JP2693537B2 - Phase difference detection method and synchronization detection method for sinusoidal alternating current amount - Google Patents

Phase difference detection method and synchronization detection method for sinusoidal alternating current amount

Info

Publication number
JP2693537B2
JP2693537B2 JP32853188A JP32853188A JP2693537B2 JP 2693537 B2 JP2693537 B2 JP 2693537B2 JP 32853188 A JP32853188 A JP 32853188A JP 32853188 A JP32853188 A JP 32853188A JP 2693537 B2 JP2693537 B2 JP 2693537B2
Authority
JP
Japan
Prior art keywords
sine wave
alternating current
wave alternating
amount
current amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32853188A
Other languages
Japanese (ja)
Other versions
JPH02173578A (en
Inventor
和三 中川
元四郎 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32853188A priority Critical patent/JP2693537B2/en
Publication of JPH02173578A publication Critical patent/JPH02173578A/en
Application granted granted Critical
Publication of JP2693537B2 publication Critical patent/JP2693537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Phase Differences (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、開閉接点の両側で同期を取りつつ、該開閉
接点を投入する必要がある発電機、ロードコントローラ
等の電気機器等の各種機器において、2つの任意正弦波
交流量の位相角を測定し、これらの位相角から位相差を
検出する方法、及び、この位相差がゼロになる時間を検
出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to various devices such as a generator and an electric device such as a load controller, in which it is necessary to insert the opening / closing contacts in synchronization with both sides of the opening / closing contacts. In the above, the present invention relates to a method of measuring a phase angle of two arbitrary sine wave AC amounts and detecting a phase difference from these phase angles, and a method of detecting a time when the phase difference becomes zero.

(従来の技術) 従来、発電機を開閉接点投入により並行運動する場合
や、送電・配電系統の開閉点等に設けられたロードコン
トローラを用いて2以上の系統を開閉接点の投入により
連系する場合等においては、以下の位相角検出方法及び
位相角制御方法が採用されている。即ち、前記開閉接点
の両側で各正弦波交流量(この場合には電圧)の位相角
をそれぞれ測定し、次いで、これらの測定結果から両電
圧の位相差を検出し、この検出値に基づき前記開閉接点
を投入する。
(Prior art) Conventionally, when a generator is operated in parallel by opening and closing contacts, or when two or more grids are connected by opening and closing contacts by using a load controller provided at an opening and closing point of a power transmission / distribution system. In some cases, the following phase angle detection method and phase angle control method are adopted. That is, the phase angle of each sine wave alternating current amount (voltage in this case) is measured on both sides of the switching contact, and then the phase difference between both voltages is detected from these measurement results. Turn on the switching contact.

ここで、両正弦波交流量の位相角が一致しない状態で
前記開閉接点の投入を行うと、系統に過電圧が発生し電
気機器が損傷する等の各種の不都合が生じる。
If the opening / closing contacts are turned on in a state where the phase angles of the two sine wave alternating current amounts do not match, various inconveniences such as overvoltage occurring in the system and damage to electric equipment occur.

このため、前記開閉接点の投入には、両正弦波交流量
の位相差の正確な検出が必要とされる。
For this reason, it is necessary to accurately detect the phase difference between the two sine wave alternating current amounts when the opening / closing contacts are closed.

以下、従来から行われている位相角検出方法を第6図
及び第7図により説明する。
The conventional phase angle detection method will be described below with reference to FIGS. 6 and 7.

第6図は、開閉接点1の両側の電圧の位相角を測定
し、発電機(G)2を並行運転する場合の説明図であ
る。ここでは、両電圧には直流バイアスが生じていない
理想的な場合を考えるものとする。
FIG. 6 is an explanatory diagram of the case where the phase angles of the voltages on both sides of the switching contact 1 are measured and the generator (G) 2 is operated in parallel. Here, it is assumed that an ideal case where a DC bias does not occur in both voltages is considered.

まず、開閉接点1の両側(第6図においては、発電機
2側をA側、非発電機側をB側とする)の位相角測定を
それぞれ行う。これらの位相角測定は、通常はA,B両側
の正弦波電圧が、基準電位(ゼロ電位)になったときの
各電気角(或いは時間)(所謂、ゼロクロス点)を測定
することにより行われる。
First, the phase angles of both sides of the switching contact 1 (in FIG. 6, the generator 2 side is the A side and the non-generator side is the B side) are measured. These phase angle measurements are usually performed by measuring each electrical angle (or time) (so-called zero cross point) when the sine wave voltage on both sides of A and B reaches the reference potential (zero potential). .

例えば、第7図において、(a)はA側電圧vAとvA
対して位相のずれたB側電圧vBの波形を比較して示して
いる。ここで、各電圧vA,vBの波高値VAとVB、角周波数
ωとωとはそれぞれ等しく、その値はそれぞれV、
ωであるとし、両電圧の位相差をαとすると、vA,v
Bは、 vA=Vcosωt vB=Vcos(ωt+α) で表わされる。ところで、位相差αは、上述のように各
電圧vA,vBのゼロクロス点を求め、このゼロクロス点間
の時間差を位相差に換算することにより求めるのが一般
であるので、A側,B側でゼロクロス点tA1,tA2,…、tB1,
tB2,…をそれぞれ測定する。そして、第7図(b),
(c)に示すように、正弦波電圧vA,vBを正域と負域の
方形波vAs,vBsに換算する(第7図(b),(c)にお
いて、点線が負域の方形波を示している)。
For example, in FIG. 7, (a) shows a comparison between the waveforms of the A-side voltage v A and the B-side voltage v B that is out of phase with respect to v A. Here, the peak values V A and V B of the respective voltages v A and v B and the angular frequencies ω A and ω B are equal, and their values are V and V, respectively.
If ω is and the phase difference between the two voltages is α, then v A , v
B is represented by v A = Vcosωt v B = Vcos (ωt + α). By the way, the phase difference α is generally obtained by finding the zero-cross points of the voltages v A and v B as described above and converting the time difference between the zero-cross points into the phase difference. Side zero crossing points t A1 , t A2 ,…, t B1 ,
Measure t B2 , ... respectively. And FIG. 7 (b),
As shown in (c), the sine wave voltages v A and v B are converted to square waves v As and v Bs in the positive and negative regions (in FIGS. 7B and 7C, the dotted line indicates the negative region). Shows a square wave).

次に、第7図(d)に示すように、同図(b),
(c)の方形波vAs,vBsの排他的論理和(XOR)を求め
る。ここでは、vA,vBの振幅の中心が、前記基準電位と
一致した理想的な場合を考えているので、tAnとtBnの時
間差tαn=tBn−tAn(n:1,2,…)は、nによらず一定
である。このときのtαnをtαとすると、A側とB側
との位相差αは、 α=ω×tα(rad.) となる。
Next, as shown in FIG. 7 (d), FIG.
The exclusive OR (XOR) of the square waves v As and v Bs in (c) is obtained. Here, since an ideal case where the centers of the amplitudes of v A and v B coincide with the reference potential is considered, the time difference between t An and t Bn t αn = t Bn −t An (n: 1, 2, ...) Is constant regardless of n. When the t .alpha.n at this time is t alpha, the phase difference between the A-side and B-side alpha is, α = ω × t α becomes (rad.).

