JP2692502B2 - Method for manufacturing sample cell for infrared gas sensor - Google Patents
Method for manufacturing sample cell for infrared gas sensorInfo
- Publication number
- JP2692502B2 JP2692502B2 JP20838692A JP20838692A JP2692502B2 JP 2692502 B2 JP2692502 B2 JP 2692502B2 JP 20838692 A JP20838692 A JP 20838692A JP 20838692 A JP20838692 A JP 20838692A JP 2692502 B2 JP2692502 B2 JP 2692502B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- sample cell
- infrared
- gas sensor
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばガス分析計に使
用される、赤外線式ガスセンサの一部を構成する試料セ
ルの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sample cell which is used in a gas analyzer and constitutes a part of an infrared gas sensor.
【0002】[0002]
【従来の技術】CO、CO2等の異なる原子からなるガ
ス分子は、それぞれ固有の振動をしている。そのような
分子に波長を連続的に変化させて赤外線を照射してゆく
と、分子の固有振動と同じ周波数の赤外線が吸収され、
分子の構造に応じたスペクトルが得られる。このスペク
トルから分子の構造を解析する方法を赤外線吸収スペク
トル法という。この赤外線吸収スペクトル法を用いたガ
ス分子の定量、定性分析は赤外線式ガスセンサを用いて
なされる。例えば、CO、CO2、CH4SO2、あるい
はNOX等の異なる原子からなるガス分子の定量、定性
分析を、赤外線式ガスセンサによって行うものである。 2. Description of the Related Art Gas molecules composed of different atoms such as CO and CO 2 have their own vibrations. When such a molecule is irradiated with infrared rays by continuously changing the wavelength, infrared rays having the same frequency as the natural vibration of the molecule are absorbed,
A spectrum corresponding to the structure of the molecule is obtained. The method of analyzing the molecular structure from this spectrum is called infrared absorption spectroscopy. Quantitative and qualitative analysis of gas molecules using this infrared absorption spectrum method is performed using an infrared gas sensor. For example, an infrared gas sensor is used for quantitative and qualitative analysis of gas molecules composed of different atoms such as CO, CO 2 , CH 4 SO 2 , or NO x .
【0003】この赤外線式ガスセンサでは、2つの光源
から放射される赤外線が回転セクタにより断続光とな
り、一方は干渉フィルタセルと試料セルとを経て検出器
に達し、他方は干渉フィルタセルと比較セルとを経て検
出器に達する。この際、この試料セルと比較セルを通過
するガスの赤外線吸収の差を測定することにより、ガス
の定量、定性分析が行われる。In this infrared gas sensor, infrared rays emitted from two light sources become intermittent light due to a rotating sector, one of which reaches a detector through an interference filter cell and a sample cell, and the other of which is an interference filter cell and a comparison cell. To reach the detector. At this time, a quantitative and qualitative analysis of the gas is performed by measuring the difference in infrared absorption of the gas passing through the sample cell and the comparison cell.
【0004】すなわち、上記検出器は、比較側と試料側
の2室に分離されており、この間にコンデンサ膜が設け
られている。また、検出器内には測定成分またはその成
分と同じ赤外線吸収帯をもつガスが封入されているの
で、被測定成分に固有な波長の赤外線だけが吸収され
る。That is, the detector is divided into two chambers, a comparison side and a sample side, and a condenser film is provided between them. Further, since the measurement component or the gas having the same infrared absorption band as that component is enclosed in the detector, only the infrared ray having a wavelength peculiar to the measurement target component is absorbed.
【0005】比較セルにはN2ガス等の不活性ガスが封
入されている。このため、この比較セルでは照射赤外線
の吸収は生じない。一方、試料セルに被測定成分が含ま
れている場合、この成分による赤外線吸収が生じてい
る。この結果、検出器での赤外線の吸収は試料側が比較
側より小さくなる。このときの熱エネルギーの差は、両
室の圧力差となり、上記コンデンサ膜に変位が生じる。
この容量変化を検出し、信号の処理のあと出力信号とし
て取り出す。The comparison cell is filled with an inert gas such as N 2 gas. For this reason, this comparative cell does not absorb the irradiation infrared rays. On the other hand, when the sample cell contains the component to be measured, infrared absorption occurs due to this component. As a result, the absorption of infrared rays by the detector is smaller on the sample side than on the comparison side. The difference in heat energy at this time becomes a pressure difference between the two chambers, and the capacitor film is displaced.
