JP2691771B2 - Ice making control method of ice making machine - Google Patents

Ice making control method of ice making machine

Info

Publication number
JP2691771B2
JP2691771B2 JP10706389A JP10706389A JP2691771B2 JP 2691771 B2 JP2691771 B2 JP 2691771B2 JP 10706389 A JP10706389 A JP 10706389A JP 10706389 A JP10706389 A JP 10706389A JP 2691771 B2 JP2691771 B2 JP 2691771B2
Authority
JP
Japan
Prior art keywords
temperature
ice making
evaporator
ice
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10706389A
Other languages
Japanese (ja)
Other versions
JPH02287072A (en
Inventor
潔 増井
宗法 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Industries Ltd
Original Assignee
Daiwa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Industries Ltd filed Critical Daiwa Industries Ltd
Priority to JP10706389A priority Critical patent/JP2691771B2/en
Publication of JPH02287072A publication Critical patent/JPH02287072A/en
Application granted granted Critical
Publication of JP2691771B2 publication Critical patent/JP2691771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、製氷機の製氷制御方法に関するものであ
る。
The present invention relates to an ice making control method for an ice making machine.

〔従来の技術〕[Conventional technology]

近年、製氷機の製氷作用もマイクロコンピュータによ
り自動制御されるようになった。この従来の制御方法
は、実験・経験則等により、予め、外気温(室温)と所
望蒸発器温度(製氷完了温度)の特性式を求めておき、
外気温検出用センサにより、外気温を検出するととも
に、蒸発器温度検出用センサにより、蒸発器温度を検出
し、マイクロコンピュータでもって、前記検出外気温か
ら、外気温−所望蒸発器温度特性式に基づき、所望蒸発
器温度を算出し、前記検出蒸発器温度がその所望蒸発器
温度以下になると製氷完了とするものであり、四季を通
じて所望の氷を得ることができる。
In recent years, the ice making operation of ice making machines has come to be automatically controlled by a microcomputer. In this conventional control method, the characteristic equation of the outside air temperature (room temperature) and the desired evaporator temperature (ice making completion temperature) is obtained in advance by experiments, empirical rules, etc.
The outside temperature is detected by the sensor for detecting the outside temperature, and the temperature for the evaporator is detected by the sensor for detecting the temperature of the evaporator, and the microcomputer detects the outside temperature from the outside temperature-the desired evaporator temperature characteristic formula. Based on this, the desired evaporator temperature is calculated, and when the detected evaporator temperature becomes equal to or lower than the desired evaporator temperature, the ice making is completed, and the desired ice can be obtained throughout the four seasons.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、この従来の制御方法は、センサーを2
個も必要とし、その回路が複雑となるため、高価となる
欠点がある。
However, this conventional control method requires two sensors.
Since the number of individual pieces is also required and the circuit becomes complicated, there is a drawback that it becomes expensive.

また、冷凍サイクル自体の原因(排気度合、経年等)
による凝縮温度の変化や電源周波数の変化による冷却能
力変化を加味しておらず、それらの変化に追随できない
欠点もある。
Also, the cause of the refrigeration cycle itself (exhaust degree, aging, etc.)
There is also a drawback that changes in the cooling capacity due to changes in the condensing temperature and changes in the power supply frequency due to changes in temperature are not taken into account and these changes cannot be followed.

この発明は、以上の点に鑑み、外気温変化のみなら
ず、凝縮温度及び電源周波数変化に関係なく、四季を通
じて所望の氷を安定して得ることができるようにすると
を目的とする。
In view of the above points, an object of the present invention is to make it possible to stably obtain desired ice throughout the four seasons, irrespective of not only changes in outside air temperature but also changes in condensation temperature and power source frequency.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、この発明は、まず、製氷機
において、その冷凍サイクルん所定温度幅の降下時間と
周囲温度(外気温)との間に一定の関係があり、さら
に、その外気温が変化した際、その降下時間と製氷完了
温度(前記所望蒸発器温度)との間に一定の関係がある
ことに着目したものである。
In order to achieve the above-mentioned object, the present invention firstly provides, in an ice making machine, a certain relationship between a falling time of a refrigerating cycle and a predetermined temperature range and an ambient temperature (outside air temperature). When the temperature changes, it is noted that there is a fixed relationship between the falling time and the ice making completion temperature (the desired evaporator temperature).

