JP2694192B2 - Method for applying soluble metal salt to semiconductor substrate - Google Patents

Method for applying soluble metal salt to semiconductor substrate

Info

Publication number
JP2694192B2
JP2694192B2 JP31134088A JP31134088A JP2694192B2 JP 2694192 B2 JP2694192 B2 JP 2694192B2 JP 31134088 A JP31134088 A JP 31134088A JP 31134088 A JP31134088 A JP 31134088A JP 2694192 B2 JP2694192 B2 JP 2694192B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
metal
impurities
aqueous solution
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31134088A
Other languages
Japanese (ja)
Other versions
JPH02156636A (en
Inventor
正隆 宝来
安則 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP31134088A priority Critical patent/JP2694192B2/en
Publication of JPH02156636A publication Critical patent/JPH02156636A/en
Application granted granted Critical
Publication of JP2694192B2 publication Critical patent/JP2694192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体基板に重金属を定量的かつ均一に
塗布する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for quantitatively and uniformly applying a heavy metal to a semiconductor substrate.

(従来の技術) 半導体製造工程において、半導体素子が例えばFe,Ni,
Cu等重金属で汚染され、当該重金属による汚染で半導体
素子特性が劣化し、製造歩留が低下するという問題があ
る。そのために、従来は、半導体素子の表面近傍から上
記有害な重金属を除去すべく、例えば半導体基板にゲッ
タリング処理を施し以て半導体素子製造の歩留を向上さ
せんとしている。
(Prior Art) In a semiconductor manufacturing process, a semiconductor element is made of, for example, Fe, Ni,
Contamination with heavy metals such as Cu deteriorates the semiconductor device characteristics due to the contamination with the heavy metals, resulting in a decrease in manufacturing yield. Therefore, conventionally, in order to remove the harmful heavy metal from the vicinity of the surface of the semiconductor element, for example, the semiconductor substrate is subjected to a gettering treatment to improve the yield of the semiconductor element manufacturing.

しかし、上記ゲッタリングの機構については不明な点
が多く、経験的に応用されているのが現状である。
However, there are many unclear points about the gettering mechanism, and the gettering mechanism is currently applied empirically.

そこで、従来、上記重金属の挙動及びゲッタリング機
構を評価・分析すべく、半導体基板に重金属等不純物を
故意に付着させて試料を作成し、不純物が半導体基板及
び半導体素子に与える影響を評価することが行われてい
る。
Therefore, conventionally, in order to evaluate and analyze the behavior and gettering mechanism of the above-mentioned heavy metals, a sample was prepared by intentionally adhering impurities such as heavy metals to the semiconductor substrate, and the influence of the impurities on the semiconductor substrate and the semiconductor element was evaluated. Is being done.

そして、上記重金属の不純物を付加する手段として、
従来は、 一定濃度の金属不純物を含む溶液中に半導体基板を浸
漬した後自然乾燥せしめる方法、 半導体基板表面に一定膜厚の金属膜を真空蒸着せしめ
る方法、 半導体基板表面に金属片又は金属線をこすり付ける方
法、 等が採用されている。
And, as a means for adding the impurities of the heavy metal,
Conventionally, a method of immersing a semiconductor substrate in a solution containing a certain concentration of metal impurities and then naturally drying it, a method of vacuum-depositing a metal film of a certain thickness on the surface of the semiconductor substrate, and a metal piece or wire on the surface of the semiconductor substrate The rubbing method, etc. are adopted.

(発明が解決しようとする課題) しかし上記の方法に依れば、汚染溶液中の金属イオ
ン濃度を調整することによって、ある程度まで半導体基
板上に残留する不純物量を制御できる反面、浸漬後、自
然乾燥を行う時点で、半導体基板の表面には、親水性面
の場合には、余分な汚染溶液が多量に残留し、逆に疎水
性面の場合には、汚染溶液が水滴状態で残留し、この結
果、これらの余分な或いは水滴状の汚染溶液が蒸発乾燥
した場合に、半導体基板表面上の汚染物質(重金属)の
分布が不均一となる。
(Problems to be Solved by the Invention) However, according to the above method, the amount of impurities remaining on the semiconductor substrate can be controlled to a certain extent by adjusting the metal ion concentration in the contaminated solution, but after the immersion, natural At the time of drying, on the surface of the semiconductor substrate, a large amount of excess contaminated solution remains in the case of a hydrophilic surface, and conversely, in the case of a hydrophobic surface, the contaminated solution remains in a water drop state, As a result, the distribution of the contaminant (heavy metal) on the surface of the semiconductor substrate becomes non-uniform when these excess or droplet-like contaminant solutions are evaporated and dried.

