the action of this, and it collides with gas molecules to ionize them. Microwave frequency f = 2.45
When the frequency is GHz and the magnetic field intensity B is 875 gauss, the electron cyclotron frequency coincides with the microwave frequency, so that electron cyclotron resonance (ECR) occurs and the number of electron processes increases. By setting the gas pressure in the plasma generation chamber at around 1 mTorr, ionization efficiency is improved, and high-density plasma can be obtained.

プラズマ室の形状はマイクロ波を効率よくプラズマに
吸収させるため円筒空洞共振器構造をしている。例えば
矩形導波管内をマイクロ波がTE11モードで伝搬すると
き、プラズマ室の内径を290mm,高さを190mmにするとプ
ラズマ室内でTE113モードの定在波が生じ、マイクロ波
の進行方向に腹が3個存在する(第4図(a))。マイ
クロ波の電界強度Eはマイクロ波の進行方向に垂直であ
り、腹の位置で電界強度が最高なのでこの位置でイオン
化効率が最大となり、高密度のプラズマが得られる。成
膜速度はプラズマ密度が大きいほど速いので、この位置
で成膜すると従来より大きい成膜速度が得られる。マイ
クロ波透過窓と被処理面との間隔をλ0/2(λは真空
中のマイクロ波の波長)にすれば腹の位置は必ず含まれ
るし、仮にその位置をはずれてもプラズマ密度は0でな
く、従来の反応室のプラズマ密度よりは大きいので成膜
速度を増すことが可能となる。
The shape of the plasma chamber has a cylindrical cavity structure to efficiently absorb microwaves into the plasma. For example, when a microwave propagates in a rectangular waveguide in the TE 11 mode, when the inner diameter of the plasma chamber is 290 mm and the height is 190 mm, a standing wave of the TE 113 mode is generated in the plasma chamber, and an antinode in the traveling direction of the microwave. (FIG. 4 (a)). The electric field intensity E of the microwave is perpendicular to the direction in which the microwave travels. Since the electric field intensity is highest at the position of the antinode, the ionization efficiency becomes maximum at this position, and a high-density plasma can be obtained. Since the film formation rate is higher as the plasma density is higher, a film formation rate higher than the conventional one can be obtained by forming a film at this position. It the distance between the microwave transmitting window and the surface to be processed λ 0/2 0 is the wavelength of the microwave in a vacuum) always includes the position of the antinode if, even plasma density is temporarily out of its position Since it is not 0 but larger than the plasma density in the conventional reaction chamber, it is possible to increase the film formation rate.

プラズマの誘電率εは真空中の誘電率εと異なり次
の式で与えられる。
The dielectric constant ε of the plasma is different from the dielectric constant ε 0 in vacuum and is given by the following equation.

ωce:電子サイクロトロン周波数=2.8×106×B(H
z) ω :マイクロ波周波数=2.45×109(Hz) 例えば磁束密度B=1000ガウス,電子密度Ne=1×10
10cm-3のときε=1+0.94=1.94となる。
ω ce : electron cyclotron frequency = 2.8 × 10 6 × B (H
z) ω: microwave frequency = 2.45 × 10 9 (Hz) For example, magnetic flux density B = 1000 gauss, electron density Ne = 1 × 10 9
At 10 cm -3 , ε = 1 + 0.94 = 1.94.

従って上記B,Neにおけるプラズマ中のマイクロ波の波
長λは、真空における円筒空洞共振器内のマイクロ波の
波長をλとすれば となる。
Therefore, the wavelength λ of the microwave in the plasma at B and Ne is given by λ 0 where the wavelength of the microwave in the cylindrical cavity in vacuum is λ 0. Becomes

プラズマ密度が増すにつれ波長λは短くなるので被処
理面を真空透過窓2に0〜λ/2の範囲内に接近させるこ
とで大きい成膜速度が得られる。
Since the wavelength [lambda] becomes shorter as the plasma density increases, a large film forming rate can be obtained by bringing the surface to be processed closer to the vacuum transmission window 2 within the range of 0 to [lambda] / 2.