This change in capacitance is detected, processed as a signal, and extracted as an output signal.
【0006】このような原理の赤外線式ガスセンサの試
料セルおよび比較セルの材質は、感度、堅牢性、およ
び、試料ガスによる腐食性等を考慮して、通常はステン
レスあるいは鉄等が用いられる。The material of the sample cell and the comparison cell of the infrared type gas sensor having such a principle is usually stainless steel, iron or the like in consideration of sensitivity, robustness and corrosiveness due to the sample gas.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、このよ
うに試料セルおよび比較セルにステンレス等を用いる場
合には溶接技術等が必要である。また、高感度を得るた
めには、セルの体積を大きくする必要があり、セル自体
が、例えば250mm×70mm×70mmというよう
に大型となる。この結果、試料ガスの流路が長くなった
り、赤外線の光路が長くなり、分析の応答時間が長い等
の欠点を有していた。また、セル重量が例えば0.5〜
2.0kg程度と重いため、分析操作の簡便性、容易性
に欠けていた。However, when stainless steel or the like is used for the sample cell and the comparison cell as described above, welding technology or the like is required. Further, in order to obtain high sensitivity, it is necessary to increase the volume of the cell, and the cell itself becomes large, for example, 250 mm × 70 mm × 70 mm. As a result, there are drawbacks such as a long sample gas flow path and a long infrared optical path, which results in a long analysis response time. The cell weight is, for example, 0.5 to
Since the weight is as heavy as about 2.0 kg, the analytical operation is not simple and easy.
【0008】本発明は、センサ本体の小型化および軽量
化を図るとともに、分析感度が良好で、かつ、簡便にガ
ス分析を行える赤外線式ガスセンサ用試料セルの製造方
法を提供することを、その目的としている。さらに本発
明は、製造後もシリコン結晶の均一性を十分保持できる
赤外線式ガスセンサ用試料セルの製造方法を提供するこ
とを、その目的としている。An object of the present invention is to provide a method of manufacturing a sample cell for an infrared gas sensor, which has a small size and a light weight of a sensor main body, has a good analysis sensitivity, and can perform a gas analysis easily. I am trying. A further object of the present invention is to provide a method of manufacturing a sample cell for an infrared gas sensor, which can sufficiently maintain the uniformity of silicon crystals even after manufacturing.
【0009】[0009]
【問題点を解決するための手段】このような目的は、下
記の本発明により達成される。すなわち、本発明におい
ては、2枚の単結晶シリコン板の鏡面加工された貼合わ
せ面に、それぞれエッチングによりガス流路用の溝を刻
設する工程と、各単結晶シリコン板の貼合わせ面に、自
然酸化によりSiO2層を積層する工程と、各単結晶シ
リコン板のSiO2層同士を、各ガス流路用の溝を合致
させて陽極接合により貼合わせる工程と、を備えるよう
にした。このように、試料セルにシリコンを用いること
により、赤外線式ガスセンサを小型化、軽量化すること
が可能となる。また、SiO2層同士を陽極接合により
貼合わせるので、試料セルの製造後もシリコン結晶の均
一性を十分保持できる。ここでいう陽極接合とは、一対
の電極のうち、単結晶シリコン板が設置される電極を接
地電位として、他方の電極に高周波を付加して接合する
方法をいう。This and other objects are achieved by the present invention described below. That is, in the present invention, a step of engraving a groove for a gas flow path on each of the mirror-polished bonding surfaces of two single crystal silicon plates by etching, and the bonding surface of each single crystal silicon plate was so and a step of laminating a SiO 2 layer by natural oxidation, a SiO 2 layer of the respective single crystal silicon plate, a step of bringing bonded by anodic bonding made to match the grooves of each gas flow channel, a. Thus, by using silicon for the sample cell, it is possible to reduce the size and weight of the infrared gas sensor. Further, since the SiO 2 layers are bonded together by anodic bonding, the uniformity of silicon crystals can be sufficiently maintained even after the sample cell is manufactured. The anodic bonding referred to here is a method in which, of the pair of electrodes, the electrode on which the single crystal silicon plate is installed is set to the ground potential and a high frequency is applied to the other electrode to perform the bonding.