また、上記、の方法では、半導体基板上に残留す
る金属不純物量が、実際の半導体製造工程で混入する金
属不純物量よりも著しく多くなり、しかもこれらの方法
では、金属不純物量の残留量を制御できない。
Further, in the above method, the amount of metal impurities remaining on the semiconductor substrate becomes significantly larger than the amount of metal impurities mixed in the actual semiconductor manufacturing process, and in these methods, the residual amount of metal impurities is controlled. Can not.

本発明は、上記実状下にあって、実際の半導体製造工
程における汚染量と同程度の微量の不純物を、半導体基
板表面に低量的に且つ面内均一に付加する方法を提案す
る目的でなされたものである。
The present invention has been made under the above circumstances, and has been made for the purpose of proposing a method for adding a trace amount of impurities, which is about the same as the amount of contamination in the actual semiconductor manufacturing process, to the surface of a semiconductor substrate in a low amount and in-plane. It is a thing.

(課題を解決するための手段) すなわち、本発明は、半導体基板表面を親水性面と
し、当該半導体基板上に一定濃度の金属不純物を含む溶
液を滴下して、前記溶液で半導体基板表面を均一に被
い、一定時間保持させた後、半導体基板表面に残留する
余剰溶液を、当該半導体基板を回転させて除去すること
をその要旨とする。
(Means for Solving the Problem) That is, according to the present invention, the surface of a semiconductor substrate is made hydrophilic, and a solution containing metal impurities of a constant concentration is dropped onto the semiconductor substrate, and the surface of the semiconductor substrate is made uniform with the solution. The gist is to cover the semiconductor substrate, hold it for a certain period of time, and then remove the excess solution remaining on the surface of the semiconductor substrate by rotating the semiconductor substrate.

(作 用) 従って、本発明では、金属不純物を含む溶液が親水性
面である半導体基板表面に滴下されるため、上記溶液が
半導体基板表面に均一に安定して保持され、ここに保持
される溶液は一定濃度の金属不純物を含み、所定の時間
経過後、半導体基板表面には一定量の金属不純物が付着
される。かくして一定量の金属不純物が付着された半導
体基板表面には、余剰の溶液が残留しているが、この余
剰の溶液は、次に行われる半導体基板の回転によって除
去される。
(Operation) Therefore, in the present invention, since the solution containing the metal impurities is dropped on the surface of the semiconductor substrate which is a hydrophilic surface, the solution is uniformly and stably retained on the surface of the semiconductor substrate and retained there. The solution contains a certain concentration of metal impurities, and a certain amount of metal impurities adheres to the surface of the semiconductor substrate after a lapse of a predetermined time. Thus, the excess solution remains on the surface of the semiconductor substrate to which a certain amount of metal impurities are attached, but this excess solution is removed by the next rotation of the semiconductor substrate.

(実施例) 以下、本発明を例示図面に基いて詳述する。(Example) Hereinafter, the present invention will be described in detail with reference to exemplary drawings.