第2図に上記実施例の変形例を示す。この例ではプラ
ズマ生成室3はマイクロ波のTE111モードに相当した高
さ、すなわちマイクロ波の半波長にほぼ等しい高さを有
し、上記実施例の場合の約1/3と、かなり小形化されて
いる。ここでもウエーハ9の被処理面とマイクロ波透過
窓2との間隔はλ0/2以下に保たれ、上記実施例と比
べ、装置本体がさらに小形化され、また、これに伴い、
直線駆動機構も小形化されている。
FIG. 2 shows a modification of the above embodiment. In this example, the plasma generation chamber 3 has a height corresponding to the TE 111 mode of the microwave, that is, a height substantially equal to a half wavelength of the microwave, and is considerably reduced to about 1/3 of the above-described embodiment. Have been. Again the distance between the surface to be processed and the microwave transmission window 2 of the wafer 9 is maintained at lambda 0/2 or less, compared with the above-described embodiment, the device body is further miniaturized, also with this,
The linear drive mechanism is also downsized.

なお、第1図および第2図に示すマイクロ波プラズマ
処理装置は、プラズマ生成ガスをエッチングガスとする
だけでエッチング装置となる。本発明は、このエッチン
グ装置も包含するものである。
The microwave plasma processing apparatus shown in FIGS. 1 and 2 is an etching apparatus only by using a plasma generation gas as an etching gas. The present invention also includes this etching apparatus.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明においては、軸対称に形
成されプラズマ生成ガスが導入されるプラズマ生成室に
マイクロ波透過窓を通してマイクロ波を導入するととも
に該プラズマ生成室内に磁界を形成してマイクロ波プラ
ズマを生成し、このプラズマをステージに載置された被
処理物の表面に照射して表面を処理するマイクロ波プラ
ズマ処理装置を、前記プラズマ生成室の反マイクロ波透
過窓側がステージおよび被処理物が空隙を保って軸方向
に通過可能に形成されるとともに、該反マイクロ波透過
窓側に、ステージをプラズマ生成室の軸方向に進退させ
る直線駆動機構を備えるとともにロードロック室と仕切
り弁を介して連通して内部でステージへの被処理物の受
渡しが行われる受渡し室を備えた構成とし、被処理物の
処理時に被処理面をプラズマ室内に位置させる装置とし
たので、被処理物の被処理面はプラズマ生成室内の密度
の高いプラズマ照射を受け、反応室を備えた従来の装置
では到達不可能な成膜速度を得ることができる。
As described above, in the present invention, microwaves are introduced through a microwave transmission window into a plasma generation chamber into which an axisymmetrically formed plasma generation gas is introduced, and a magnetic field is formed in the plasma generation chamber. A microwave plasma processing apparatus that generates microwave plasma and irradiates the surface of the object to be processed placed on the stage with the plasma to process the surface is performed. An object is formed so as to be able to pass in the axial direction while maintaining a gap, and a linear drive mechanism for moving the stage forward and backward in the axial direction of the plasma generation chamber is provided on the anti-microwave transmission window side, and a load lock chamber and a gate valve are interposed. And a delivery chamber in which the workpiece is delivered to the stage inside. Since the apparatus is located in the plasma chamber, the surface of the object to be processed is irradiated with high-density plasma in the plasma generation chamber, and a film formation rate that cannot be reached by the conventional apparatus having a reaction chamber can be obtained. it can.