すなわち、例えば、後述の第2図で示す冷凍サイクル
において、冷媒にフロン12を使用して穴径:5mmφの氷を
製造する際、蒸発器3bの温度が−5℃から−10℃になる
までの温度降下時間tと周囲温度(外気温、室温)TR
関係式I、−5℃から−15℃になるまでの関係式II、−
5℃から−20℃になるまでの関係式III、−5℃から−2
5℃になるまでの関係式IVを、それぞれ実験・経験則に
よって求めると、第3図に示すようになる。
That is, for example, in the refrigeration cycle shown in FIG. 2 to be described later, when freon 12 is used as a refrigerant to produce ice with a hole diameter of 5 mmφ, the temperature of the evaporator 3b changes from −5 ° C. to −10 ° C. temperature drop time t and the ambient temperature (outside temperature, room temperature) of the T R in equation I, equation II until the -15 ° C. from -5 ° C., -
Relational expression III from 5 ℃ to -20 ℃, -5 ℃ to -2
The relational expression IV up to 5 ° C is obtained by experiments and empirical rules, and is as shown in Fig. 3.

また、その際、その降下時間tにおいて、製氷完了と
なる蒸発器温度(製氷完了温度)Tsnは、第4図に示す
ようになる。すなわち、例えば、蒸発器温度Taが−5℃
〜−10℃になるまでに、600秒かかったとすると、製氷
完了温度Tsnは−16.5℃となり、また450秒かかったとす
ると、Tsnは−20.0℃となる。このように、降下時間t
が短いと、製氷完了温度Tsnが低いのは、製氷度合は、
冷却温度とその冷却時間の積によって決定されるからと
考える。
Further, at that time, the evaporator temperature (ice making completion temperature) T sn at which the ice making is completed at the descent time t is as shown in FIG. That is, for example, the evaporator temperature T a is −5 ° C.
If it takes 600 seconds to reach −10 ° C., the ice making completion temperature T sn becomes −16.5 ° C., and if it takes 450 seconds, T sn becomes −20.0 ° C. Thus, the descent time t
If the temperature is short, the ice making completion temperature T sn is low.
This is because it is determined by the product of the cooling temperature and the cooling time.

以上のことから、外気温TRが変化すれば、蒸発器の所
定温度幅(所定温度帯TN)の降下時間tが変化し、その
降下時間tは製氷完了温度Tsnに関係することが理解で
きる。
From the above, if the change is the outside air temperature T R, the fall time t is changed in the evaporator of a predetermined temperature range (predetermined temperature range TN), the fall time t is understood to be involved in the ice-making completion temperature T sn it can.

すなわち、降下時間tから製氷完了温度Tsnを決定す
ることは、外気温TRから製氷完了温度Tsnを決定するこ
とと等価であり、降下時間tは製氷完了温度Tsnと外気
温TRとを媒介する変数であることがわかる。このため、
外気温TRに関係なく、所定温度帯TNnの降下時間tを測
定し、その降下時間tでもって、製氷完了温度Tsnを決
定し、その温度Tsnに蒸発器温度Taが達した時に、製氷
完了とすればよい。
That is, to determine the ice-making completion temperature T sn descent from time t is equivalent to determining the ice-making completion temperature T sn from the outside air temperature T R, the fall time t is ice completion temperature T sn and the outside air temperature T R It can be seen that it is a variable that mediates and. For this reason,
Regardless outside temperature T R, to measure the fall time t of a predetermined temperature range TN n, with its fall time t, determining the ice-making completion temperature T sn, evaporator temperature T a has reached its temperature T sn At some point, ice making may be completed.

したがって、この発明は、上記の点に着目し、圧縮
機、凝縮器、減圧器及び蒸発器からなる冷凍サイクルを
備えた製氷機を制御するに際し、前記冷凍サイクル作動
中の前記蒸発器の所定温度を基準とし、その基準温度T
aoから負方向に所定温度幅で所要数nの測定温度帯TNを
測定し、前記基準温度Taoから前記測定温度帯TNの最低
温度に至るまでの温度降下時間tと製氷完了の蒸発器温
度Tsnとの関係式を予め導出しておき、製氷作用におい
て、前記蒸発器の温度Taを測定し、その温度Taが前記基
準温度Taoとなった時から前記各測度温度帯TNまでの温
度降下時間tを測定し、その各測定温度帯TNまでの前記
関係式(I、II……)からその温度降下時間tに対応す
る製氷完了蒸発器温度Tsnを算出し、その算出温度T
snが、その算出した関係式の測定温度帯TNnのつぎの2
つの測定温度帯TNn+1及びTNn+2内のどちらかに入るま
で、前記温度降下時間tによる製氷完了蒸発器温度Tsn
の算出を繰返し、前記つぎの測定温度帯TNn+1又はTNn+2
に入った時、その算出温度Tsnをこの製氷作用における
製氷完了蒸発器温度TSとし、その温度TSに、前記蒸発器
の測定温度Taがなったとき、製氷完了とするようにした
のである。
Therefore, the present invention focuses on the above points, and when controlling an ice making machine provided with a refrigeration cycle consisting of a compressor, a condenser, a pressure reducer and an evaporator, a predetermined temperature of the evaporator during the operation of the refrigeration cycle. With reference temperature T
A required number n of measurement temperature zones TN are measured in a negative temperature range from ao in the negative direction, and the temperature drop time t from the reference temperature T ao to the minimum temperature of the measurement temperature zone TN and the evaporator temperature at the completion of ice making are measured. advance derive relationship between T sn, in the ice making action, the temperature T a of the evaporator was measured until the temperature T a is the respective measure temperature zones TN since became the reference temperature T ao Temperature drop time t of the ice making completion evaporator temperature T sn corresponding to the temperature drop time t is calculated from the relational expressions (I, II ...) Up to the respective measurement temperature zones TN, and the calculated temperature T
sn is the next 2 of the measured temperature range TN n of the calculated relational expression
The ice making completion evaporator temperature T sn according to the temperature drop time t is entered until one of the two measured temperature zones TN n + 1 and TN n + 2 is entered.
The above measurement temperature band TN n + 1 or TN n + 2 is repeated.
When it reaches the, by the calculated temperature T sn and ice complete evaporator temperature T S in this ice making action, the temperature T S, when the measured temperature T a of the evaporator becomes, and so the ice-making completion Of.

蒸発器の所定(基準)温度Taoは、水温に影響されず
に蒸発器の降下時間tが安定する値とし、例えば、−5
℃とすれば、給水がどんな温度でも、−5℃のときに
は、0℃近くになって一定し、その後は、外気温TR、冷
凍サイクルの凝縮温度、電源周波数変化によって降下時
間tが決定される。
The predetermined (reference) temperature T ao of the evaporator is a value at which the elapse time t of the evaporator is stable without being affected by the water temperature, and is, for example, −5.
If ° C. and water supply is at any temperature, at -5 ° C. is constant becomes close 0 ° C., then, the outside air temperature T R, the condensation temperature of the refrigeration cycle, the power supply frequency changes fall time t is determined It

所定温度帯TNは、狭ければ、狭いほど精度が増すが、
温度検出センサー(温度計)の精度を考慮して適宜、例
えば、5℃間隔とする。また、その帯数は、蒸発器の
製氷時の降下温度及び前記温度帯幅によって決定される
が、冷媒にフロン12を使用した場合には、降下温度は−
25℃位が適当のため、5℃間隔とすれば、=4とな
る。
The narrower the predetermined temperature range TN is, the more accurate the accuracy is.
Considering the accuracy of the temperature detection sensor (thermometer), the interval is, for example, 5 ° C. as appropriate. The number of bands n is determined by the temperature drop during the ice making of the evaporator and the temperature band width. When CFC 12 is used as the refrigerant, the temperature drop is −
Since 25 ° C is appropriate, n = 4 at 5 ° C intervals.

製氷完了の算出温度Tsnが、つぎの測定温度帯TNn+1
はTNn+2内のどちらかに入るまで、算出を繰返すのは、
測定する温度幅を広く取れば取るほど種々の外乱を吸収
でき、正確な製氷完了温度Tsnを選択できるからであ
る。
The calculation is repeated until the calculated temperature T sn for the completion of ice making falls into either of the next measurement temperature zones TN n + 1 or TN n + 2 .
This is because the wider the temperature range to be measured, the more various disturbances can be absorbed and the more accurate ice making completion temperature T sn can be selected.

なお、製氷完了温度TSには、実施例のごとく氷の穴径
を決定する情報A等を加味することができる。
It should be noted that the ice making completion temperature T S can take into consideration the information A for determining the hole diameter of ice as in the embodiment.

〔実施例〕〔Example〕

第2図は、この発明の方法によって制御される一般的
な水/冷媒回路で構成された上向噴流式製氷機の冷凍サ
イクルの一例を示すもので、貯氷庫(図示せず)の上部
に水皿1と一体に回動可能に構成された製氷水タンク2
が設置されており、この製氷水タンク2は製氷運転時に
図示実線の上昇位置にあって製氷皿3に当接し、脱氷運
転時には図示鎖線の下降位置にあって製氷皿3から離れ
るように水皿駆動モータRM(図示せず)によって駆動さ
れる。この駆動は、水皿1の位置検出をする切換スイッ
チ(図示せず)により行われる。
FIG. 2 shows an example of a refrigerating cycle of an upward jet type ice making machine constituted by a general water / refrigerant circuit controlled by the method of the present invention, which is provided at an upper portion of an ice storage (not shown). Ice water tank 2 configured to be rotatable integrally with the water tray 1.
The ice-making water tank 2 is in contact with the ice tray 3 at the rising position of the solid line in the drawing during the ice making operation, and is in the descending position of the chain line in the drawing during the ice removing operation to separate from the ice tray 3. It is driven by a dish drive motor RM (not shown). This drive is performed by a changeover switch (not shown) for detecting the position of the water tray 1.

製氷皿3は、開口を下方に有する多数の製氷小室3aお
よび蒸発器3bを有しており、製氷小室3aの開口を水皿1
で閉じた後、循環ポンプ12により、製氷水タンク2の製
氷用水を水皿1に揚水し、その製氷用水を水皿1に設け
られた小孔を通して、同図点線のごとく各製氷小室3aに
噴水すると、製氷小室3aの内壁に徐々に第5図に示す氷
a(図は製氷時と天地が逆)が成長する。
The ice tray 3 has a large number of ice making compartments 3a and an evaporator 3b each having an opening at the bottom thereof.
Then, the circulation pump 12 pumps the ice making water from the ice making water tank 2 into the water tray 1, and the ice making water is passed through the small holes provided in the water tray 1 to the ice making small chambers 3a as shown by the dotted lines in FIG. When the fountain is sprayed, the ice a shown in FIG. 5 (in the figure, the top and bottom of the ice cube are opposite) gradually grows on the inner wall of the ice making chamber 3a.

蒸発器3bによる製氷皿3の冷却は、圧縮機5で圧縮さ
れた高温高圧の冷媒ガス(フロン12)が凝縮器6におい
て凝縮ファンモータ7により冷却液化され、キャピラリ
チューブ8によって膨張した後、蒸発器3bに送られ、そ
の液化冷媒ガスは蒸発器3bを通る間に蒸発し、製氷皿3
から蒸発熱に相当する熱を奪って気化して、圧縮機5に
戻る冷凍サイクルによって行う。
The ice tray 3 is cooled by the evaporator 3b. The high-temperature and high-pressure refrigerant gas (Freon 12) compressed by the compressor 5 is cooled and liquefied by the condensing fan motor 7 in the condenser 6 and expanded by the capillary tube 8 and then evaporated. The liquefied refrigerant gas is sent to the vessel 3b and is evaporated while passing through the evaporator 3b.
This is performed by a refrigeration cycle in which heat equivalent to the heat of vaporization is taken from and vaporized and returned to the compressor 5.

蒸発器3bにはその温度検出用のセンサ4が付設されて
おり、この測定温度Taに基づき、後述の制御方法によっ
て、製氷完了温度TSが決定され、その温度TSに測定温度
Taが達すると、脱氷運転に移行する。
A sensor 4 for detecting the temperature is attached to the evaporator 3b, and the ice making completion temperature T S is determined by the control method described later based on the measured temperature T a , and the temperature T S is measured.
When T a is reached, de-icing operation is started.

この脱氷運転は、まず、温度検出用センサ4の検出信
号により、水皿駆動モータRMが駆動して水皿1および製
氷水タンク2が下降し、下降位置で前記水皿駆動モータ
RMが切換スイッチを動作させて停止すると、バイパス通
路9に設けられたホットガス弁10が開放し、圧縮機5か
らの高温高圧の冷媒ガスがバイパス通路9を経て蒸発器
3bに送られ、製氷皿3を加熱する。また、それと同時に
給水弁11が開放し、給水弁11から製氷皿3及び水皿1に
融氷水が導かれてへばり付氷の融解を行い、この融氷水
は、次の製氷運転のための製氷用水として製氷水タンク
2内に貯えられる。この加熱及び給水により、製氷小室
3a内の氷aは、その周囲が解けて製氷皿3から離れて貯
氷庫に落下収納される。
In this deicing operation, first, the water tray drive motor RM is driven by the detection signal of the temperature detection sensor 4 to lower the water tray 1 and the ice making water tank 2, and the water tray drive motor is moved to the lowered position.
When the RM operates the changeover switch to stop, the hot gas valve 10 provided in the bypass passage 9 opens, and the high-temperature and high-pressure refrigerant gas from the compressor 5 passes through the bypass passage 9 and the evaporator.
It is sent to 3b and the ice tray 3 is heated. At the same time, the water supply valve 11 is opened, and the melted ice water is guided from the water supply valve 11 to the ice tray 3 and the water tray 1 to melt the ice with a flash, and this melted ice water is used for the next ice making operation. It is stored in the ice making water tank 2 as ice making water. By this heating and water supply, the ice making small chamber
The ice a in 3a is melted at its periphery and separated from the ice tray 3 to be dropped and stored in the ice storage.

蒸発器温度検出用センサ4が脱氷完了温度を検出する
と、前記水皿駆動モータRMが逆回転し、水皿1及び製氷
水タンク2が上昇し、上昇位置で前記水皿駆動モータRM
が切換スイッチを動作させて停止すると同時にホットガ
ス弁10及び給水弁11を閉止し、次の製氷運転に入る。
When the evaporator temperature detection sensor 4 detects the de-icing completion temperature, the water tray drive motor RM rotates in the reverse direction, the water tray 1 and the ice making water tank 2 rise, and the water tray drive motor RM in the raised position.
Operates the changeover switch to stop and simultaneously closes the hot gas valve 10 and the water supply valve 11 to start the next ice making operation.

以上の作用は、製氷終了制御、すなわち製氷完了温度
TSの決定以外、実公昭62−9491号公報等に記載の公知技
術と同一であり、つぎに、この発明の特徴である製氷終
了制御について説明する。
The above operation is the ice making end control, that is, the ice making completion temperature.
Other than the determination of T S , this is the same as the known technique described in Japanese Utility Model Publication No. 62-9491, and the ice making end control, which is a feature of the present invention, will be described.

まず、第4図に示すように、温度帯TNに対応する温度
降下時間tと製氷完了温度Tsnの関係式を、実験・経験
則により決定する。この関係式I′、II′、III′、I
V′は、第5図に示す氷aの穴bが5mmφの場合であり、
各関係式から得られた製氷完了温度Tsnを、所要温度A
高めれば(例えば、製氷完了温度Tsnが−23℃の場合、
−23℃からA:2℃高めて−21℃とすれば)、氷aの成長
を早く止めることとなって、穴bの径が大きくなり、逆
に、所要温度A低めれば、氷aの成長を長びかせること
となって、穴bの径が小さくなる。この所要温度Aは、
実験・経験則によって適宜に選定する。
First, as shown in FIG. 4, the relational expression between the temperature drop time t corresponding to the temperature zone TN and the ice making completion temperature T sn is determined by experiments and empirical rules. This relational expression I ′, II ′, III ′, I
V ′ is the case where the hole b of the ice a shown in FIG. 5 is 5 mmφ,
The ice making completion temperature T sn obtained from each relational expression is the required temperature A
If it is increased (for example, when the ice making completion temperature T sn is −23 ° C.,
If A: 2 ℃ is raised from -23 ℃ to -21 ℃), the growth of the ice a is stopped early, and the diameter of the hole b becomes large. Conversely, if the required temperature A is lowered, the ice a Of the holes, the diameter of the hole b becomes smaller. This required temperature A is
Make appropriate selections based on experiments and empirical rules.

したがって、製氷に際しては、制御器Cに、上記関係
式I′〜IV′を記憶させるとともに、温度A情報を入力
したのち、製氷を開始する。製氷が開始され、蒸発器3b
の温度が、−5℃になると、計時が開始され、−10℃ま
での降下時間tが測定される。この測定値に基づき、前
述のようにして製氷完了温度Tsnを算出し、その温度Tsn
がつぎの温度帯TNn+1、TNn+2のどちらかに入るまで、そ
の算出を繰り返して、製氷完了温度Tsnを決定する。
Therefore, at the time of ice making, the controller C stores the above relational expressions I ′ to IV ′ and inputs the temperature A information, and then the ice making is started. Ice making started, evaporator 3b
When the temperature of 5 reaches -5 ° C, time measurement is started and the fall time t to -10 ° C is measured. Based on this measured value, the ice making completion temperature T sn is calculated as described above, and the temperature T sn
The ice making completion temperature T sn is determined by repeating the calculation until the temperature reaches either of the following temperature zones TN n + 1 and TN n + 2 .

この製氷完了温度Tsnが決定すれば、その温度Tsnに温
度A情報を加えた値Tsに、センサ4からの測定値Taがな
るまで冷却を続け、その温度Tsになると、製氷作用を停
止して、前述の脱氷作用に移行する。以上のフローチャ
ートを第1図に示す。
If determined in this ice-making completion temperature T sn is, the temperature T sn of the value Ts obtained by adding the temperature A information, it continued cooling until the measurement value T a from the sensor 4 is, at a temperature Ts, the ice-making action Stop and proceed to the de-icing action described above. The above flow chart is shown in FIG.

〔発明の効果〕〔The invention's effect〕

この発明は、以上のように構成し、外気温、凝縮温度
及び電源周波数の変化に対応する蒸発器降下温度時間に
よって、製氷完了温度を決定するようにしたので、外気
温、凝縮温度及び電源周波数が変化しても所望の氷が四
季を通じて得られ、年間無調整で安定した正確な製氷を
行うことができる。
Since the present invention is configured as described above, and the ice making completion temperature is determined by the evaporator fall temperature time corresponding to changes in the outside air temperature, the condensation temperature and the power supply frequency, the outside air temperature, the condensation temperature and the power supply frequency Even if the temperature changes, the desired ice can be obtained throughout the four seasons, and stable and accurate ice-making can be performed without adjustment throughout the year.

また、外気温補正用センサが不要なため、回路も簡略
化され、安価な製品を提供することができる。
Further, since the sensor for correcting the outside air temperature is not required, the circuit is simplified and an inexpensive product can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る製氷機の製氷制御方法の一実施
例のフローチャート、第2図は同実施例の上向噴流式製
氷機の概略図、第3図及び第4図は、温度降下時間と周
囲温度及び製氷完了温度とのそれぞれ関係図、第5図は
実施例で製造した氷の斜視図である。 1……水皿、2……製氷水タンク、 3……製氷皿、3a……製氷小室、 3b……蒸発器、 4……蒸発器温度検出用センサ、 5……圧縮機、6……凝縮器、 7……凝縮ファンモータ、9……バイパス通路、 10……ホットガス弁、11……給水弁、 C……制御器、a……氷、 b……穴、Ta……蒸発器温度、 Tao……基準温度、 Tsn、Ts……製氷完了温度(蒸発器温度)、 t……温度降下時間。
FIG. 1 is a flow chart of an embodiment of an ice making control method for an ice making machine according to the present invention, FIG. 2 is a schematic view of an upward jet ice making machine of the same embodiment, and FIGS. 3 and 4 are temperature drop. FIG. 5 is a diagram showing the relationship between time, ambient temperature and ice making completion temperature, and FIG. 5 is a perspective view of the ice produced in the example. 1 ... Water tray, 2 ... Ice making water tank, 3 ... Ice making tray, 3a ... Ice making chamber, 3b ... Evaporator, 4 ... Evaporator temperature detection sensor, 5 ... Compressor, 6 ... Condenser, 7 ... Condensing fan motor, 9 ... Bypass passage, 10 ... Hot gas valve, 11 ... Water supply valve, C ... Controller, a ... Ice, b ... Hole, Ta ... Evaporation Vessel temperature, T ao …… Reference temperature, Tsn, Ts …… Ice-making completion temperature (evaporator temperature), t …… Temperature drop time.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、凝縮器、減圧器及び蒸発器からな
る冷凍サイクルを備えた製氷機を制御するに際し、前記
冷凍サイクル作動中の前記蒸発器の所定温度を基準と
し、その基準温度から負方向に所定温度軸で所要数の測
定温度帯を決定し、前記基準温度から前記測定温度帯の
最低温度に至るまでの温度降下時間と製氷完了の蒸発器
温度との関係式を予め導出しておき、製氷作用におい
て、前記蒸発器の温度を測定し、その温度が前記基準温
度となった時から前記各測度温度帯までの温度降下時間
を測定し、その各測定温度帯までの前記関係式からその
温度降下時間に対応する製氷完了蒸発器温度を算出し、
その算出温度が、その算出した関係式の測定温度のつぎ
の2つの測定温度帯内のどちらかに入るまで、前記温度
降下時間による製氷完了蒸発器温度の算出を繰り返し、
前記つぎの測定温度帯に入った時、その算出温度をこの
製氷作用における製氷完了蒸発器温度とし、その温度
に、前記蒸発器の測定温度がなったとき、製氷完了とす
る製氷機の製氷制御方法。
1. When controlling an ice maker having a refrigeration cycle including a compressor, a condenser, a decompressor and an evaporator, a predetermined temperature of the evaporator during the operation of the refrigeration cycle is used as a reference, and the reference temperature is used as the reference temperature. Determining the required number of measurement temperature zones in the negative direction on the predetermined temperature axis, and deriving in advance the relational expression between the temperature drop time from the reference temperature to the minimum temperature of the measurement temperature zone and the evaporator temperature at the completion of ice making. In the ice making operation, the temperature of the evaporator is measured, and the temperature drop time from when the temperature reaches the reference temperature to each of the measured temperature zones is measured. Calculate the ice making completion evaporator temperature corresponding to the temperature drop time from the formula,
Until the calculated temperature falls within one of the two measured temperature zones next to the measured temperature of the calculated relational expression, the calculation of the ice making completion evaporator temperature based on the temperature drop time is repeated,
When entering the next measurement temperature zone, the calculated temperature is set as the ice making completion evaporator temperature in this ice making operation, and when the measured temperature of the evaporator is reached, the ice making control of the ice making machine is completed Method.
JP10706389A 1989-04-26 1989-04-26 Ice making control method of ice making machine Expired - Lifetime JP2691771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10706389A JP2691771B2 (en) 1989-04-26 1989-04-26 Ice making control method of ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10706389A JP2691771B2 (en) 1989-04-26 1989-04-26 Ice making control method of ice making machine

Publications (2)

Publication Number Publication Date
JPH02287072A JPH02287072A (en) 1990-11-27
JP2691771B2 true JP2691771B2 (en) 1997-12-17

Family

ID=14449551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10706389A Expired - Lifetime JP2691771B2 (en) 1989-04-26 1989-04-26 Ice making control method of ice making machine

Country Status (1)

Country Link
JP (1) JP2691771B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735000A (en) * 2011-03-30 2012-10-17 郑辉东 Ice manufacture motion control method, ice manufacture water purifier and ice manufacture water cooling and heating device controlled by same
KR102414709B1 (en) * 2021-04-29 2022-06-28 청호나이스 주식회사 Load-Adaptive Ice Maker, Beverage Supplying Apparatus and Ice Making Method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848122B2 (en) * 1991-06-20 1999-01-20 三菱電機株式会社 Refrigerator with automatic ice maker
JP4994087B2 (en) * 2007-04-03 2012-08-08 ホシザキ電機株式会社 How to operate an automatic ice machine
JP5173272B2 (en) * 2007-06-14 2013-04-03 ホシザキ電機株式会社 How to operate an ice machine
JP5695592B2 (en) * 2012-03-14 2015-04-08 福島工業株式会社 Ice machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735000A (en) * 2011-03-30 2012-10-17 郑辉东 Ice manufacture motion control method, ice manufacture water purifier and ice manufacture water cooling and heating device controlled by same
KR102414709B1 (en) * 2021-04-29 2022-06-28 청호나이스 주식회사 Load-Adaptive Ice Maker, Beverage Supplying Apparatus and Ice Making Method

Also Published As

Publication number Publication date
JPH02287072A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US6694754B1 (en) Refrigeration appliance with pulsed defrost heater
US6725680B1 (en) Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
KR102604129B1 (en) Refrigerator and controlling method the same
JP3636602B2 (en) refrigerator
CN204494948U (en) Refrigerator
US11067324B2 (en) Refrigerator and control method therefor
US6532751B1 (en) Method of maximizing ice production in a refrigeration appliance
US10788250B2 (en) Ice making assemblies and methods for making clear ice
CN111895719B (en) Temperature correction control method for air-cooled refrigerator
JPH09503289A (en) Defrosting device for refrigerator and control method thereof
TWI391618B (en) Control method of cooling storage and its compressor
CN103608630A (en) Freezer
US20220146191A1 (en) Refrigerator and method for controlling the same
JP2691771B2 (en) Ice making control method of ice making machine
CN110671889A (en) Method, device and equipment for controlling food storage in refrigerator and refrigerator system
JP4682479B2 (en) Freezer refrigerator
JPH01124371A (en) Quick thawer
KR101952656B1 (en) sensing method for ice full state of refrigerator
JPH11211312A (en) Refrigerator
KR100424071B1 (en) A method for operating kimchi-refrigerators
CN219199646U (en) Quick cooling device and refrigerator with same
SU1011962A1 (en) Refrigeration chamber for storing fruits and vegetables
US20140190188A1 (en) Refrigerator appliance
JP5262244B2 (en) refrigerator
KR20050060610A (en) Method for defrosting in the utility room of the kimchi refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090905

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12