第1図(イ)〜(ハ)は、スピンコータを用いた本発
明の実施例を示す一連の縦断面図であって、(イ)は塗
布前の状態、(ロ)は汚染水溶液滴下直後の状態、
(ハ)は高速回転乾燥後の状態を概念的に表わしてい
る。また、第2図は、汚染水溶液中の金属イオン濃度と
半導体基板表面上の金属不純物量との関係図、第3図
は、塗布後の半導体基板面内の不純物の分布図、第4図
は、塗布後における半導体基板表面上の金属不純物量と
再結合ライフタイム(以下、「ライフタイム」と略称す
る)との関係図を示している。
1 (a) to 1 (c) are a series of vertical cross-sectional views showing an embodiment of the present invention using a spin coater, where (a) is a state before coating and (b) is a state immediately after dropping a contaminated aqueous solution. Status,
(C) conceptually represents the state after high-speed rotation drying. FIG. 2 is a diagram showing the relationship between the concentration of metal ions in the contaminated aqueous solution and the amount of metal impurities on the surface of the semiconductor substrate. FIG. 3 is a distribution diagram of impurities in the surface of the semiconductor substrate after coating. , A relationship diagram between the amount of metal impurities on the surface of the semiconductor substrate after coating and the recombination lifetime (hereinafter, abbreviated as “lifetime”).

まず、半導体基板表面を親水性となす処理について説
明する。
First, the treatment for making the surface of the semiconductor substrate hydrophilic will be described.

例えば、5インチφのN(100)CZ半導体基板を、NH4
OH−H2O2の混合水溶液中に入れて約90℃に加熱し、半
導体基板に付着している粒子状の不純物を除去する。次
に、当該処理の済んだ半導体基板を5%HF水溶液中に浸
漬する。この5%HF水溶液中への浸漬によって、半導体
基板の表面に存在する自然酸化膜が溶解され、該自然酸
化膜中に混在している金属性不純物が除去されることに
なる。かくして自然酸化膜の除去された半導体基板をHC
l−H2O2の混合水溶液に入れて約90℃に加熱し、半導体
基板上に、金属不純物を含まない清浄な自然酸化膜を得
る。
For example, 5-inch phi N (100) a CZ semiconductor substrate, NH 4
It is placed in a mixed aqueous solution of OH-H 2 O 2 and heated to about 90 ° C. to remove particulate impurities adhering to the semiconductor substrate. Next, the treated semiconductor substrate is immersed in a 5% HF aqueous solution. By dipping in the 5% HF aqueous solution, the natural oxide film existing on the surface of the semiconductor substrate is dissolved, and the metallic impurities mixed in the natural oxide film are removed. Thus, the semiconductor substrate from which the native oxide film has been removed
It is put in a mixed aqueous solution of l-H 2 O 2 and heated to about 90 ° C. to obtain a clean natural oxide film containing no metal impurities on the semiconductor substrate.

すなわち、上記処理によって、半導体基板1は、その
表面に金属不純物を含まない清浄な自然酸化膜(親水
性)2を備えたものとされる。
That is, the semiconductor substrate 1 is provided with the clean natural oxide film (hydrophilic) 2 containing no metal impurities on the surface by the above-mentioned treatment.

他方、上記処理とは別に、一定濃度の金属不純物(金
属不純物イオン)6を含む水溶液5を用意する。例え
ば、FeCl3を濃度50,100,500,1000,5000ppbに調整し、Cu
(NO3を濃度50,500,5000ppbに調整して用意する。
On the other hand, separately from the above treatment, an aqueous solution 5 containing a constant concentration of metal impurities (metal impurity ions) 6 is prepared. For example, adjust FeCl 3 to a concentration of 50,100,500,1000,5000ppb and
Prepare (NO 3 ) 2 by adjusting the concentration to 50,500,5000 ppb.

かくして半導体基板1の表面が親水性となされ、一定
濃度の金属不純物6を含む水溶液5が用意されたなら
ば、上記半導体基板1をスピンコータ3の真空チャック
4で固定し(第1図(イ)参照)、当該半導体基板1の
表面に、一定濃度の金属(Fe3+又はCu2+)不純物6を含
む水溶液5を約10ml滴下する。
Thus, when the surface of the semiconductor substrate 1 is made hydrophilic and the aqueous solution 5 containing the metal impurities 6 of a constant concentration is prepared, the semiconductor substrate 1 is fixed by the vacuum chuck 4 of the spin coater 3 (see FIG. 1A). ), About 10 ml of an aqueous solution 5 containing a metal (Fe 3+ or Cu 2+ ) impurity 6 at a constant concentration is dropped on the surface of the semiconductor substrate 1.

上記滴下された水溶液5は、半導体基板1の表面が新
たに形成された自然酸化膜2で被われて親水性であるた
め、半導体基板1の表面全体に一様に拡がり、当該半導
体基板1の端縁においては、第1図(ロ)に示すよう
に、表面張力によって端縁から流下することなく保持さ
れる。
Since the surface of the semiconductor substrate 1 is covered with the newly formed natural oxide film 2 and is hydrophilic, the dropped aqueous solution 5 spreads uniformly over the entire surface of the semiconductor substrate 1, and At the edge, as shown in FIG. 1 (b), it is held by the surface tension without flowing down from the edge.

そして、この状態を所定時間(約1分間)保持するこ
とにより、水溶液5中の金属不純物(Fe3+又はCu2+)6
が、後述する第2図で示すように、自然酸化膜2に一定
割合で吸着される。
By maintaining this state for a predetermined time (about 1 minute), the metal impurities (Fe 3+ or Cu 2+ ) 6 in the aqueous solution 5 are
However, as shown in FIG. 2 described later, they are adsorbed on the natural oxide film 2 at a constant rate.

続いて、3500rpmの回転数で15秒間、スピンコータ3
を高速回転させることにより、半導体基板1上の余剰の
汚染水溶液5を遠心力で除去すると共に半導体基板1を
乾燥する。この結果、半導体基板1上には、上記一定割
合で吸着された不純物6が残ることになる。
Then, spin coater 3 for 15 seconds at 3500 rpm.
By rotating at high speed, the excess contaminated aqueous solution 5 on the semiconductor substrate 1 is removed by centrifugal force and the semiconductor substrate 1 is dried. As a result, the impurities 6 adsorbed on the semiconductor substrate 1 at the above-mentioned fixed ratio remain.

本発明者は、上記処理を各種濃度(水溶液5中の金属
不純物6の濃度)について行い、それぞれの半導体基板
1,1…上に残存する不純物6を、原子吸光を用いた化学
的分析法で定量して、第2図に示す結果を得た。この第
2図で明らかなように、半導体基板1の表面に残留する
金属不純物6の量は、水溶液5中の金属不純物6の濃度
に比例しており、水溶液5中の金属不純物6の濃度を調
整することで、所望の不純物量を制御できることを示し
ている。
The present inventor carried out the above treatments for various concentrations (concentrations of metal impurities 6 in the aqueous solution 5) to obtain the respective semiconductor substrates.
Impurity 6 remaining on 1, 1, ... Was quantified by a chemical analysis method using atomic absorption, and the results shown in FIG. 2 were obtained. As is clear from FIG. 2, the amount of the metal impurities 6 remaining on the surface of the semiconductor substrate 1 is proportional to the concentration of the metal impurities 6 in the aqueous solution 5, and the concentration of the metal impurities 6 in the aqueous solution 5 is It shows that the desired impurity amount can be controlled by adjusting.

ところで、不純物量が制御できても、吸着にムラを生
じては、試料(ゲッタリング機構等の究明に供されるべ
く汚染された半導体基板)として不適格である。そこで
本発明者は、半導体基板1の表面での不純物量の面内分
析を行った。
By the way, even if the amount of impurities can be controlled, if the adsorption is uneven, it is not suitable as a sample (a semiconductor substrate that is contaminated for the purpose of investigating the gettering mechanism and the like). Therefore, the present inventor conducted an in-plane analysis of the amount of impurities on the surface of the semiconductor substrate 1.

すなわち、Cu2+を1000ppb含む水溶液を用いて半導体
基板1を上記のように処理し、2次イオン質量分析器を
用いて63Cu+30Si+のイオン強度比を半導体基板1表面
上の9点で測定し、第3図に示す結果を得た。なお、実
線は、OF(オリエンテーションフラット)に垂直に、ま
た一点鎖線はOFに平行に、それぞれエッヂから内側に10
mmの箇所(第3図の測定位置1と5)、2分の半径の箇
所(第3図の測定位置2と4)、センター(第3図の測
定位置3)の位置を測定した。従来法のうち、汚染水溶
液への浸漬法に依る場合、バラツキは約50%であるのに
対し、本発明法に依る場合のCuに対するバラツキは6.8
%であった。またAl3+を500ppb含む水溶液5で処理した
場合のバラツキは3%であり、本発明の方法に依れば、
この場合も均一な金属不純物の塗布が得られることを示
している。
That is, the semiconductor substrate 1 was treated as described above using an aqueous solution containing Cu 2+ at 1000 ppb, and the ion intensity ratio of 63 Cu + and 30 Si + was measured on the surface of the semiconductor substrate 1 using a secondary ion mass spectrometer. Measurement was performed at 9 points, and the results shown in FIG. 3 were obtained. The solid line is perpendicular to OF (orientation flat), and the dash-dotted line is parallel to OF.
The mm position (measurement positions 1 and 5 in FIG. 3), the 2-minute radius position (measurement positions 2 and 4 in FIG. 3), and the center position (measurement position 3 in FIG. 3) were measured. Among the conventional methods, the variation by the immersion method in the contaminated aqueous solution is about 50%, while the variation by the method of the present invention is 6.8.
%Met. The variation when treated with the aqueous solution 5 containing 500 ppb of Al 3+ is 3%, and according to the method of the present invention,
In this case as well, it is shown that a uniform coating of metal impurities can be obtained.

そして、上記処理によって定量的に塗布された半導体
基板1は、試料として供される。
Then, the semiconductor substrate 1 quantitatively applied by the above process is used as a sample.

例えば、ライフタイムの測定を例に採って説明する
と、本発明の方法によって得られた試料を1000℃で10分
間、清浄且つドライな酸素雰囲気中で酸化処理して、半
導体基板1表面上の金属不純物6をバルク内部へ拡散さ
せ、マイクロ波を用いた光導電率減衰法によって再結合
ライフタイムを測定した。この結果を第4図として示
す。
For example, taking the measurement of the lifetime as an example, the sample obtained by the method of the present invention is subjected to an oxidation treatment at 1000 ° C. for 10 minutes in a clean and dry oxygen atmosphere to obtain a metal on the surface of the semiconductor substrate 1. Impurity 6 was diffused into the bulk and the recombination lifetime was measured by the photoconductivity decay method using microwaves. The results are shown in FIG.

第4図は、再結合ライフタイムが表面金属不純物に依
存して顕著に劣化することを示しており、このことか
ら、半導体基板のライフタイム制御を行い得ることが判
明した。従って、例えばバイポーラトランジスターの、
特に高速に作動させる必要のある高速スイッチング素子
等に本発明を適用することにより、ライフタイム制御を
行うことが可能となる。
FIG. 4 shows that the recombination lifetime remarkably deteriorates depending on the surface metal impurities, which proves that the lifetime control of the semiconductor substrate can be performed. So, for example, of a bipolar transistor,
The lifetime control can be performed by applying the present invention to a high-speed switching element or the like that needs to be operated at a particularly high speed.

なお、上記実施例では、CZシリコンウエーハについて
述べたが、FZウエーハや、他の半導体基板、例えばGaAs
等の化合物半導体基板にも適用可能であり、更に、上記
実施例では、主に、Fe及びCuについて述べたが、本発明
は、これらの元素のみに限らず、他のNi,Au,Cr等の種々
の元素についても適用される。また、上記実施例では水
溶液に金属塩を溶解した場合について述べたが、エチル
アルコール、アセトン、トリクロルエチレン等の有機溶
媒も使用できる。
In addition, although the CZ silicon wafer is described in the above embodiment, the FZ wafer and other semiconductor substrates such as GaAs are used.
It is also applicable to compound semiconductor substrates such as, further, in the above examples, mainly described Fe and Cu, the present invention is not limited to these elements, other Ni, Au, Cr, etc. It is also applied to various elements of. Moreover, although the case where the metal salt is dissolved in the aqueous solution has been described in the above-mentioned examples, an organic solvent such as ethyl alcohol, acetone, or trichloroethylene may be used.

また、上記本発明は、半導体基板の一面のみを塗布す
るように操作でき、 (a)例えばバックダメージの働き等を評価する場合、
表面のみ汚染しておいて熱処理すれば、裏面ダメージの
所にMetalがSubを通して移動し、集合するといった評価
が可能である。もし両面ともに塗布すると、裏面からの
Metalがダメージの所に集るかもしれないという疑問が
ある。
Further, the present invention can be operated so as to coat only one surface of the semiconductor substrate, and (a) when evaluating the function of back damage, for example,
If only the surface is contaminated and heat-treated, it is possible to evaluate that the metal will move through the Sub to the back surface damage and aggregate. If you apply it on both sides,
There is a doubt that Metal may collect at the point of damage.

(b)例えば、Metalの拡散を評価する場合、裏面も塗
布してあると、裏からの拡散がプラスされてしまい、解
析が複雑になる。
(B) For example, in the case of evaluating the diffusion of Metal, if the back surface is also coated, the diffusion from the back is added, and the analysis becomes complicated.

という危具がある場合にきわめて有効適切である。It is extremely effective and appropriate when there is a danger.

(発明の効果) 以上説明したように、本発明の方法は、半導体基板表
面を親水性面とし、当該半導体基板上に一定濃度の金属
不純物を含む溶液を滴下して、前記溶液で半導体基板表
面を均一に被い、一定時間保持させた後、半導体基板表
面に残留する余剰溶液を、当該半導体基板を回転させて
除去するものであり、半導体基板上の金属不純物量が、
上記溶液中の金属イオン濃度に依存して変化するため、
所望の不純物量に制御することが可能となる。本発明に
よれば、スピンコータ等にて高速回転させることによ
り、不要な溶液は遠心力により短時間のうちに除去さ
れ、しかも半導体基板表面は均一に塗布することがで
き、さらに半導体基板の所望する面を片面のみ或いは両
面に定量塗布でき、総じて、均一な汚染が定量的に且つ
迅速に得られるという効果を奏するものである。
(Effects of the Invention) As described above, in the method of the present invention, the surface of the semiconductor substrate is made hydrophilic, and a solution containing metal impurities of a constant concentration is dropped onto the semiconductor substrate, and the surface of the semiconductor substrate is treated with the solution. Evenly, after holding for a certain period of time, the excess solution remaining on the surface of the semiconductor substrate is to remove by rotating the semiconductor substrate, the amount of metal impurities on the semiconductor substrate,
Since it changes depending on the metal ion concentration in the solution,
It is possible to control to a desired amount of impurities. According to the present invention, by rotating at high speed with a spin coater or the like, unnecessary solution can be removed by centrifugal force in a short time, and furthermore, the surface of the semiconductor substrate can be evenly coated, and further, it is possible to obtain a desired semiconductor substrate. One side or both sides can be quantitatively applied to the surface, and the effect is that uniform contamination can be quantitatively and quickly obtained as a whole.

【図面の簡単な説明】[Brief description of the drawings]

第1図(イ)(ロ)(ハ)はスピンコータを用いた本発
明の実施例を示す一連の縦断面図であって、(イ)は汚
染前の状態、(ロ)は汚染水溶液滴下直後の状態、
(ハ)は高速回転乾燥後の状態を概念的に表わし、第2
図は汚染水溶液中の金属イオン濃度と半導体基板表面上
の金属不純物量との関係図、第3図は定量汚染後の半導
体基板面内の不純物量の分布図、第4図は定量汚染後に
おける半導体基板表面上の金属不純物量と再結合ライフ
タイムとの関係図である。 1……半導体基板、2……自然酸化膜 5……水溶液、6……金属不純物
1 (a), (b) and (c) are a series of longitudinal sectional views showing an embodiment of the present invention using a spin coater. (A) is a state before contamination, (b) is immediately after dropping a contaminated aqueous solution. State of
(C) conceptually represents the state after high-speed rotation drying.
The figure shows the relationship between the concentration of metal ions in the contaminated aqueous solution and the amount of metal impurities on the surface of the semiconductor substrate. Fig. 3 is a distribution diagram of the amount of impurities on the surface of the semiconductor substrate after quantitative contamination, and Fig. 4 is the figure after quantitative contamination. FIG. 6 is a relationship diagram between the amount of metal impurities on the surface of a semiconductor substrate and the recombination lifetime. 1 ... Semiconductor substrate, 2 ... Natural oxide film 5 ... Aqueous solution, 6 ... Metal impurities

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板表面を親水性面とし、当該半導
体基板上に一定濃度の金属不純物を含む溶液を滴下し
て、前記溶液で半導体基板表面を均一に被い、一定時間
保持させた後、半導体基板表面に残留する余剰溶液を、
当該半導体基板を回転させて除去することを特徴とする
半導体基板への可溶性金属塩の塗布方法。
1. A surface of a semiconductor substrate is made hydrophilic, and a solution containing metal impurities of a constant concentration is dropped onto the semiconductor substrate, and the surface of the semiconductor substrate is evenly covered with the solution and kept for a certain period of time. , Excess solution remaining on the surface of the semiconductor substrate,
A method for applying a soluble metal salt to a semiconductor substrate, which comprises rotating the semiconductor substrate to remove it.
JP31134088A 1988-12-09 1988-12-09 Method for applying soluble metal salt to semiconductor substrate Expired - Lifetime JP2694192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31134088A JP2694192B2 (en) 1988-12-09 1988-12-09 Method for applying soluble metal salt to semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31134088A JP2694192B2 (en) 1988-12-09 1988-12-09 Method for applying soluble metal salt to semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH02156636A JPH02156636A (en) 1990-06-15
JP2694192B2 true JP2694192B2 (en) 1997-12-24

Family

ID=18015969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31134088A Expired - Lifetime JP2694192B2 (en) 1988-12-09 1988-12-09 Method for applying soluble metal salt to semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2694192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249764A (en) * 1993-02-26 1994-09-09 Nippon Steel Corp Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
KR100725460B1 (en) 2005-12-28 2007-06-07 삼성전자주식회사 A sample wafer for measuring a metal contamination level
KR101669958B1 (en) * 2015-10-15 2016-10-27 주식회사 엘지실트론 Method for contaminating wafer

Also Published As

Publication number Publication date
JPH02156636A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
Stolwijk et al. Diffusion of gold in silicon studied by means of neutron-activation analysis and spreading-resistance measurements
US6174740B1 (en) Method for analyzing impurities within silicon wafer
EP0718872B1 (en) Semiconductor substrate cleaning method
JP2694192B2 (en) Method for applying soluble metal salt to semiconductor substrate
JPH0541433A (en) Analyzing method for metallic impurity in surface oxide film of semiconductor substrate
US7811836B2 (en) Methods of manufacturing reference sample substrates for analyzing metal contamination levels
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
US6225136B1 (en) Method of producing a contaminated wafer
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
Kellock et al. Thin film adhesion improvement under photon irradiation
JP3000796B2 (en) Method of controlling amount of soluble metal salt applied to semiconductor substrate
Leahy et al. Filter material for sampling of ambient aerosols
JP2612024B2 (en) Preparation method of silicon wafer contamination sample
KR20010071617A (en) Process for mapping metal contaminant concentration on a silicon wafer surface
JPH06103677B2 (en) Method of protecting polished silicon surface
JP2863563B2 (en) Method for evaluating heavy metal contamination on compound semiconductor substrate surface
JP3109083B2 (en) Etching solution for silicon oxide film and method for etching silicon oxide film
JPH06249764A (en) Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
EP1122788B1 (en) Method of manufacturing of an soi substrate
JPH11248693A (en) Method for analyzing impurities in liquid
KR19980081012A (en) Cleaning method inside semiconductor substrate
US6146909A (en) Detecting trace levels of copper
Matteson et al. Experimental investigation of GaAs surface oxidation
JPH04298025A (en) Method of introducing metallic impurity onto semiconductor substrate surface
JP7533567B2 (en) Gallium arsenide single crystal substrate and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090912