【0010】[0010]
【作用】本発明においては、試料セルの材質にシリコン
を用いる。例えば500μm程度の厚さのシリコンチッ
プ(シリコンウェーハ)の表面に、エッチングによりコ
の字形状あるいは半楕円形状のガス流路を形成し、同じ
形状の2枚のシリコンチップを貼合わせることにより、
より小型で軽量な試料セルを得ることができる。このよ
うにシリコンを用いることにより、フォトリソプロセス
を用いて微細加工を簡単に行うことができ、その小型
化、軽量化を容易に達成することができるものである。
しかも、2枚のシリコンチップの貼合わせは、自然酸化
によりできたSiO2層同士を陽極接合することで行な
われる。すなわち、単結晶シリコン板同士を陽極接合す
ると、SiO2層内の酸素が単結晶シリコン板の内部に
拡散して消失する。これにより、製造後も試料セルのシ
リコン結晶の均一性が十分に保持できる。また、ガス流
路は、このようにエッチング法により形成されるので、
ガス流路の内面には面精度および平滑性の高い面が形成
され、照射赤外光の乱反射等を防止できる。In the present invention, silicon is used as the material of the sample cell. For example, by forming a U-shaped or semi-elliptical gas flow path on the surface of a silicon chip (silicon wafer) having a thickness of about 500 μm by etching, and bonding two silicon chips of the same shape,
A smaller and lighter sample cell can be obtained. By using silicon as described above, fine processing can be easily performed by using a photolithography process, and the miniaturization and weight reduction can be easily achieved.
Moreover, the bonding of the two silicon chips is performed by anodic bonding the SiO 2 layers formed by natural oxidation. That is, when the single crystal silicon plates are anodically bonded, oxygen in the SiO 2 layer diffuses into the single crystal silicon plates and disappears. Thereby, the uniformity of the silicon crystal of the sample cell can be sufficiently maintained even after the manufacturing. Further, since the gas flow path is formed by the etching method in this way,
A surface having high surface accuracy and smoothness is formed on the inner surface of the gas flow path, and diffused reflection of irradiated infrared light can be prevented.
【0011】[0011]
【実施例】以下に本発明の実施例について詳述する。図
1は本発明の一実施例に係る赤外線式ガスセンサ用試料
セルの製造方法により製造された試料セルが組み込まれ
た赤外線式ガスセンサの横断面図である。図2は本発明
の一実施例に係る赤外線式ガスセンサ用試料セルの製造
方法により製造された試料セルの斜視図である。Embodiments of the present invention will be described below in detail. FIG. 1 is a cross-sectional view of an infrared gas sensor incorporating a sample cell manufactured by the method for manufacturing an infrared gas sensor sample cell according to an embodiment of the present invention. FIG. 2 is a perspective view of a sample cell manufactured by the method for manufacturing an infrared gas sensor sample cell according to an embodiment of the present invention.