そして、プラズマ中のマイクロ波は波長が真空中と比
べて短くなるとともに、プラズマに吸収されて先へ進ま
なくなり、プラズマの生成はマイクロ波透過窓に近いほ
ど活発に行われることから、上記装置を、プラズマ生成
室がマイクロ波透過窓のプラズマ生成室内部側の面から
反マイクロ波透過窓側端面に到る軸方向の長さをマイク
ロ波波長の1/2以上に形成され、被処理物の処理時に被
処理面とマイクロ波透過窓との間隔をマイクロ波波長の
1/2以下に設定する装置とすることにより、被処理面と
マイクロ波透過窓との間隔内に電界強度が最大の,従っ
てプラズマ生成量が最大の位置が含まれ、成膜速度を可
能最大とすることができる。しかも、プラズマ生成室は
定在波の半波数を3個とした通常の大きさのものと比較
して高さが大幅に低くなり、また、従来の反応室は被処
理物受渡しのための受渡し室としてより小形化されるた
め、装置本体が小さくなり、直線駆動機構がステージの
軸方向移動量の増加分やや大形化する欠点を十分に補っ
て装置のコスト上昇を抑えることができる。
Microwaves in plasma have a shorter wavelength than in vacuum, and are absorbed by the plasma and do not proceed further.Plasma is generated more actively near the microwave transmission window. The axial length of the plasma generation chamber from the surface of the microwave transmission window inside the plasma generation chamber to the end face of the anti-microwave transmission window side is formed to be half or more of the microwave wavelength, and Sometimes the distance between the surface to be treated and the microwave transmission window is
By setting the device to 1/2 or less, the position where the electric field intensity is maximum and therefore the plasma generation amount is maximum within the interval between the surface to be processed and the microwave transmission window is included, and the deposition rate can be maximized. It can be. In addition, the height of the plasma generation chamber is significantly lower than that of a normal chamber having three standing wave half-wave numbers, and the conventional reaction chamber is provided for delivery of the workpiece. Since the size of the chamber is further reduced, the size of the apparatus main body becomes smaller, and the linear drive mechanism can sufficiently compensate for the increase in the amount of movement of the stage in the axial direction and a relatively large size, thereby suppressing an increase in the cost of the apparatus.

また、この小形化された装置本体を有するマイクロ波
プラズマ処理装置を用いて被処理物を処理する際の装置
の操作方法を、プラズマ生成室内を真空引きしてロード
ロック室から受渡し室内で待機中のステージへ被処理物
を受け渡した後、直線駆動機構を操作してステージをマ
イクロ波透過窓方向へ微小ピッチで前進させて被処理物
の被処理面とマイクロ波透過窓との間隔がマイクロ波波
長の1/2以下となる適宜の位置に停止させ、プラズマ生
成室内に処理に用いるすべてのガスを導入しつつ被処理
物を処理する操作方法としたので、被処理物の被処理面
の位置設定が微小ピッチで行われ、ガス種,ガス流量,
ガス圧力等の成膜条件が変っても成膜速度が最大となる
位置、あるいは成膜速度が十分大きくかつ膜厚分布がよ
り一様となる位置など、目的に最も適した被処理面の位
置を精度よく求めることができる。
The method of operating the apparatus when processing an object to be processed using the microwave plasma processing apparatus having this miniaturized apparatus main body is described below. After the workpiece is transferred to the stage, the linear drive mechanism is operated and the stage is advanced at a small pitch in the direction of the microwave transmission window, and the distance between the processing surface of the workpiece and the microwave transmission window becomes microwave. Stop at an appropriate position where the wavelength is 1/2 or less, and operate the processing object while introducing all the gases used for the processing into the plasma generation chamber, so the position of the processing surface of the processing object The setting is performed at a fine pitch, and the gas type, gas flow rate,
The position of the surface to be processed that is most suitable for the purpose, such as the position where the film forming speed is maximum even if the film forming conditions such as gas pressure change, or the position where the film forming speed is sufficiently large and the film thickness distribution is more uniform. Can be obtained with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例によるマイクロ波プラズマ処
理装置の構成を示す縦断面図、第2図は第1図の実施例
の変形例を示す装置の縦断面図、第3図は従来のマイク
ロ波プラズマ処理装置の構成例を示す縦断面図、第4図
は円筒空洞共振器として形成されたプラズマ生成室内の
マイクロ波の状態を説明する図であって、同図(a)は
プラズマ生成前の波長を示す図,同図(b)はプラズマ
生成後の波長と軸方向の減衰とを示す図である。 1:導波管、2:マイクロ波透過窓、3:プラズマ生成室、4:
プラズマ生成ガス導入管、5:励磁コイル、8:ステージ、
9:ウエーハ(被処理物)、10:反応ガス導入管、11:受渡
し室、22:直線駆動機構。
FIG. 1 is a longitudinal sectional view showing a configuration of a microwave plasma processing apparatus according to one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of an apparatus showing a modification of the embodiment of FIG. 1, and FIG. FIG. 4 is a longitudinal sectional view showing a configuration example of a microwave plasma processing apparatus, and FIG. 4 is a view for explaining a state of microwaves in a plasma generation chamber formed as a cylindrical cavity resonator, and FIG. FIG. 4B shows the wavelength before generation, and FIG. 4B shows the wavelength after plasma generation and the attenuation in the axial direction. 1: waveguide, 2: microwave transmission window, 3: plasma generation chamber, 4:
Plasma production gas introduction pipe, 5: excitation coil, 8: stage,
9: wafer (object to be processed), 10: reaction gas introduction pipe, 11: transfer chamber, 22: linear drive mechanism.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軸対称に形成されプラズマ生成ガスが導入
されるプラズマ生成室にマイクロ波透過窓を通してマイ
クロ波を導入するとともに該プラズマ生成室内に磁界を
形成してマイクロ波プラズマを生成し、このプラズマを
ステージに載置された被処理物の表面に照射して表面を
処理するマイクロ波プラズマ処理装置において、前記プ
ラズマ生成室の反マイクロ波透過窓側がステージおよび
被処理物が空隙を保って軸方向に通過可能に形成される
とともに、該反マイクロ波透過窓側に、ステージをプラ
ズマ生成室の軸方向に進退させる直線駆動機構を備える
とともにロードロック室と仕切り弁を介して連通して内
部でステージへの被処理物の受渡しが行われる受渡し室
を備え、被処理物の処理時に被処理面をプラズマ生成室
内に位置させることを特徴とするマイクロ波プラズマ処
理装置。
A microwave is introduced through a microwave transmitting window into a plasma generation chamber into which a plasma generation gas is introduced, and a magnetic field is formed in the plasma generation chamber to generate microwave plasma. In a microwave plasma processing apparatus for processing a surface by irradiating a surface of an object to be treated with plasma with a stage, an anti-microwave transmission window side of the plasma generation chamber is arranged such that the stage and the object to be processed maintain an air gap and are axially aligned. And a linear drive mechanism for moving the stage forward and backward in the axial direction of the plasma generation chamber on the anti-microwave transmission window side, and communicates with the load lock chamber via a gate valve to form a stage inside. A transfer chamber for transferring the object to be processed, and the processing surface is positioned in the plasma generation chamber when the object is processed. Microwave plasma processing apparatus according to claim.
【請求項2】請求項第1項に記載のマイクロ波プラズマ
処理装置において、プラズマ生成室がマイクロ波透過窓
のプラズマ生成室内部側の面から反マイクロ波透過窓側
端面に到る軸方向の長さをマイクロ波波長の1/2以上に
形成され、被処理物の処理時に被処理面とマイクロ波透
過窓との間隔をマイクロ波波長の1/2以下に設定するこ
とを特徴とするマイクロ波プラズマ処理装置。
2. The microwave plasma processing apparatus according to claim 1, wherein the plasma generation chamber extends in the axial direction from the surface of the microwave transmission window on the plasma generation chamber side to the end face on the anti-microwave transmission window side. The microwave is formed to have a length equal to or more than 1/2 of the microwave wavelength, and the gap between the surface to be processed and the microwave transmission window is set to be equal to or less than 1/2 of the microwave wavelength when processing the object to be processed. Plasma processing equipment.
【請求項3】請求項第2項に記載の装置を用いて被処理
物を処理する際の該装置の操作方法であって、プラズマ
生成室内を真空引きしてロードロック室から受渡し室内
で待機中のステージへ被処理物を受け渡した後、直線駆
動機構を操作してステージをマイクロ波透過窓方向へ微
小ピッチで前進させて被処理物の被処理面とマイクロ波
透過窓との間隔がマイクロ波波長の1/2以下となる適宜
の位置に停止させ、プラズマ生成室内に処理に用いるす
べてのガスを導入しつつ被処理物を処理することを特徴
とするマイクロ波プラズマ処理装置の操作方法。
3. A method for operating an apparatus when processing an object to be processed using the apparatus according to claim 2, wherein the plasma generation chamber is evacuated to a standby state in a transfer chamber from a load lock chamber. After the workpiece is transferred to the middle stage, the linear drive mechanism is operated to advance the stage at a very small pitch in the direction of the microwave transmission window, and the distance between the processing surface of the workpiece and the microwave transmission window becomes smaller. A method for operating a microwave plasma processing apparatus, comprising: stopping at an appropriate position that is equal to or less than half of a wave wavelength, and processing an object to be processed while introducing all gases used for processing into a plasma generation chamber.
JP2253730A 1990-09-21 1990-09-21 Microwave plasma processing apparatus and operation method thereof Expired - Lifetime JP2697274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253730A JP2697274B2 (en) 1990-09-21 1990-09-21 Microwave plasma processing apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253730A JP2697274B2 (en) 1990-09-21 1990-09-21 Microwave plasma processing apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JPH04132215A JPH04132215A (en) 1992-05-06
JP2697274B2 true JP2697274B2 (en) 1998-01-14

Family

ID=17255345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253730A Expired - Lifetime JP2697274B2 (en) 1990-09-21 1990-09-21 Microwave plasma processing apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP2697274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69833786T2 (en) 1997-12-11 2006-10-12 The Furukawa Electric Co., Ltd. BOLZENIC CONNECTOR
JP2004200113A (en) * 2002-12-20 2004-07-15 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai Microwave plasma generation device
JP4585574B2 (en) * 2008-02-26 2010-11-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JPH04132215A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
KR0156011B1 (en) Plasma treating apparatus and method thereof
US4970435A (en) Plasma processing apparatus
JP3595608B2 (en) Vacuum processing apparatus, method for removing deposited film on inner surface of vacuum vessel in vacuum processing apparatus, and method for uniforming film deposition on inner surface of vacuum vessel in vacuum processing apparatus
JPH07221078A (en) Plasma apparatus and plasma treatment method using it
WO2001084611A1 (en) Apparatus for treating the surface with neutral particle beams
JP3561080B2 (en) Plasma processing apparatus and plasma processing method
US5462635A (en) Surface processing method and an apparatus for carrying out the same
JPH0216731A (en) Plasma reactor
JP2928577B2 (en) Plasma processing method and apparatus
JP2697274B2 (en) Microwave plasma processing apparatus and operation method thereof
WO2000019501A1 (en) Method and apparatus for plasma processing
JP2004006162A (en) Plasma treatment device and variable power distributor
JP2910381B2 (en) Plasma equipment
JP2913131B2 (en) Microwave plasma device
JPH0221296B2 (en)
JPS6377120A (en) Plasma processor
JP2697464B2 (en) Microwave plasma processing equipment
JP2001326216A (en) Plasma processing device
JP3331542B2 (en) Surface treatment apparatus and method
JPS62116775A (en) Plasma cvd device
JPS62216638A (en) Device for treating surface
JPH0242724A (en) Treating method
JP2515885B2 (en) Plasma processing device
JPH05343329A (en) Microwave plasma processor and procedure
JP2000164516A (en) Microwave plasma processor