また、開閉接点1のA,B両側の位相角を一致させるべ
く発電機2の位相制御を行う場合においては、A,B両側
のゼロクロス点tA1,tA2,…、tB1,tB2,…をそれぞれ測定
しつつ、例えば、発電機2の入力を調整する等の操作を
行い、A側の位相角を変化させる。そしてA,B両側の位
相角が一致したときに、開閉接点1の投入を行う。
Further, when the phase control of the generator 2 is performed so that the phase angles of both the A and B sides of the switching contact 1 are matched, the zero cross points t A1 , t A2 , ..., T B1 , t B2 , While measuring each of ..., For example, an operation such as adjusting the input of the generator 2 is performed to change the phase angle on the A side. Then, when the phase angles on both sides of A and B match, the switching contact 1 is closed.

なお、ロードコントローラに適用する位相角検出方法
及び位相角制御方法についても、上記発電機2について
説明した位相角検出方法及び位相角制御方法と原理は同
じなので、詳述しないが、上記位相角制御の場合には、
例えば、A,Bの何れかの一方側に無効電力を供給するこ
とによりA,B両側の位相角を一致させた後、開閉接点の
投入を行う等の操作が行われる。
The phase angle detection method and the phase angle control method applied to the load controller are the same in principle as the phase angle detection method and the phase angle control method described for the generator 2 and will not be described in detail. In Case of,
For example, the reactive power is supplied to one of the A and B sides to match the phase angles of the A and B sides, and then the switching contacts are closed.

(発明が解決しようとする課題) しかし、上述した従来の位相角検出方法及び位相角制
御方法では、基準となるゼロ電位が開閉接点1の両側で
異なるために、vA,vBの測定値に直流バイアスが加わる
ことがしばしばある。また、開閉接点1のA,B両側の各
電圧波形に、系統自体が有している直流バイアス(例え
ば、発電機の中性点の電位がゼロでない場合等)が加わ
る場合もある。
(Problems to be Solved by the Invention) However, in the above-described conventional phase angle detection method and phase angle control method, since the reference zero potential is different on both sides of the switching contact 1, the measured values of v A and v B A DC bias is often applied to. Further, a DC bias (for example, when the electric potential at the neutral point of the generator is not zero) possessed by the system itself may be added to each voltage waveform on both sides of A and B of the switching contact 1.

このような直流バイアスは、種々の原因、例えばシス
テムの特性の経年変化、環境変化(例えば温度変化)等
に起因するものであり、実際には頻繁に生じるものであ
る。
Such a DC bias is caused by various causes, for example, secular change of system characteristics, environmental change (for example, temperature change), etc., and actually occurs frequently.

第8図(a)は、第6図に示す開閉接点1のA,B両側
の各電圧のゼロ電位が異なる場合の電圧波形vA,vBをそ
れぞれ示している(同図においては、vBに直流バイアス
ΔvBが生じたものとして示してある)。ここで、従来の
位相角検出方法によりA,B両側の位相角を測定した場合
の方形波vAs及びvBsの波形を第8図(b),(c)に示
す。
FIG. 8 (a) shows voltage waveforms v A , v B when the zero potentials of the voltages on both sides of A and B of the switching contact 1 shown in FIG. 6 are different (v in FIG. 8). B is shown as having a DC bias Δv B ). Here, waveforms of the square waves v As and v Bs when the phase angles on both sides of A and B are measured by the conventional phase angle detection method are shown in FIGS. 8 (b) and 8 (c).

ところで、第8図(a)〜(c)各図に示すように、
vAは振幅中心と基準電位とが一致するが(即ち、前記振
幅の中心は時間軸(t)上にある)、vBは直流バイアス
ΔvBだけ時間軸(t)から振幅方向にずれている。この
ため、矩形波の正域側に占める時間と負域側に占める時
間との割合がvAs,vBsについて異なってしまう。その結
果、第8図(d)に示すように、例えば、vA,vBの各角
周波数が同一である場合においても、tB1−tA1≠tB2−t
A2の如く、位相差α相当の時間だけ、測定のタイミング
がずれてしまい、正確な位相角検出(特に位相角がゼロ
の点の検出)が不可能になるという不都合があった。
By the way, as shown in each of FIGS. 8 (a) to 8 (c),
Although the amplitude center of v A coincides with the reference potential (that is, the center of the amplitude is on the time axis (t)), v B is deviated from the time axis (t) in the amplitude direction by the DC bias Δv B. There is. Therefore, the ratio of the time occupied in the positive region side of the rectangular wave to the time occupied in the negative region side differs for v As and v Bs . As a result, as shown in FIG. 8 (d), for example, even when v A and v B have the same angular frequency, t B1 −t A1 ≠ t B2 −t
As in A2 , there is a disadvantage in that the measurement timing is shifted by a time corresponding to the phase difference α, and accurate phase angle detection (particularly detection of a point where the phase angle is zero) becomes impossible.

また、このような状況下で、開閉接点1を投入する
と、開閉接点1の両側の位相角が一致しない状態で発電
機が並行運転されることになる(ロードコントローラに
よる位相制御の場合には、同様の状態で電力系統が連系
されることになる)ので、系統に過電流が生じ、系統に
接続された各機器の損傷、系統電圧、電流のノッキング
等の発生などの不都合が生じていた。
Further, under such a circumstance, when the opening / closing contact 1 is closed, the generators are operated in parallel in a state where the phase angles on both sides of the opening / closing contact 1 do not match (in the case of phase control by the load controller, Since the power system will be connected in the same state), overcurrent has occurred in the system, causing inconveniences such as damage to each device connected to the system and occurrence of knocking of system voltage and current. .

更に、周波数の異なる正弦波電圧vA,vBの位相角を制
御する場合においても、第8図(d)に示したように、 tB1−tA1≠tB2−tA2≠tB3−tA3≠… となる。
Furthermore, when controlling the phase angles of the sine wave voltages v A and v B having different frequencies, as shown in FIG. 8 (d), t B1 −t A1 ≠ t B2 −t A2 ≠ t B3 − t A3 ≠ ...

これに加え、従来では、2つの正弦波交流量(例え
ば、前記vA,vB)を、1つのA/変換器により交互に交流
・直流交換するとすると、必然的に、一定の時間差Δt
(A/D変換器の演算速度による)で両正弦波交流量を取
り込まざるを得ない。したがって、1つのA/D変換器に
よる2つの正弦波交流量の位相角の同時測定ができない
ため、正確な位相差の測定はできなかった。また、前述
の同時変換を可能にするべく、開閉接点の両側にそれぞ
れA/D変換器を用意して両正弦波交流量の検出を行うこ
とも可能であるが、各A/D変換器の設置地点が異なるの
で、各A/D変換器の基準電位が異なってしまう。このた
め、例えば高性能の計器用変成器やA/D変換器等を用い
て、ある程度、上記直流バイアスの発生を防止できたと
しても、各正弦波の測定精度が区々となる、直流バイア
ス分が各正弦波で異なる、コスト高となる等の不都合が
あった。
In addition to this, conventionally, if two sine wave alternating current amounts (for example, v A and v B described above) are alternately exchanged by alternating current and direct current by one A / converter, a constant time difference Δt is inevitable.
There is no choice but to capture both sine wave AC amounts (depending on the calculation speed of the A / D converter). Therefore, since it is not possible to simultaneously measure the phase angles of two sine wave AC amounts by one A / D converter, it is not possible to accurately measure the phase difference. Also, in order to enable the above-mentioned simultaneous conversion, it is possible to prepare A / D converters on both sides of the switching contacts to detect both sine wave AC amounts. Since the installation points are different, the reference potential of each A / D converter will be different. Therefore, even if the generation of the DC bias can be prevented to some extent by using, for example, a high-performance instrument transformer or A / D converter, the measurement accuracy of each sine wave becomes different. There are inconveniences such as different minutes for each sine wave and higher cost.

本発明は、上記問題点を解決するためになされたもの
であって、検出対象である2つの正弦波交流量に直流バ
イアスが存在する場合でも、両正弦波交流量の位相角を
正確に求めてその位相差を検出し、また、この位相差が
ゼロになる時間を検出するようにした位相差検出方法及
び同期検出方法を提供することを目的とする。
The present invention has been made to solve the above problems, and accurately obtains the phase angles of both sine wave alternating current amounts even when a direct current bias exists in the two sine wave alternating current amounts to be detected. It is an object of the present invention to provide a phase difference detecting method and a synchronization detecting method for detecting the phase difference thereof and detecting the time when the phase difference becomes zero.

(課題を解決するための手段) 発明者等は、正弦波交流量の位相角はその振幅と瞬時
値との関数で表わされるので、開閉接点の一方側の波形
と他方側の極性反転波形との交点における両波形の瞬時
値を直接測定し、この瞬時値を用いれば、両正弦波に直
流バイアス分が存在すると否とに拘らず開閉接点の両側
の正弦波の位相差を正確に検出できるとの知見を得た。
(Means for Solving the Problem) The inventors have found that the phase angle of the sine wave AC amount is expressed as a function of the amplitude and the instantaneous value, so that the waveform on one side of the switching contact and the polarity reversal waveform on the other side are By directly measuring the instantaneous values of both waveforms at the intersection of, and using this instantaneous value, the phase difference between the sine waves on both sides of the switching contact can be accurately detected regardless of the presence or absence of DC bias in both sine waves. I got the knowledge.

上記目的を達成するために、請求項1記載の位相差検
出方法は、二つの正弦波交流量の位相差検出方法におい
て、基準となる第1の正弦波交流量と、相対する第2の
正弦波交流量の基準となるゼロ電位に対する反転波との
連続する2交点における第2の正弦波交流量の瞬時値の
平均値から第2の正弦波交流量の相対的直流バイアス分
を求め、前記交点における第2の正弦波交流量の瞬時値
と前記相対的直流バイアス分との差、及び、連続する2
交点の中点における第2の正弦波交流量の瞬時値と前記
相対的直流バイアス分の差としての第2の正弦波交流量
の各変位量をそれぞれ求め、これらの変位量の二乗の和
の平方根から第2の正弦波交流量の振幅を求め、前記交
点における第2の正弦波交流量の瞬時値と前記相対的直
流バイアス分の差としての変位量と第2の正弦波交流量
の振幅との比の逆正弦関係をとることにより、第2の正
弦波交流量の前記交点に対する位相角を求め、かつ、前
記交点における第1の正弦波交流量の瞬時値と連続する
2交点間の中点における第1の正弦波交流量の瞬時値と
をそれぞれ求め、これらの2つの瞬時値の二乗の和の平
方根から第1の正弦波交流量の振幅を求め、前記交点に
おける第1の正弦波交流量の瞬時値と第1の正弦波交流
量の振幅との比の逆正弦関数をとることにより、第1の
正弦波交流量の前記交点に対する位相角を求め、第1及
び第2の正弦波交流量の前記交点に対する位相角の差を
とって第1及び第2の正弦波交流量の位相差を検出する
ことを特徴とする。
In order to achieve the above object, the phase difference detecting method according to claim 1 is a phase difference detecting method of two sine wave alternating current amounts, wherein a first sine wave alternating current amount serving as a reference and a second sine wave opposite to each other. The relative DC bias component of the second sine wave AC amount is obtained from the average value of the instantaneous values of the second sine wave AC amount at two consecutive intersections with the inversion wave with respect to the zero potential which is the reference of the wave AC amount, The difference between the instantaneous value of the second sine wave AC amount at the intersection and the relative DC bias component, and continuous 2
The respective displacement amounts of the second sine wave alternating current amount as the difference between the instantaneous value of the second sine wave alternating current amount at the midpoint of the intersection point and the relative direct current bias amount are respectively obtained, and the sum of squares of these displacement amounts is calculated. The amplitude of the second sine wave alternating current amount is obtained from the square root, and the instantaneous value of the second sine wave alternating current amount at the intersection and the displacement amount as the difference between the relative direct current bias and the amplitude of the second sine wave alternating current amount By taking the inverse sine relationship of the ratio with the, the phase angle of the second sine wave alternating current amount with respect to the intersection point is obtained, and the instantaneous value of the first sine wave alternating current amount at the intersection point is between two consecutive intersection points. The instantaneous value of the first sine wave AC amount at the midpoint is obtained, and the amplitude of the first sine wave AC amount is obtained from the square root of the sum of the squares of these two instantaneous values. Of the ratio of the instantaneous value of the wave AC quantity to the amplitude of the first sine wave AC quantity By taking a sine function, the phase angle of the first sine wave alternating current amount with respect to the intersection point is obtained, and the difference between the phase angles of the first and second sine wave alternating current amount with respect to the intersection point is calculated to obtain the first and second It is characterized by detecting the phase difference of the sine wave AC amount.

更に、請求項2記載の同期検出方法は、前記位相差検
出方法により求めた第1及び第2の正弦波交流量の位相
差がゼロとなる時間を、第1の正弦波交流量と、第2の
正弦波交流量のゼロ電位に対する反転波との交点が作る
周期関数が第1及び第2の正弦波交流量の角周波数の差
の関数であることに基づいて算出することを特徴とす
る。
Further, in the synchronization detecting method according to claim 2, the time when the phase difference between the first and second sine wave alternating current amounts obtained by the phase difference detecting method becomes zero is the first sine wave alternating current amount, 2 is calculated based on the fact that the periodic function created by the intersection of the sine wave alternating current amount with the inversion wave with respect to the zero potential is a function of the difference in angular frequency between the first and second sine wave alternating current amounts. .

(作用) 請求項1記載の位相検出方法では、例えば系統電源電
圧のような発電機側の基準となる第1の正弦波交流量
と、これに相対する非発電機側の第2の正弦波交流量の
基準となるゼロ電位に対する反転波との連続する2交点
における第2の正弦波交流量の瞬時値の平均値から第2
の正弦波交流量の相対的直流バイアス分を求める。ここ
で、基準となる第1の正弦波交流量については、絶対的
なバイアスの有無を問わない。
(Operation) In the phase detection method according to claim 1, for example, the first sine wave AC amount that serves as a reference on the generator side, such as the system power supply voltage, and the second sine wave on the non-generator side that faces the first AC amount. From the average value of the instantaneous values of the second sine wave alternating current amount at two consecutive intersections with the inversion wave with respect to the zero potential, which is the reference of the alternating current amount,
The relative DC bias component of the sine wave AC amount of is calculated. Here, with respect to the first sine wave AC amount serving as the reference, it does not matter whether or not there is an absolute bias.

そして、前記交点における第2の正弦波交流量の瞬時
値と前記相対的直流2バイアス分との差、及び、連続す
る2交点間の中点における第2の正弦波交流量の瞬時値
と前記相対的直流バイアス分の差としての第2の正弦波
交流量の各変位量をそれぞれ求める。
Then, the difference between the instantaneous value of the second sine wave alternating current amount at the intersection and the relative direct current two biases, and the instantaneous value of the second sine wave alternating current amount at the midpoint between two consecutive intersections and Each displacement amount of the second sine wave AC amount as a difference between the relative DC bias components is obtained.

これらの各変位量の二乗の和の平方根から第2の正弦
波交流量の振幅を求め、前記交点における第2の正弦波
交流量の瞬時値と前記相対的直流バイアス分との差とし
ての変位量と第2の正弦波交流量の振幅との比の逆正弦
関数をとることにより、第2の正弦波交流量の前記交点
に関する位相角を求める。
The amplitude of the second sine wave alternating current amount is obtained from the square root of the sum of the squares of these displacement amounts, and the displacement as the difference between the instantaneous value of the second sine wave alternating current amount at the intersection and the relative direct current bias amount. By taking the inverse sine function of the ratio between the amount and the amplitude of the second sine wave alternating current amount, the phase angle of the second sine wave alternating current amount at the intersection is obtained.

また、前記交点における第1の正弦波交流量の瞬時値
と連続する2交点間の中点における第1の正弦波交流量
の瞬時値とをそれぞれ求め、これらの2つの瞬時値の二
乗の和の平方根から第1の正弦波交流量の振幅を求め
る。
In addition, an instantaneous value of the first sine wave alternating current amount at the intersection and an instantaneous value of the first sine wave alternating current amount at a midpoint between two consecutive intersections are respectively obtained, and a sum of squares of these two instantaneous values is obtained. The amplitude of the first sine wave AC amount is calculated from the square root of

そして、前記交点における第1の正弦波交流量の瞬時
値と第1の正弦波交流量の振幅との比の逆正弦関数をと
ることにより、第1の正弦波交流量の前記交点に対する
位相角を求める。
Then, by taking an inverse sine function of the ratio of the instantaneous value of the first sine wave alternating current amount at the intersection and the amplitude of the first sine wave alternating current amount, the phase angle of the first sine wave alternating current amount with respect to the intersection point is obtained. Ask for.

その後、第1及び第2の正弦波交流量の位相角の差を
求めることにより、両正弦波交流量の位相差を検出する
ことができる。
After that, the phase difference between the two sine wave AC amounts can be detected by obtaining the difference between the phase angles of the first and second sine wave AC amounts.

従って、この位相差をパラメータとし、適宜な手段を
用いて例えば第2の正弦波交流量の位相角を制御するこ
とにより、第1及び第2の正弦波交流量の位相角を一致
させることができる。
Therefore, by using this phase difference as a parameter and controlling the phase angle of the second sinusoidal wave AC amount by using an appropriate means, the phase angle of the first and second sinusoidal wave AC amounts can be matched. it can.

請求項2記載の位相差検出方法では、上記請求項1記
載の方法により検出した両正弦波交流量の位相差がゼロ
になる時間を、前記交点が作る周期関数が両正弦波交流
量の角周波数の差の関数となることに基づいて求めるも
のであり、具体的には、上記周期関数(近似正弦波)の
波形を解析して位相差がゼロになる時間を検出する。こ
れにより、発電機の並行運転のために開閉接点を投入す
る最適なタイミングを求めることが可能になる。
In the phase difference detecting method according to claim 2, the time when the phase difference between both sine wave alternating current amounts detected by the method according to claim 1 becomes zero is determined by the periodic function created by the intersection point. This is obtained based on the fact that it becomes a function of the frequency difference. Specifically, the time when the phase difference becomes zero is detected by analyzing the waveform of the periodic function (approximate sine wave). As a result, it becomes possible to find the optimum timing for closing the switching contacts for the parallel operation of the generators.

(実施例) 以下、本発明の実施例を図面に沿って説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

(1)請求項1記載の位相差検出方法について まず、第6図に示す開閉接点1の発電機側(A側)及
び非発電機側(B側)に設けた計器用変成器3a及び3bに
より、A,B各側の電圧vA及びvBをそれぞれ図示しないA/D
変換器に取り込む。第1図(a)は、このときのvA及び
vBを示す波形図であり、便宜上、vAを基準となる第1の
正弦波交流量、vBをvAに相対する第2の正弦波交流量と
する。ここで、vA,vBの直流バイアス分がそれぞれΔvA,
ΔvBであるとき、vA,vBは、 vA=VA cosωAt+ΔvA vB=VB cos(ωBt+α)+ΔvB となる。なお、第1図(a)では、ΔvAはゼロとして示
してあり、絶対的な直流バイアス分であるΔvBはその大
きな自体がΔvAを基準とした相対的な直流バイアス分と
なる。
(1) Regarding the phase difference detection method according to claim 1, first, the instrument transformers 3a and 3b provided on the generator side (A side) and the non-generator side (B side) of the switching contact 1 shown in FIG. The voltage v A and v B on each side of A and B are
Take in the converter. Figure 1 (a) shows v A and
FIG. 3 is a waveform diagram showing v B , where v A is a reference first sine wave AC amount, and v B is a second sine wave AC amount opposite v A. Here, the DC bias components of v A and v B are Δv A and v
When Δv B , v A and v B are v A = V A cos ω A t + Δv A v B = V B cos (ω B t + α) + Δv B. In Figure 1 (a), Δv A is is shown as zero, an absolute DC bias component Delta] v B becomes relative DC bias component of its large itself relative to the Delta] v A.

また、ωAは、vA,vBの各角周波数、VA,VBは同じ
く各波高値(第1図(a)では同一値V)、α(第1図
(a)では負)は両電圧の未知の位相差である。
Further, ω A and ω B are the respective angular frequencies of v A and v B , and V A and V B are the respective peak values (the same value V in FIG. 1 (a)), α (FIG. 1 (a)). Is negative) is the unknown phase difference of both voltages.

なお、vA,vBのサンプリングは、少なくともvA=−vB
となる点(vAとvBのゼロ電位に対する極性反転波形−vB
との交点)t1,t2,…,tk,…及び、上記各交点の時間的な
中点t1′,t2′,…,tk′,…において行う。このような
サンプリングのタイミングは、vAと−vBとの交点につい
ては、例えば両波形をアナログコンパレータに入力して
常時比較し、コンパレータの出力が反転した時点を検出
すればよい。また、両波形の交点に相当する時間を遡っ
て複数記憶しておき、各交点間の時間の1/2に相当する
時間の平均値から次の中点に相当する時間を求めればよ
い。このようは方法は、一般に電源周波数精度が極めて
高いと共に、電源周波数よりも格段に高い動作周波数を
持つCPUが通常使用されていることから、特に問題なく
容易に実現可能である。従って、一般にΔvBが波高値VB
に比較して充分に小さいものとすると、vA,vBについて
の測定は、両電圧vA,vBの各交点における値及び前記各
交点と電気角でπ/2前後する各値について行われること
になる。
Note that v A and v B must be sampled at least v A = −v B
Point (v A and v B polarity inversion waveform with respect to zero potential −v B
Intersection) t 1, t 2, and ..., t k, ... and the temporal midpoint t 1 of said each intersection ', t 2', ..., t k ', ... performed in. Regarding the timing of such sampling, at the intersection of v A and −v B , for example, both waveforms may be input to an analog comparator and constantly compared, and the time when the output of the comparator is inverted may be detected. Further, a plurality of times corresponding to the intersections of both waveforms may be stored retroactively, and the time corresponding to the next midpoint may be obtained from the average value of the times corresponding to 1/2 of the time between the intersections. Such a method can be easily realized without any particular problems, since the power supply frequency accuracy is generally extremely high and a CPU having an operating frequency significantly higher than the power supply frequency is usually used. Therefore, in general, Δv B is the peak value V B
Assuming that sufficiently small as compared with, v A, v measurements for B are both voltages v A, v rows for each value of [pi / 2 before and after an electrical angle value and said each intersection at each intersection of B Will be seen.

また、第1図(a)において、t1とt1′,t2とt2′,
…,tkとtk′,…との各時間間隔をT1,T2,…,Tk,…と
し、t1′とt2,t2′とt3,…,tk′とtk+1,…との各時間間
隔をT1′,T2′,…,Tk′,…としてある。
In addition, in FIG. 1 (a), t 1 and t 1 ′, t 2 and t 2 ′,
,, t k and t k ′,…, each time interval is T 1 , T 2 ,…, T k ,…, and t 1 ′ and t 2 , t 2 ′ and t 3 ,…, t k ′ are The time intervals with t k + 1 , ... Are denoted as T 1 ′, T 2 ′,…, T k ′,.

次に、vA,vBを上記t1,t2,…,tkで立上がるパルスに置
き換える(第1図(b))。このパルスの立上り点にお
ける、vA,vB(或いは−vB)をそれぞれ別々にA/D変換し
てvA,vBの瞬時値を測定する。
Next, v A and v B are replaced with pulses that rise at the above t 1 , t 2 , ..., T k (FIG. 1 (b)). At the rising point of this pulse, v A and v B (or −v B ) are separately A / D converted and the instantaneous values of v A and v B are measured.

第2図(a),(b)にこのときの波形を示す。同図
(a)は、位相差αがゼロでない場合、同図(b)は位
相差αがゼロであるときの波形をそれぞれ示している。
Waveforms at this time are shown in FIGS. 2 (a) and 2 (b). The figure (a) shows the waveform when the phase difference α is not zero, and the figure (b) shows the waveform when the phase difference α is zero.

ところで、vA,vBは、 vA=VcosωAt vB=Vcos(ωBt+α)+ΔvB となるので、各測定値は、 となる。By the way, since v A and v B are v A = Vcos ω A tv B = Vcos (ω B t + α) + Δv B , each measured value is Becomes

ここで、第2図(a)の例ではt1,t2はπ〔rad.〕離
れているから、先のvB1,vB2の式より、ΔvBは、 とすることができる。
Here, in the example of FIG. 2A, since t 1 and t 2 are separated by π [rad.], Δv B can be calculated from the above equations of v B1 and v B2 . It can be.

ここで第1図におけるtn′における各サンプリング値
をvAn′,vBn′(n:1,2,…,k,…)とすると、vA,vBの波
高値vA,vB(これらは等しく、Vである)は、 VA=(vAn 2+vAn1/2 VB={(vBn−ΔvB+(vBn′−ΔvB1/2 で表わされる。
Here 'each sampling value at v An' tn in FIG. 1, v Bn '(n: 1,2 , ..., k, ...) When, v A, v peak value v A of B, v B ( These are equal and V) is V A = (v An 2 + v An2 ) 1/2 V B = {(v Bn −Δv B ) 2 + (v Bn ′ −Δv B ) 2 } 1 / It is represented by 2 .

ところで、第3図(a)に示すようにvAのゼロ点を
PA,vBの直流バイアス分ΔvBをキャンセルしたときのvB
のゼロ点をPBとし、vA,−vBの交点をPCとすると、vA,vB
の位相差αは点PCと点PBの電気角の距離αと、点PC
点PAとの電気角の距離αとの差となる。また、VAとvB
のtnにおける直流バイアス分を除去した値は、VAn、vBn
−ΔvBであるので、位相差α及び上記αAは、 で表わすことができる。ここで、vAnとvBn、vAn′と
vBn′とは、同一時刻tn、tn′において測定した同一値
なので、vAn=−vBnである。
By the way, as shown in Fig. 3 (a), the zero point of v A
V B of when canceling the P A, v dc bias component Delta] v B of B
Of the zero point and P B, v A, the intersection of the -v B When P C, v A, v B
The phase difference alpha becomes the difference between the distances alpha B of the electrical angle of the point P C and the point P B, the distance alpha A of the electrical angle between the point P C and the point P A. Also, V A and v B
The value after removing the DC bias component at t n is V An , v Bn
Since −Δv B , the phase difference α and the above α A and α B are Can be represented by Where v An and v Bn , v An ′ and
Since v Bn ′ is the same value measured at the same times t n and t n ′, v An = −v Bn .

上記〜式に基づきαを演算すればvAnとvBnとの位
相差αを検出することができる。第3図(a)において
は、α>0,α<0、α<0(αは遅れ位相)とな
る。また、この場合、αのみを演算・検出し、αの変
化の様子を考察することにより、vAnとvBnとの位相差α
の変化を検出することができるので、αのみの測定を
行うことにしてもよい。なお、上記α,αAの検出
は、同時刻において一のA/D変換器により正確に検出す
ることができる。更に、第3図(a)の実施例ではΔvA
=0として説明した。しかるに、本発明は、第1の正弦
波交流量(vA)と第2の正弦波交流量(vB)との位相差
を求めるために、第1の正弦波交流量(vA)を基準とし
た第2の正弦波交流量(vB)の相対的な直流バイアス分
(ΔvB)に着目したものであるから、第1の正弦波交流
量(vA)の直流バイアス分ΔvAの有無に関わりなく適用
可能である。
By calculating α based on the above equations, the phase difference α between v An and v Bn can be detected. In FIG. 3A, α A > 0, α B <0, α <0 (α is a delay phase). Further, in this case, by calculating and detecting only α B and considering the state of change of α, the phase difference α between v An and v Bn
Since it is possible to detect a change in the above, only α B may be measured. The detection of α, α A , and α B can be accurately detected by one A / D converter at the same time. Further, in the embodiment of FIG. 3 (a), Δv A
= 0. However, in the present invention, in order to obtain the phase difference between the first sine wave alternating current amount (v A ) and the second sine wave alternating current amount (v B ), the first sine wave alternating current amount (v A ) is calculated. Since the focus is on the relative DC bias component (Δv B ) of the second sine wave AC amount (v B ) as a reference, the DC bias component Δv A of the first sine wave AC amount (v A ) It is applicable with or without.

同様に第3図(a)では、−vBとして基準電位に対す
るvBの極性反転波形を用いているが、基準電位よりも直
流バイアス分ΔvBだけ高い電位に対するvBの極性反転波
形を用いても同じことが言える。第3図(b)はこの直
流バイアス分ΔvBだけ高い電位に対するvBの極性反転波
形を用いた場合の例を示すものであり、第3図(a)と
比較すると点PCの位置は変化するが、点PAとPBの位置は
同一であるので、位相差αは第3図(a)の場合と同一
である。
Similarly in FIG. 3 (a), but using the polarity inversion waveform of v B with respect to the reference potential as -v B, than the reference potential with polarity inverted waveform of v B for potential higher DC bias component Delta] v B But the same can be said. FIG. 3 (b) shows an example in which a polarity reversal waveform of v B is used for a potential higher by this DC bias Δv B. Compared with FIG. 3 (a), the position of point P C is Although changing, the positions of the points P A and P B are the same, so the phase difference α is the same as in the case of FIG. 3 (a).

また、直流バイアス分ΔvA及びΔvBがゼロであるとき
にも、〜式はそのまま成立する。第4図(a),
(b)は、ΔvA,ΔvBがゼロであるときの、位相差αが
ゼロの場合及びゼロでない場合の各波形を示す波形4図
である。
Further, even when the DC bias components Δv A and Δv B are zero, the expression (1) holds as it is. FIG. 4 (a),
FIG. 6B is a waveform 4 diagram showing respective waveforms when the phase difference α is zero and when the phase difference α is not zero when Δv A and Δv B are zero.

ところで、vA,vBの角周波数ωAが等しい場合に
おいても、上式は成立する。この場合には、角周波数ω
Aが異なる場合に比べて、より検出精度が高くな
る。このときの作用は、ωAが異なる場合と同様な
ので説明は省略する。
By the way, even when the angular frequencies ω A and ω B of v A and v B are the same, the above equation holds. In this case, the angular frequency ω
The detection accuracy is higher than that when A and ω B are different. The operation at this time is similar to that in the case where ω A and ω B are different, and the description thereof will be omitted.

なお、各角周波数が異なる場合、等しい場合を含め
て、ΔvA=ΔvB=0の場合には特に以下の効果が著し
い。即ち、vA,vB両波形の振幅が異なっているときは、
バイアスが生じていない場合において、位相差α=0な
ることが検出されたとする。このとき、 vAk=vBk=0 (kは任意整数) となる。
The following effects are particularly remarkable in the case of Δv A = Δv B = 0, including the case where the angular frequencies are different and the case where they are equal. That is, when the amplitudes of both v A and v B are different,
It is assumed that it is detected that the phase difference α = 0 when the bias is not generated. At this time, v Ak = v Bk = 0 (k is an arbitrary integer).

また、このとき、|vAk′|=const.であり、この値
は、vAの最大値(波高値)を示す。このことは、また、
vBについても同様であり、|vBk′|=const.であり、こ
の値は、vBの最大値(波高値)を示す。
At this time, | v Ak ′ | = const., And this value indicates the maximum value (peak value) of v A. This also means
The same applies to v B , which is | v Bk ′ | = const., and this value indicates the maximum value (peak value) of v B.

従って、|vAn′|=|vBn′|(n:1,2,3,…)となる時
点で両電圧の波高値VAとVBとが等しいことも検出でき
る。
Therefore, it can also be detected that the peak values V A and V B of both voltages are equal at the time of | v An ′ | = | v Bn ′ | (n: 1,2,3, ...).

(2)請求項2記載の同期検出方法について 〜式に基づく、位相差α、電気角αAの検出
値により、vA,vBの位相角及び位相差を正確に検出でき
るので、例えば、第6図に示す発電機2の角周波数ω
と系統の角周波数ωとがΔω相違する場合において
は、発電機2の入力や励磁を調整する等の手段により
vA,vBの両位相角を一致させることができる。また、ロ
ードコントローラ等を使用して、無効負荷を調整し、
vA,vBの両位相角を一致させることができる。
(2) Regarding the synchronization detection method according to claim 2, since the phase angle and phase difference of v A and v B can be accurately detected by the detected values of the phase difference α and the electrical angles α A and α B based on , For example, the angular frequency ω A of the generator 2 shown in FIG.
And the angular frequency ω B of the system differ from each other by Δω, by means such as adjusting the input or excitation of the generator 2
Both phase angles of v A and v B can be matched. Also, use a load controller etc. to adjust the reactive load,
Both phase angles of v A and v B can be matched.

このときの両電圧vA,−vBの交点の軌跡を第5図
(a)に示す。また、同図(b)は、同図(a)の交点
の軌跡の時間軸を圧縮して表わした図である。
The locus of the intersection of the two voltages v A and −v B at this time is shown in FIG. Further, FIG. 11B is a diagram in which the time axis of the locus of the intersections in FIG.

これら各図からわかるように、上記軌跡は直線となら
ず角周波数の大きさが、 Δω=|(ω−ω)/2| である2つの正弦波vC1,vC2となり、これらの正弦波
vC1,vC2はΔωの関数となる。
As can be seen from these figures, the locus does not become a straight line, and the magnitude of the angular frequency becomes two sine waves v C1 , v C2 with Δω = | (ω A −ω B ) / 2 | sine wave
v C1 and v C2 are functions of Δω.

このときの、vA,−vBの交点tCn間の周期の逆数fCは、 となる。At this time, the reciprocal f C of the period between the intersection points t Cn of v A and −v B is Becomes

また、vC1,vC2の一方のピーク電圧値から他方のピー
ク電圧値までの電位差VC1 p-p,VC2 p-pは、 VC1 p-p=vAn-1′+vAn′ VC2 p-p=vBn-1′+vBn′ となる。
Further, the potential difference V C1 pp , V C2 pp from one peak voltage value of v C1 and v C2 to the other peak voltage value is V C1 pp = v An-1 ′ + v An ′ V C2 pp = v Bn- 1 '+ v Bn '.

従って、vC1,vC2の波高値vC1,vC2は、 となる。Therefore, v C1, v peak value v C1, v C2 of C2 is Becomes

〜式により、vA,vBの位相差αを演算し、更に
〜によりvC1,vC2の波形を解析すれば、両波形の位相
差がゼロとなる時間(両波形の交点に相当する時間)を
算出することができる。例えば、交点の波形が正弦波と
なることを利用して、両波形の位相差が前回ゼロとなっ
たときの一定時間ごとの一方の波形(例えばvC1)の瞬
時値(時刻t1のときv1,t2のときv2,…,t6のときv6,…)
を経過時間と共に記憶しておく。
If the phase difference α between v A and v B is calculated by the formula, and the waveforms of v C1 and v C2 are analyzed by, the time when the phase difference between both waveforms becomes zero (corresponding to the intersection of both waveforms) Time) can be calculated. For example, by utilizing the fact that the waveform at the intersection becomes a sine wave, the instantaneous value of one waveform (for example, v C1 ) at constant time intervals when the phase difference between the two waveforms was zero last time (v at time t1 1 , t 2 v 2 , ..., t 6 v 6 , ...)
Is stored together with the elapsed time.

ここで、前回、時刻t6において位相差がゼロであった
とすると(v6=0)、現在のvC1の瞬時値vxがv2とv3
の間にある場合、次に位相差がゼロになるまでの時間
は、(t6−t2)と(t6−t3)との間で、近似的には
{(t6−t2)+(t6−t3)}/2と言える。
Here, if the phase difference was zero at time t 6 last time (v 6 = 0), if the current instantaneous value v x of v C1 is between v 2 and v 3 , then the phase difference is The time until zero is between (t 6 −t 2 ) and (t 6 −t 3 ) is approximately {(t 6 −t 2 ) + (t 6 −t 3 )}. It can be said to be / 2.

これにより、的確なタイミングで開閉接点1の投入が
可能となる。また、上記解析により、各位相差αの他、
角周波数ωA、正弦波電圧vA,vBの実効値 等も同様に演算することができ、この演算結果に基づく
vA,vBの制御が可能となる。
As a result, the opening / closing contact 1 can be closed at an appropriate timing. Further, by the above analysis, in addition to each phase difference α,
Angular frequency ω A , ω B , sine wave voltage v A , v B effective value Etc. can be calculated in the same way, and based on this calculation result
It is possible to control v A and v B.

なお、上記各実施例では、電圧の位相差検出方法及び
同期検出方法につき説明したが、電流のように他の正弦
波交流量の位相差の検出及び同期検出にも本発明は適用
できる。そして、この方法の採用により、常時A/D変換
を行う必要がなくなる他、要所々々で行った演算結果に
より、vAn,vBnのそれぞれの位相角・電圧・周波数の導
出、制御も可能となる。
In each of the above embodiments, the voltage phase difference detection method and the synchronization detection method have been described, but the present invention can be applied to the detection of the phase difference of other sine wave AC amounts such as the current and the synchronization detection. By adopting this method, it is not necessary to perform A / D conversion all the time, and it is also possible to derive and control the phase angles, voltages, and frequencies of v An and v Bn based on the results of calculations performed at various points. Becomes

(発明の効果) 請求項1記載の位相差検出方法では、所謂ゼロクロス
点での位相角検出を行わず、一方の正弦波交流量の極性
を反転させたうえで両正弦波交流量を直接比較すること
にしたので、両波形の測定値に直流バイアス分が生じて
いても、該直流バイアス分をキャンセルした高精度の位
相差検出が可能となり、また、系統に生ずる過電流に起
因する系統の各機器の損傷、系統電圧、電流のノッキン
グ、脈流等を防止することができる。また、両正弦波交
流量を直接、かつ同時に比較することにより両正弦波の
位相角を求めて位相差を検出するので、1つのA/D変換
器により該位相差の検出を行うことができる。
(Effect of the invention) In the phase difference detection method according to claim 1, without performing the phase angle detection at the so-called zero-cross point, the polarities of one of the sine wave alternating current amounts are reversed, and the two sine wave alternating current amounts are directly compared. Therefore, even if there is a DC bias component in the measured values of both waveforms, it is possible to detect the phase difference with high accuracy by canceling the DC bias component, and the system current caused by the overcurrent generated in the system can be detected. It is possible to prevent damage to each device, system voltage, current knocking, pulsating current, and the like. Further, since the phase angles of both sine waves are obtained by directly and simultaneously comparing the two sine wave AC amounts, the phase difference can be detected by one A / D converter. .

更に、両正弦波交流量の位相差がゼロになった場合に
おいては、各正弦波交流量の波高値を正確に検出するこ
とも可能となる。
Further, when the phase difference between the two sine wave alternating current amounts becomes zero, it becomes possible to accurately detect the peak value of each sine wave alternating current amount.

また、請求項2記載の同期検出方法では、上述した位
相差の検出結果に基づき、両正弦波交流量の交点の軌跡
がつくる周期関数に着目することにしたので、前記位相
差がゼロになる時点を正確に検出することが可能となっ
た。
Further, in the synchronization detecting method according to the second aspect of the present invention, since the focus is on the periodic function formed by the locus of the intersection points of the two sine wave alternating current amounts, based on the detection result of the phase difference described above, the phase difference becomes zero. It became possible to detect the time point accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は請求項1記載の位相差検出方法を説明す
るための電圧波形を示す波形図、同図(b)は同じくパ
ルス波形を示す波形図、第2図(a),(b)は同じく
直流バイアスが生じているときの正弦波電圧等を示す波
形図、第3図(a),(b)は基準電圧付近を拡大して
示す波形図、第4図(a),(b)は請求項1記載の位
相差検出方法の実施例を説明するための直流バイアスが
生じていないときの正弦波電圧等を示す波形図、第5図
(a),(b)は請求項2記載の同期検出方法の実施例
を説明するための波形図、第6図は本発明及び従来技術
を説明するための回路図、第7図(a)〜(d)は従来
技術を説明するための波形図、第8図(a)〜(d)は
従来技術の問題点を説明するための波形図である。 1……開閉接点 2……発電機 3a,3b……計器用変圧器 vA,vB……正弦波交流量 VA,VB,V……波高値 ωA……角周波数 vAn,vBn……測定値 ΔvA,ΔvB……直流バイアス α……vA,vBの位相差
FIG. 1 (a) is a waveform diagram showing a voltage waveform for explaining the phase difference detecting method according to claim 1, FIG. 1 (b) is a waveform diagram showing a pulse waveform, FIG. 2 (a), ( FIG. 3B is a waveform diagram showing a sine wave voltage and the like when a DC bias is generated, FIGS. 3A and 3B are enlarged waveform diagrams showing the vicinity of the reference voltage, and FIG. (B) is a waveform diagram showing a sine wave voltage and the like when no DC bias is generated for explaining the embodiment of the phase difference detecting method according to claim 1, and FIGS. 5 (a) and 5 (b) are claims. Waveform diagram for explaining an embodiment of the synchronization detection method described in Item 2, FIG. 6 is a circuit diagram for explaining the present invention and the prior art, and FIGS. 7 (a) to 7 (d) are explanations for the prior art. FIGS. 8A to 8D are waveform diagrams for explaining the problems of the conventional technique. 1 …… Switching contact 2 …… Generator 3a, 3b …… Transformer for instrument v A , v B …… Sine wave AC amount V A , V B , V …… Peak value ω A , ω B …… Angular frequency v An , v Bn …… Measured value Δv A , Δv B …… DC bias α …… v A , v B phase difference

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二つの正弦波交流量の位相差検出方法にお
いて、 基準となる第1の正弦波交流量と、相対する第2の正弦
波交流量の基準となるゼロ電位に対する反転波との連続
する2交点における第2の正弦波交流量の瞬時値の平均
値から第2の正弦波交流量の相対的直流バイアス分を求
め、 前記交点における第2の正弦波交流量の瞬時値と前記相
対的直流バイアス分との差、及び、連続する2交点の中
点における第2の正弦波交流量の瞬時値と前記相対的直
流バイアス分の差としての第2の正弦波交流量の各変位
量をそれぞれ求め、 これらの変位量の二乗の和の平方根から第2の正弦波交
流量の振幅を求め、 前記交点における第2の正弦波交流量の瞬時値と前記相
対的直流バイアス分の差としての変位量と第2の正弦波
交流量の振幅との比の逆正弦関係をとることにより、第
2の正弦波交流量の前記交点に対する位相角を求め、か
つ、 前記交点における第1の正弦波交流量の瞬時値と連続す
る2交点間の中点における第1の正弦波交流量の瞬時値
とをそれぞれ求め、 これらの2つの瞬時値の二乗の和の平方根から第1の正
弦波交流量の振幅を求め、 前記交点における第1の正弦波交流量の瞬時値と第1の
正弦波交流量の振幅との比の逆正弦関数をとることによ
り、第1の正弦波交流量の前記交点に対する位相角を求
め、 第1及び第2の正弦波交流量の前記交点に対する位相角
の差をとって第1及び第2の正弦波交流量の位相差を検
出することを特徴とする正弦波交流量の位相差検出方
法。
1. A method for detecting a phase difference between two sine wave alternating current amounts, wherein a first sine wave alternating current amount serving as a reference and an inversion wave with respect to a zero potential serving as a reference of a second opposing sine wave alternating current amount. The relative DC bias component of the second sine wave alternating current amount is obtained from the average value of the instantaneous values of the second sine wave alternating current amount at two consecutive intersection points, and the instantaneous value of the second sine wave alternating current amount at the intersection point and the above The difference from the relative DC bias component, and the respective displacements of the second sine wave AC component as the difference between the instantaneous value of the second sine wave AC component at the midpoint of two consecutive intersections and the relative DC bias component. Then, the amplitude of the second sine wave AC amount is calculated from the square root of the sum of the squares of these displacement amounts, and the difference between the instantaneous value of the second sine wave AC amount at the intersection and the relative DC bias component is calculated. Of the displacement amount as a ratio of the amplitude of the second sine wave AC amount By taking the inverse sine relationship of the second sine wave alternating current amount with respect to the intersection point, and at the midpoint between two consecutive intersection points with the instantaneous value of the first sine wave alternating current amount at the intersection point. An instantaneous value of the first sine wave alternating current amount is obtained, and an amplitude of the first sine wave alternating current amount is obtained from a square root of a sum of squares of these two instantaneous values. By taking the inverse sine function of the ratio between the instantaneous value of and the amplitude of the first sine wave alternating current amount, the phase angle of the first sine wave alternating current amount with respect to the intersection is obtained, and the first and second sine wave alternating current A phase difference detection method for detecting the amount of alternating sine wave alternating current, wherein the phase difference between the first and second amounts of alternating sine wave alternating current is detected by calculating the difference in the phase angle with respect to the intersection of the amounts.
【請求項2】請求項1記載の位相差検出方法により求め
た第1及び第2の正弦波交流量の位相差がゼロとなる時
間を、第1の正弦波交流量と、第2の正弦波交流量のゼ
ロ電位に対する反転波との交点が作る周期関数が第1及
び第2の正弦波交流量の角周波数の差の関数であること
に基づいて算出することを特徴とする正弦波交流量の同
期検出方法。
2. The time when the phase difference between the first and second sine wave alternating current amounts obtained by the phase difference detecting method according to claim 1 becomes zero, the first sine wave alternating current amount and the second sine wave alternating current amount. A sine wave alternating current characterized in that it is calculated based on the fact that the periodic function created by the intersection of the wave alternating current amount with the inversion wave with respect to the zero potential is a function of the difference between the angular frequencies of the first and second sine wave alternating current amounts. How to detect quantity synchronization.
JP32853188A 1988-12-26 1988-12-26 Phase difference detection method and synchronization detection method for sinusoidal alternating current amount Expired - Lifetime JP2693537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32853188A JP2693537B2 (en) 1988-12-26 1988-12-26 Phase difference detection method and synchronization detection method for sinusoidal alternating current amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32853188A JP2693537B2 (en) 1988-12-26 1988-12-26 Phase difference detection method and synchronization detection method for sinusoidal alternating current amount

Publications (2)

Publication Number Publication Date
JPH02173578A JPH02173578A (en) 1990-07-05
JP2693537B2 true JP2693537B2 (en) 1997-12-24

Family

ID=18211331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32853188A Expired - Lifetime JP2693537B2 (en) 1988-12-26 1988-12-26 Phase difference detection method and synchronization detection method for sinusoidal alternating current amount

Country Status (1)

Country Link
JP (1) JP2693537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767917B2 (en) * 2011-09-06 2015-08-26 浜松光電株式会社 Encoder device and correction method for encoder device
CN114113785A (en) * 2021-11-17 2022-03-01 广西电网有限责任公司贵港供电局 Circuit closes ring detection device

Also Published As

Publication number Publication date
JPH02173578A (en) 1990-07-05

Similar Documents

Publication Publication Date Title
JPH0535801B2 (en)
KR100936290B1 (en) Apparatus and method for detecting rotation angle of rotating body
JP5228128B1 (en) Signal generation device, measurement device, leakage detection device, and signal generation method
JPH06105267B2 (en) Zero cross detector
JP2693537B2 (en) Phase difference detection method and synchronization detection method for sinusoidal alternating current amount
JP4707161B2 (en) AC power measuring apparatus and program
TW201538992A (en) Circuit breaker
KR101012740B1 (en) Resolver digital converter and position detecting apparatus
Schubert et al. Gate driver integrated instantaneous phase voltage measurement in PWM voltage source inverters
JP2009288241A (en) Method of determining time difference between first event and second event
JP2009288241A6 (en) Method for determining a time difference between a first event and a second event
TW201721102A (en) Amplitude calibration circuit and signal calibration circuit using the same
JP6642915B2 (en) Electromagnetic induction type position detector
JP2589817Y2 (en) LCR tester
JP3089935B2 (en) Frequency detection method of sine wave AC signal
RU2131128C1 (en) Portable digital meter of heavy direct currents
SU1270710A1 (en) Method of measuring root-mean-square value of a.c.voltage
RU2058658C1 (en) Device for measuring and recording load angle of synchronous machines
Ben-Brahim et al. A new angle determination method for resolvers
JP3104531B2 (en) Step-out detection device
SU761846A1 (en) Apparatus for measuring linear displacements and vibrations
JPH0668516B2 (en) AC effective value detection method
JPS63103975A (en) Current effective value measuring circuit for cycle control type electric power controller
SU938163A1 (en) Quasi-equilibrium detector
Oancea Conversion of Phase Shift into DC Voltage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080905

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12