【0012】これらの図に示すように、赤外線式ガスセ
ンサは、略直方体形状の試料セル11を有している。こ
の試料セル11は、50mm×30mm×1.0mm程
度の2枚の単結晶シリコン板を貼り合わせて形成されて
いる。この場合、2枚のシリコン板の鏡面加工した貼り
合わせ面のそれぞれには、半楕円形状に延在する溝が一
対形成されている。そして、これらの溝が合致するよう
に2枚のシリコン板を貼り合わせて試料セル11が得ら
れる。シリコン板同士の貼合わせは、それらの界面に自
然酸化によって生成したSiO2層同士を陽極接合すれ
ばよい。この陽極接合により、SiO2層の酸素はシリ
コン板内部に拡散して消失するので試料セル11の結晶
の均一性は十分保たれる。なお、溝断面形状は赤外線通
過に支障がなければ、任意の形状は可能であるが、特に
矩形や円形が好ましい。As shown in these figures, the infrared gas sensor has a sample cell 11 having a substantially rectangular parallelepiped shape. The sample cell 11 is formed by bonding two single crystal silicon plates of about 50 mm × 30 mm × 1.0 mm. In this case, a pair of semi-elliptical grooves is formed on each of the mirror-finished bonding surfaces of the two silicon plates. Then, the two silicon plates are attached so that these grooves are aligned with each other, and the sample cell 11 is obtained. To bond the silicon plates to each other, the SiO 2 layers generated by natural oxidation may be anodically bonded to their interfaces. By this anodic bonding, oxygen in the SiO 2 layer diffuses and disappears inside the silicon plate, so that the crystal uniformity of the sample cell 11 is sufficiently maintained. The groove cross-sectional shape may be any shape as long as it does not hinder the passage of infrared rays, but a rectangular shape or a circular shape is particularly preferable.
【0013】そして、これらの平行な溝のうちの一方が
試料ガスのガス流路12A、他方が比較ガスのガス流路
12Bとして用いられている。すなわち、ガス流路12
Aの2つの開口部の一方は試料ガス入口12AAとなり
ガス供給手段に接続されており、他方が試料ガス出口1
3Aとなってガス排出手段に連通している。同様に、ガ
ス流路12Bについても比較ガス入口12BB、比較ガ
ス出口13Bが形成されているものである。これらのガ
ス流路12A、12Bとなる溝の形成はエッチング法を
用いればよい。エッチング法を用いることにより、ガス
流路12A、12Bの内面には面精度および平滑性の高
い面が形成され、照射赤外光の乱反射等を防止すること
ができる。そして、この溝の幅および深さは1〜5mm
および50〜200μm程度とする。溝の寸法が、この
範囲以上だと赤外光が透過してしまい、この範囲未満で
あるとガスの測定体積が少なくなり、測定感度が低下す
る。One of these parallel grooves is used as the sample gas flow path 12A and the other is used as the comparison gas flow path 12B. That is, the gas flow path 12
One of the two openings of A serves as a sample gas inlet 12AA and is connected to the gas supply means, and the other has a sample gas outlet 1
3A and communicates with the gas discharge means. Similarly, the gas flow path 12B also has a comparative gas inlet 12BB and a comparative gas outlet 13B. An etching method may be used to form the grooves to be the gas flow paths 12A and 12B. By using the etching method, a surface having high surface accuracy and smoothness is formed on the inner surfaces of the gas flow paths 12A and 12B, and diffused reflection of irradiated infrared light can be prevented. The width and depth of this groove are 1 to 5 mm.
And about 50 to 200 μm. If the size of the groove is more than this range, infrared light is transmitted, and if it is less than this range, the measurement volume of gas is reduced and the measurement sensitivity is lowered.
【0014】さらに、赤外線式ガスセンサにおいては、
赤外光は上記ガス流路12A、12Bの長手方向に沿っ
て照射される。すなわち、図1に示すように、ガス流路
12A、12Bに対向して試料セル11の一側面には光
源14A、14Bが配設されており、光チョッパ15
(回転セレクタ)がこの光源14A、14Bと試料セル
11との間に介装されている。試料セル11の材質のシ
リコンは赤外光に対して透明であるので、照射された赤
外光はシリコン壁を透過してガス流路12A、12Bを
経て検出器16に到達する。したがって、ステンレス製
の試料セルが従来必要とした赤外光通過窓は本発明のシ
リコン製の試料セル11においては省略することができ
る。Further, in the infrared gas sensor,
Infrared light is emitted along the longitudinal direction of the gas channels 12A and 12B. That is, as shown in FIG. 1, light sources 14A and 14B are disposed on one side surface of the sample cell 11 so as to face the gas flow paths 12A and 12B, and the optical chopper 15 is provided.
A (rotation selector) is interposed between the light sources 14A and 14B and the sample cell 11. Since silicon as a material of the sample cell 11 is transparent to infrared light, the irradiated infrared light passes through the silicon wall and reaches the detector 16 via the gas channels 12A and 12B. Therefore, the infrared light passage window conventionally required for the stainless sample cell can be omitted in the silicon sample cell 11 of the present invention.
【0015】検出器16は試料セル11の他側面に対向
して配設されており、例えばガス流路12A、12Bの
それぞれについて試料側の室17Aと比較側の室17B
との2室にコンデンサ膜18を介して分離されている。
これらの室17A、17Bには測定成分またはその成分
と同じ赤外線吸収帯を持つガスが封入されている。さら
に、試料セル11とこの検出器16との間にはモータ駆
動される光チョッパ19、および、フィルタ20が介装
されている。したがって、ガス流路12Aには試料ガス
が、ガス流路12Bには比較ガス(赤外線吸収のない不
活性ガス)が、それぞれ流され、これらのガスに光源1
4A、14Bより赤外線を照射する。すると、試料ガス
での赤外線の吸収により、検出器16での両室17A、
17B間に圧力差が生じる。これをコンデンサ膜18の
容量変化として検出する。そして、この容量変化を出力
信号として取り出し、所定の信号処理を行うことによ
り、試料ガスの分析を行うことができる。この測定は試
料ガスを連続的に供給しながら行うこともできる。な
お、比較側のガス流路12Bには赤外線の吸収のない不
活性ガスを封入する構造としてもよい。The detector 16 is disposed so as to face the other side surface of the sample cell 11, and for example, the sample side chamber 17A and the comparison side chamber 17B are provided for each of the gas flow paths 12A and 12B.
And 2 chambers separated by a capacitor film 18.
These chambers 17A and 17B are filled with a measurement component or a gas having the same infrared absorption band as that component. Further, a motor-driven optical chopper 19 and a filter 20 are interposed between the sample cell 11 and the detector 16. Therefore, the sample gas is flown into the gas flow path 12A, and the comparative gas (inert gas without infrared absorption) is flowed into the gas flow path 12B, and the light source 1 is supplied to these gases.
Irradiate infrared rays from 4A and 14B. Then, due to absorption of infrared rays in the sample gas, both chambers 17A in the detector 16,
A pressure difference occurs between 17B. This is detected as a capacitance change of the capacitor film 18. Then, the sample gas can be analyzed by taking out this capacitance change as an output signal and performing a predetermined signal processing. This measurement can also be performed while continuously supplying the sample gas. The gas passage 12B on the comparison side may be filled with an inert gas that does not absorb infrared rays.
【0016】また、小型化により感度の低下が懸念され
るが、ガス流路12A、12Bの内壁にAu、Ag、P
t、Alまたはこれらの金属の合金等を用いた高反射膜
をコートすることにより、このような現象を防止するこ
とができる。Although there is a concern that sensitivity will decrease due to miniaturization, Au, Ag, and P are formed on the inner walls of the gas passages 12A and 12B.
Such a phenomenon can be prevented by coating a highly reflective film using t, Al or an alloy of these metals.
【0017】このように作製された赤外線式ガスセンサ
は、大型ボイラ等のばい煙発生施設の排ガスの監視、自
動車排ガス監視、作業環境の監視、焼成炉の雰囲気監視
および制御、発電ボイラの省エネルギー、燃焼器具の性
能品質管理、および青果物の貯蔵庫の監視等の用途に使
用することができる。The infrared gas sensor manufactured in this manner is used for monitoring exhaust gas from soot and smoke generating facilities such as large boilers, monitoring automobile exhaust gas, monitoring work environment, monitoring and controlling atmosphere in firing furnace, energy saving for power generation boiler, and combustion equipment. It can be used for applications such as performance and quality control, and monitoring of fruit and vegetable storage.
【0018】また、上記試料セル11の形成は、以下の
ように行う。まず、単結晶シリコンに幅2.5mm、深
さ150μmのガス流路用の溝を半楕円状にエッチング
し、さらに、この溝内面に0.15μm厚の反応防止膜
を被着する。この後、この反応防止膜の表面に反射膜と
して、Auを1500オングストローム厚で蒸着する。
そして、この2枚のシリコン板を陽極接合法により貼合
わせる。その上で、50mm×30mmのセルを切り出
す。ここで、セルの赤外光照射面とガス流路面との厚さ
は、1mmである。このようにして作製した試料セルの
重量は、3.5gである。The sample cell 11 is formed as follows. First, a groove for a gas flow path having a width of 2.5 mm and a depth of 150 μm is etched into a semi-elliptic shape in single crystal silicon, and a reaction preventive film having a thickness of 0.15 μm is deposited on the inner surface of the groove. After that, Au is vapor-deposited to a thickness of 1500 Å as a reflective film on the surface of the reaction preventive film.
Then, the two silicon plates are bonded together by the anodic bonding method. Then, a cell of 50 mm × 30 mm is cut out. Here, the thickness of the infrared light irradiation surface of the cell and the gas flow path surface is 1 mm. The weight of the sample cell manufactured in this way is 3.5 g.
【0019】そして、例えばこの試料セルを非分散型赤
外線ガスセンサVIA−510(株式会社堀場製作所
製)に装填し、測定対象ガスとしてCO2ガスを選び、
室温にて赤外線吸収分析を行った。この際、CO2ガス
の流量は0.2l/minとした。そのときの検出感度
は1ppmであり、高感度で赤外線吸収分析が行えるこ
とが確認された。なお、表1に、本発明品と従来品の赤
外線式ガスセンサの一例を挙げて、その仕様を対比す
る。Then, for example, this non-dispersion type infrared gas sensor VIA-510 (manufactured by Horiba, Ltd.) was loaded with this sample cell, and CO 2 gas was selected as a gas to be measured.
Infrared absorption analysis was performed at room temperature. At this time, the flow rate of CO 2 gas was 0.2 l / min. The detection sensitivity at that time was 1 ppm, and it was confirmed that infrared absorption analysis can be performed with high sensitivity. Table 1 shows an example of the infrared type gas sensor of the present invention and the conventional type, and the specifications thereof are compared.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【発明の効果】本発明の赤外線式ガスセンサ用試料セル
の製造方法においては、赤外線式ガスセンサの小型化、
軽量化が可能であり、かつ、このセンサによる高感度の
ガス分析が実現できる。また、試料セルの製造後も、セ
ルの構成体である単結晶シリコン板のシリコン結晶の均
一性を十分保持できる。According to the method of manufacturing a sample cell for an infrared gas sensor of the present invention, the infrared gas sensor is downsized,
It is possible to reduce the weight and realize highly sensitive gas analysis with this sensor. Further, even after the production of the sample cell, the uniformity of the silicon crystal of the single crystal silicon plate which is the constituent of the cell can be sufficiently maintained.
【図1】本発明の一実施例に係る赤外線式ガスセンサ用
試料セルの製造方法により製造された試料セルが組み込
まれた赤外線式ガスセンサの横断面図である。FIG. 1 is a cross-sectional view of an infrared gas sensor incorporating a sample cell manufactured by a method of manufacturing a sample cell for an infrared gas sensor according to an embodiment of the present invention.
【図2】本発明の一実施例に係る赤外線式ガスセンサ用
試料セルの製造方法により製造された試料セルの斜視図
である。FIG. 2 is a perspective view of a sample cell manufactured by a method for manufacturing a sample cell for an infrared gas sensor according to an embodiment of the present invention.
11 試料セル 12A、12B ガス流路、 14A、14B 光源、 16 検出器。 11 sample cell 12A, 12B gas flow path, 14A, 14B light source, 16 detector.
Claims (1)
た貼合わせ面に、それぞれエッチングによりガス流路用
の溝を刻設する工程と、該各単結晶シリコン板の貼合わ
せ面に、自然酸化によりSiO 2 層を積層する工程と、
該各単結晶シリコン板のSiO 2 層同士を、前記各ガス
流路用の溝を合致させて陽極接合により貼合わせる工程
と、を備えた赤外線式ガスセンサ用試料セルの製造方
法。 1. Mirror-finished two single crystal silicon plates
For the gas flow path by etching each of the bonded surfaces
The step of engraving the groove of each, and laminating each single crystal silicon plate
A step of laminating a SiO 2 layer on the surface by natural oxidation ,
The SiO 2 layers of the single crystal silicon plates are separated from each other by
The process of matching the grooves for the flow path and bonding by anodic bonding
And method of manufacturing sample cell for infrared gas sensor equipped with
Law.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20838692A JP2692502B2 (en) | 1992-07-13 | 1992-07-13 | Method for manufacturing sample cell for infrared gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20838692A JP2692502B2 (en) | 1992-07-13 | 1992-07-13 | Method for manufacturing sample cell for infrared gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0634543A JPH0634543A (en) | 1994-02-08 |
JP2692502B2 true JP2692502B2 (en) | 1997-12-17 |
Family
ID=16555409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20838692A Expired - Fee Related JP2692502B2 (en) | 1992-07-13 | 1992-07-13 | Method for manufacturing sample cell for infrared gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2692502B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5507042B2 (en) | 2007-08-10 | 2014-05-28 | 株式会社ミツバ | Vehicle window opening and closing device |
JP5853873B2 (en) * | 2012-06-18 | 2016-02-09 | 株式会社デンソー | Concentration detector |
WO2022055416A1 (en) * | 2020-09-09 | 2022-03-17 | Agency For Science, Technology And Research | Gas cell and method of forming the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59104604D1 (en) * | 1990-11-26 | 1995-03-23 | Ciba Geigy Ag | Detector cell. |
-
1992
- 1992-07-13 JP JP20838692A patent/JP2692502B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0634543A (en) | 1994-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lahmann et al. | Opto-acoustic trace analysis in liquids with the frequency-modulated beam of an argon ion laser | |
US7351976B2 (en) | Monitoring system comprising infrared thermopile detector | |
Chen et al. | Acoustic signal as an internal standard for quantitation in laser-generated plumes | |
Adams et al. | Analytical optoacoustic spectrometry. Part III. The optoacoustic effect and thermal diffusivity | |
EP0768525B1 (en) | Method of detecting a gas phase molecular species in the chamber effluent of a semiconductor processing chamber, and semiconductor processing system incorporating the same | |
US20090039266A1 (en) | Monitoring system comprising infrared thermopile detector | |
EP0768521A1 (en) | Polygonal planar multipass cell, system and apparatus including same, and method of use | |
US20030137672A1 (en) | Wavelength detecting apparatus, laser apparatus, and wavelength detecting method | |
JPS61258147A (en) | Method and device for detecting gas | |
JPS62291544A (en) | Gas analyzer by photo-acoustic technique | |
JPS649568B2 (en) | ||
US4019056A (en) | Infrared laser detector employing a pressure controlled differential optoacoustic detector | |
JP2692502B2 (en) | Method for manufacturing sample cell for infrared gas sensor | |
JPH0217327Y2 (en) | ||
JP2692503B2 (en) | Infrared gas sensor | |
EP1086353A1 (en) | Method and apparatus for determining processing chamber cleaning or wafer etching endpoint | |
CN114216862B (en) | Intelligent electric locomotive traction transformer on-line monitoring system and method | |
JPH11248934A (en) | Multi-layered film interference filter and infrared-ray gas analyzer using same | |
JPH0638058B2 (en) | Gas concentration and partial pressure measuring device | |
US5153674A (en) | Semiconductor production control and/or measuring unit | |
JP3909396B2 (en) | Infrared gas analyzer | |
US3883248A (en) | Method and apparatus for measuring concentration of substance in its gaseous phase | |
JPS61152017A (en) | Etching monitoring device | |
JPH095233A (en) | Spectroscopic analysis apparatus for gas | |
Cox et al. | Double beam-in-time photoacoustic spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970805 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |