JP2694773B2 - Method for measuring cell size in foam - Google Patents

Method for measuring cell size in foam

Info

Publication number
JP2694773B2
JP2694773B2 JP2145961A JP14596190A JP2694773B2 JP 2694773 B2 JP2694773 B2 JP 2694773B2 JP 2145961 A JP2145961 A JP 2145961A JP 14596190 A JP14596190 A JP 14596190A JP 2694773 B2 JP2694773 B2 JP 2694773B2
Authority
JP
Japan
Prior art keywords
foam
measuring
bubble
diameter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2145961A
Other languages
Japanese (ja)
Other versions
JPH0438443A (en
Inventor
哲哉 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2145961A priority Critical patent/JP2694773B2/en
Publication of JPH0438443A publication Critical patent/JPH0438443A/en
Application granted granted Critical
Publication of JP2694773B2 publication Critical patent/JP2694773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発泡体成形品の工程管理等に用いられる発
泡体中の気泡径測定方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for measuring a bubble diameter in a foam used for process control of a foam molded article and the like.

(従来の技術) 従来、発泡体中の気泡径を測定する方法としては、例
えば、気密性リングを作製し、その圧損により発泡状態
を確認することが一般に行われている。しかしながら、
この方法では直接気泡状態を確認することが出来ない
為、連続気泡、独立気泡、樹脂種違い等の場合、適応さ
せることが困難となる。又、直接気泡径を測定する方法
としては、被測定物表面又は断面を直接反射光式の光学
顕微鏡により観察することが行なわれている。
(Prior Art) Conventionally, as a method of measuring the bubble diameter in a foam, for example, an airtight ring is generally produced and the foaming state is confirmed by the pressure loss thereof. However,
Since it is not possible to directly confirm the bubble state by this method, it is difficult to adapt it in the case of open cells, closed cells, or different resin types. As a method of directly measuring the bubble diameter, the surface or cross section of the object to be measured is observed by a direct reflection light type optical microscope.

これらの方法は簡便であるが、気泡部が立体的である
為、焦点を合わせることが難しく、更に、被測定物面の
気泡とその下層にある気泡と重なる為、被測定物面の隔
壁と下層の気泡の隔壁との判別が困難であり、特に、ル
ーゼックス(ニレコ社製、画像処理装置)等、測定機器
による客観的測定では気泡径が実際と異なる値で測定さ
れる場合がある。
Although these methods are simple, it is difficult to focus because the bubble portion is three-dimensional, and furthermore, because the bubble on the surface of the object to be measured and the bubble in the layer below it overlap with each other, a partition wall on the surface of the object to be measured is formed. It is difficult to distinguish the lower bubbles from the partition walls, and in particular, in objective measurement using a measuring device such as Luzex (manufactured by Nireco Corp., image processing device), the bubble diameter may be measured at a value different from the actual value.

これに対し、被測定面を薄く切り出し、その切片を透
過光式光学顕微鏡により観察することが行なわれてい
る。この方法によれば、下層の気泡の影響は少なくな
り、測定機器による客観的測定によっても測定は可能と
なる。
On the other hand, the surface to be measured is cut out thinly and the section is observed with a transmitted light optical microscope. According to this method, the influence of bubbles in the lower layer is reduced, and the measurement can be performed by objective measurement using a measuring device.

しかし、発泡体の様な低硬度の物質においては、切片
を下層の影響のない膜厚に切り出すことは発泡体を冷凍
条件下においたとしても困難である。
However, in a substance having a low hardness such as foam, it is difficult to cut the slice into a film thickness that is not affected by the lower layer even if the foam is put under freezing conditions.

(発明が解決しようとしている問題点) 以上の様に従来より行なわれていた発泡体中の気泡径
測定方法では、測定結果がバラツキ易いこと、測定に際
し熟練を要すること、客観的測定方法が使えないこと等
の問題点があった。
(Problems to be solved by the invention) As described above, in the conventional method for measuring the bubble diameter in the foam, the measurement results are likely to vary, skill is required for the measurement, and the objective measurement method can be used. There were problems such as not being.

従って、本発明の目的はこれらの従来の問題点を解決
し、発泡体中の気泡径を簡便に且つ再現性良く測定する
方法を提供することにある。
Therefore, an object of the present invention is to solve these conventional problems and to provide a method for easily and reproducibly measuring the cell diameter in a foam.

(問題点を解決する為の手段) 上記の目的は以下の本発明により達成される。(Means for Solving Problems) The above object is achieved by the present invention described below.

即ち、本発明は、発泡体中に含まれる気泡径の測定方
法において、切断面の発泡体における樹脂マトリックス
に対し色差を有し且つ気泡径の1/100以下の粒径の粉末
を切断面の発泡体における気泡部分に充填し、被測定物
表面を平滑にした後、気泡径を測定することを特徴とす
る発泡体中の気泡径測定方法である。
That is, the present invention, in the method for measuring the cell diameter of the foam contained in the foam, having a color difference with respect to the resin matrix in the foam of the cut surface and a powder having a particle diameter of 1/100 or less of the cell diameter of the cut surface. It is a method for measuring a bubble diameter in a foam, which comprises filling a bubble portion in a foam, smoothing a surface of an object to be measured, and then measuring a bubble diameter.

(作 用) 切断面の発泡体における気泡部分に特定の粉末を充填
し、被測定物表面を平滑にして測定することにより、発
泡体中の気泡径を測定機器による客観的な測定方法で、
簡易に且つ再現性良く測定することが出来る。
(Working) By filling a bubble portion of the foam on the cut surface with a specific powder and measuring the surface of the DUT with a smooth surface, the bubble diameter in the foam can be measured by an objective measuring method.
Measurement can be performed easily and with good reproducibility.

(好ましい実施態様) 次に本発明を本発明の好ましい実施態様を挙げて更に
詳細に説明する。
(Preferred Embodiment) Next, the present invention will be described in more detail with reference to preferred embodiments of the present invention.

本発明において粉体の樹脂マトリックスに対する色差
とは、光学顕微鏡を用いる場合は光学的な色度の差のこ
とであり、又、電子顕微鏡を用いる場合は導電性の差の
ことである。
In the present invention, the color difference of the powder with respect to the resin matrix means the difference in optical chromaticity when using an optical microscope, and the difference in conductivity when using an electron microscope.

光学的な色度の差は大きいことが好ましく、例えば、
粉体と樹脂マトリックスとが補色関係にあることが好ま
しい。
It is preferable that the difference in optical chromaticity is large, for example,
It is preferable that the powder and the resin matrix have a complementary color relationship.

電子顕微鏡を用いた場合の導電性の差とは、例えば、
樹脂マトリックスが絶縁体である場合に、粉体として導
電性を有するものを選択する。この例においては導電処
理をせずにSEM等電子顕微鏡で観察すると、樹脂側が白
く、気泡に充填された粉体側は黒くなり、明らかなコン
トラストが認められ、気泡径の測定が可能となる。
With the difference in conductivity when using an electron microscope, for example,
When the resin matrix is an insulator, a powder having conductivity is selected. In this example, when observed with an electron microscope such as SEM without conducting the conductive treatment, the resin side becomes white, and the powder side filled with bubbles becomes black, and a clear contrast is observed, and the bubble diameter can be measured.

本発明に用いられる粉体の粒径としては、気泡径の1/
100以下であることが好ましい。粒径が1/100よりも大き
くなると粉体が気泡中に正確には充填されず、更に、気
泡を測定する倍率においては充電粉体の陰影も計測され
てしまう為好ましくない。
The particle size of the powder used in the present invention is 1 / the bubble size.
It is preferably 100 or less. If the particle size is larger than 1/100, the powder is not accurately filled in the bubbles, and the shadow of the charged powder is also measured at the magnification for measuring the bubbles, which is not preferable.

尚、以上の機能を有する粉体であればいずれの材料で
あっても本発明に使用出来る。
Any material can be used in the present invention as long as it is a powder having the above functions.

(実施例) 次に実施例により更に具合的に本発明を説明する。(Examples) Next, the present invention will be described in more detail with reference to Examples.

気泡粒径が100μm位の導電性スポンジ(色相;黒)
の内部気泡状態を確認する為に、先ず、カミソリにてス
ポンジの断面を切り出し、試料切片を作成する。
Conductive sponge with a bubble diameter of about 100 μm (hue: black)
In order to confirm the internal air bubble state, first, a cross section of the sponge is cut out with a razor to prepare a sample section.

次いで、この切片を平均粒径0.2μmのPMMA(色相;
白)の入っているビンに入れ、50Hzの加振器にビンを仕
掛け、10分間加振する。
Next, this section was used for PMMA (hue;
Put it in a bottle containing white), place the bottle on a 50Hz shaker, and shake for 10 minutes.

加振後、被測定物をビンより取り出し、被測定面(試
料断面)に付着している余剰のPMMA粉を羽根ブラシによ
り取り除く。
After shaking, remove the object to be measured from the bottle and remove the excess PMMA powder adhering to the surface to be measured (sample cross section) with a blade brush.

これを反射式光学顕微鏡に仕掛け、50倍の倍率で観察
を行ったところ、気泡の隔壁部が明瞭に識別された。
When this was mounted on a reflection optical microscope and observed at a magnification of 50 times, the partition wall of the bubble was clearly identified.

更に、接眼部にビデオカメラを取付け、画像信号をル
ーゼックス−451(ニレコ社製)に入力し画像処理した
ところ、個数平均粒径84.9μm(第1図)及び体積平均
粒径118μm(第2図)という結果を得た。
Furthermore, when a video camera was attached to the eyepiece section and an image signal was input to a Luzex-451 (manufactured by Nireco) for image processing, the number average particle diameter was 84.9 μm (FIG. 1) and the volume average particle diameter was 118 μm (second (Figure) was obtained.

尚、この試料は粉体を充填しない状態では上記のルー
ゼックスによる測定は出来ない。
This sample cannot be measured by the above Luzex without being filled with powder.

(発明の効果) 本発明の発泡体中の気泡径測定方法によれば、発泡体
中の気泡径を、測定機器による客観的な測定方法で、簡
易に且つ再現性良く測定することが出来る。
(Effect of the Invention) According to the method for measuring the cell diameter in the foam of the present invention, the cell diameter in the foam can be measured easily and with good reproducibility by an objective measuring method using a measuring instrument.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は、実施例のルーゼックスによる測定
結果を示すである。 第1図;個数平均分布 第2図;体積平均分布
FIG. 1 and FIG. 2 show the measurement results by Luzex of the example. Fig. 1; number average distribution Fig. 2; volume average distribution

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発泡体中に含まれる気泡径の測定方法にお
いて、切断面の発泡体における樹脂マトリックスに対し
色差を有し且つ気泡径の1/100以下の粒径の粉末を切断
面の発泡体における気泡部分に充填し、被測定物表面を
平滑にした後、気泡径を測定することを特徴とする発泡
体中の気泡径測定方法。
1. A method for measuring a diameter of a cell contained in a foam, wherein a foam having a color difference with respect to a resin matrix of the foam on the cut surface and having a particle diameter of 1/100 or less of the cell diameter is foamed on the cut surface. A method for measuring a bubble diameter in a foam, which comprises filling a bubble portion in a body, smoothing a surface of an object to be measured, and then measuring the bubble diameter.
JP2145961A 1990-06-04 1990-06-04 Method for measuring cell size in foam Expired - Fee Related JP2694773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145961A JP2694773B2 (en) 1990-06-04 1990-06-04 Method for measuring cell size in foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145961A JP2694773B2 (en) 1990-06-04 1990-06-04 Method for measuring cell size in foam

Publications (2)

Publication Number Publication Date
JPH0438443A JPH0438443A (en) 1992-02-07
JP2694773B2 true JP2694773B2 (en) 1997-12-24

Family

ID=15397021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145961A Expired - Fee Related JP2694773B2 (en) 1990-06-04 1990-06-04 Method for measuring cell size in foam

Country Status (1)

Country Link
JP (1) JP2694773B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202336A (en) * 1984-03-27 1985-10-12 Murata Mfg Co Ltd Crack detecting method of colored ceramics
JPH061267B2 (en) * 1988-09-13 1994-01-05 孝 西山 Analytical method of cellular structure in concrete samples

Also Published As

Publication number Publication date
JPH0438443A (en) 1992-02-07

Similar Documents

Publication Publication Date Title
CA1167959A (en) Purging and expansion mechanism
CA1135553A (en) Dry toner with improved toning uniformity and toning process
US20090091755A1 (en) Measuring method and system for measuring particle size and shape of powdery or grain like particles
CA2123940A1 (en) Electrophoresis plate
JP2694773B2 (en) Method for measuring cell size in foam
JPS5977404A (en) Slide for microscopic examination
CN115994499A (en) Soil-water characteristic curve acquisition method, system, equipment and storage medium
Clegg et al. Interrelationships between water and cell metabolism in Artemia cysts X. Microwave dielectric studies
JP2002522785A (en) Cuvette for optical inspection of ophthalmic lenses
Mindess et al. SEM investigations of fracture surfaces using stereo pairs: II. Fracture surfaces of rock-cement paste composite specimens
US4143544A (en) Fingerprinting crystals
CN113295719B (en) Method for manufacturing exosome transmission electron microscope sample
JPS5478137A (en) Carrier material for electrostatic developer
Cole et al. A sedimentation tube for analyzing water-stable soil aggregates
WO2002082046A3 (en) Silicon-wafer based devices and methods for analyzing biological material
Wilding et al. Correlative light optical and scanning electron microscopy of minerals; a methodology study
JPS5782853A (en) Developing method
Sato et al. The contact angle of phospholipid monolayer on a Wilhelmy plate
JPS55124037A (en) Test chart for x-ray photograph evaluation
Biliński Ultrastructural studies on oogenesis in symphyla: II. Cortical granules and the chorion
Allen et al. Microscopy
Reichard et al. Preparation of Nonmetallurgical Specimens for Electron-Probe Microanalysis.
US3021818A (en) Device for developing and fixing xerographic images
EP1384065B1 (en) Sample container with floating cover for x-ray analysis of liquids
SU1689814A1 (en) Method of analysis of finely dispersed systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees