JP2691183B2 - Method for synthesizing cubic boron nitride crystals - Google Patents

Method for synthesizing cubic boron nitride crystals

Info

Publication number
JP2691183B2
JP2691183B2 JP26724888A JP26724888A JP2691183B2 JP 2691183 B2 JP2691183 B2 JP 2691183B2 JP 26724888 A JP26724888 A JP 26724888A JP 26724888 A JP26724888 A JP 26724888A JP 2691183 B2 JP2691183 B2 JP 2691183B2
Authority
JP
Japan
Prior art keywords
boron nitride
source
cbn
cubic boron
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26724888A
Other languages
Japanese (ja)
Other versions
JPH02115034A (en
Inventor
裕彦 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26724888A priority Critical patent/JP2691183B2/en
Publication of JPH02115034A publication Critical patent/JPH02115034A/en
Application granted granted Critical
Publication of JP2691183B2 publication Critical patent/JP2691183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は立方晶窒化ほう素(以下、cBNと称する)結
晶の合成方法に関するものである。
The present invention relates to a method for synthesizing cubic boron nitride (hereinafter referred to as cBN) crystals.

cBNはダイヤモンドに次ぐ硬さを有し、しかも化学的
安定性、特に鉄系被削材に対する化学的安定性がダイヤ
モンドより優れているため、研削砥粒としての使用量が
増大している。また、近年超精密仕上加工技術の進歩に
伴って単石バイトとして使用できる良質なミリサイズの
cBN単結晶の開発が望まれている。
Since cBN has hardness second only to diamond and is superior to diamond in chemical stability, especially to iron-based work materials, the amount of cBN used as grinding abrasive grains is increasing. In addition, with the advancement of ultra-precision finishing technology in recent years
Development of cBN single crystal is desired.

また、半導体としての性能に着目すると、ダイヤモン
ドではp型半導体だけしか製造できないが、cBN結晶は
p型、n型の両方の半導体の製造が可能である。このよ
うな半導体特性を利用して、pn素子より構成されるデバ
イスを製造するためにも、ミリサイズのcBN結晶を製造
することが必要である。したがって、半導体へのcBN結
晶適用の面からも良質で大型のcBN単結晶の開発が望ま
れている。
Further, when attention is paid to the performance as a semiconductor, only p-type semiconductors can be produced from diamond, but cBN crystal can produce both p-type and n-type semiconductors. Utilizing such semiconductor characteristics, it is necessary to manufacture millimeter-sized cBN crystals in order to manufacture a device composed of a pn element. Therefore, from the viewpoint of application of cBN crystals to semiconductors, development of high-quality and large-sized cBN single crystals is desired.

(従来の技術) cBNの合成に関して、窒化ほう素源とcBN種結晶を、cB
N合成触媒で隔てて配置し、立方晶窒化ほう素が安定で
ある温度圧力条件下でかつcBN合成触媒の融点以上の温
度条件下で合成する方法(以下、種結晶法と称する)は
公知である。
(Prior Art) For the synthesis of cBN, a boron nitride source and a cBN seed crystal were
A method (hereinafter referred to as a seed crystal method) in which the cubic boron nitride is stable and the cubic boron nitride is stable under the temperature and pressure conditions and at a temperature higher than the melting point of the cBN synthesis catalyst is known. is there.

cBN大型結晶の合成法として、高温高圧下でcBNが触媒
融体に溶解する溶解度が温度により変化することを利用
する方法(一般に温度差法と称される)が特開昭57−15
6399号等で開発されている。種結晶法と温度差法を組み
合わせた方法として、特開昭57−156399号では、高温高
圧装置の高温部に六方晶窒化ほう素(以下、hBNと称す
る)とcBNの微細結晶の混合物を配置し、低温部にcBNの
種結晶を配置し、これらを溶媒部で隔てて、約24時間高
温高圧処理して約2.2mmのcBN結晶を種結晶上に成長させ
ている。ここで、溶媒として用いられる窒化ほう素スト
ロンチウム又は窒化ほう素バリウムは一定の粒径までcB
Nを成長させる速度が速いとの特長があると説明されて
いる。
As a method for synthesizing large crystals of cBN, a method utilizing the fact that the solubility of cBN in a catalyst melt under high temperature and high pressure changes with temperature (generally called the temperature difference method) is disclosed in JP-A-57-15.
It is being developed in 6399. As a method combining the seed crystal method and the temperature difference method, in JP-A-57-156399, a mixture of hexagonal boron nitride (hBN) and fine crystals of cBN is arranged in the high temperature part of a high temperature and high pressure device. Then, a seed crystal of cBN is placed in the low temperature part, and these are separated by a solvent part and subjected to high temperature and high pressure treatment for about 24 hours to grow a cBN crystal of about 2.2 mm on the seed crystal. Here, strontium boron nitride or barium boron nitride used as a solvent is cB up to a certain particle size.
It is explained that there is a feature that the growth rate of N is fast.

(発明が解決しようとする課題) しかしながら、従来の温度差法により良質で大型のcB
N結晶を合成するためには時間をかけてゆっくり結晶を
成長させる必要がある。
(Problems to be Solved by the Invention) However, a large-sized cB of high quality is produced by the conventional temperature difference method.
In order to synthesize N crystal, it is necessary to slowly grow the crystal over time.

本発明者等は従来法で製造された大型cBN単結晶の合
成試験を種々検討し、以下のような知見を得た。すなわ
ち、良質なcBN単結晶は8個の{111}面を外形構成基本
面としている。この事と結晶成長の関連を検討するに、
cBN結晶の成長では{111}面が分子、原子レベルで一層
づつ積み重なって成長する所謂沿面成長を行なわせる必
要があることはほぼ確実である。ここで、結晶粒の成長
速度は{111}面に平行方向と垂直方向の各方向の成長
速度の合成として把握される。前者は{111}面が広い
結晶を成長させる速度と関連し、前者と後者の成長速度
が共に大きくなると所望のmmサイズの結晶粒を効率的に
合成できるようになる。結晶が大きくなる程、その各々
の{111}面の面積が大きくなるので、沿面成長を適正
に維持するためには{111}面平行方向の成長速度を{1
11}面垂直方向の成長速度より相対的に大きくする必要
がある。温度差法を含めて一般の結晶成長法では沿面成
長を行なわせるためには、結晶周囲の溶液の過飽和度を
低く抑えることによって、不規則な結晶の析出速度を小
さくすることが必要である。このために、大きな健全な
結晶を合成するためには結晶合成時間を長くしなければ
ならない。
The present inventors have conducted various studies on synthetic tests of large cBN single crystals produced by a conventional method, and have obtained the following findings. That is, a good-quality cBN single crystal has eight {111} planes as the outer constitutional basic planes. To examine the relationship between this fact and crystal growth,
In the growth of cBN crystals, it is almost certain that it is necessary to perform so-called creeping growth in which {111} planes are stacked one on top of another at the molecular and atomic levels. Here, the growth rate of crystal grains is understood as a combination of the growth rates in the directions parallel to and perpendicular to the {111} plane. The former is related to the rate of growing a crystal with a wide {111} plane, and if both the former and the latter grow at a higher rate, it becomes possible to efficiently synthesize desired mm-sized crystal grains. The larger the crystal, the larger the area of each of the {111} planes, so in order to maintain proper creeping growth, the growth rate in the {111} plane parallel direction should be {1}.
It is necessary to make the growth rate relatively higher than the growth rate in the 11} plane vertical direction. In order to perform creeping growth in a general crystal growth method including a temperature difference method, it is necessary to suppress the supersaturation degree of the solution around the crystal to be low to reduce the precipitation rate of irregular crystals. Therefore, in order to synthesize a large sound crystal, the crystal synthesis time must be lengthened.

温度差法で大型の結晶を得るために成長速度を高める
べく温度差を大きくすると、これに伴って析出速度が速
くなり、{111}面に平行方向の成長速度が不充分とな
り、{111}面以外の面である{100}等が付随的に生成
し、健全な結晶が得がたくなる。
When the temperature difference is increased in order to increase the growth rate in order to obtain a large crystal by the temperature difference method, the precipitation rate increases accordingly and the growth rate in the direction parallel to the {111} plane becomes insufficient, resulting in {111}. Surfaces other than the surface, such as {100}, are generated incidentally, making it difficult to obtain a sound crystal.

したがって、本発明は、上記のような欠点がなく、良
質で大型のcBN結晶を著しい長時間をかけずに成長させ
ることができるcBN合成法を提供することを目的とす
る。
Therefore, it is an object of the present invention to provide a cBN synthesis method which does not have the above-mentioned drawbacks and can grow a large-sized cBN crystal of good quality in a short period of time.

(課題を解決するための手段) 本発明者等は、cBN研削砥粒に関する特願昭63−18166
9号および63−185464号において、{111}面の水平方向
の成長速度を垂直方向成長速度に対して相対的に速くす
ることにより、良質なcBN結晶を得る方法を提案した。
この方法は、C源、Si源、および水素化アルカリ又は水
素化アルカリ土類を介在させた系で高温高圧処理を行な
うことにより所望の効果を得るものである。この方法に
おける、C源と、Si源と、水素化アルカリ又は水素化ア
ルカリ土類の効果を温度差法によるcBN結晶合成に適用
することによって、大型で良質なcBN単結晶を合成でき
ることを見出した。
(Means for Solving the Problem) The inventors of the present invention have proposed a Japanese Patent Application No. 63-18166 concerning cBN grinding abrasive grains.
In No. 9 and No. 63-185464, we proposed a method to obtain a good quality cBN crystal by increasing the growth rate of {111} plane in the horizontal direction relative to the growth rate in the vertical direction.
This method obtains a desired effect by performing a high temperature and high pressure treatment in a system in which a C source, a Si source and an alkali hydride or an alkaline hydride are interposed. By applying the effects of the C source, the Si source, and the alkali hydride or alkaline earth hydride in this method to the cBN crystal synthesis by the temperature difference method, it was found that a large-sized and good-quality cBN single crystal can be synthesized. .

本発明は、高温側の窒化ほう素源と低温側のcBN種結
晶を、cBN合成触媒で隔てて配置し、cBNが安定である温
度圧力条件下でかつcBN合成触媒の融点以上の温度条件
下で、cBN結晶を合成する方法において、C源と、Si源
と、水素化アルカリ又は水素化アルカリ土類とを組み合
わせた系を窒化ほう素源およびcBN合成触媒の少なくと
も一方と接触させるように配置して合成を行なうことを
特徴とする立方晶窒化ほう素結晶の合成方法にある。
The present invention, the boron nitride source on the high temperature side and the cBN seed crystal on the low temperature side are arranged by being separated by a cBN synthesis catalyst, and under the temperature and pressure conditions where cBN is stable and at the melting point or higher of the cBN synthesis catalyst. In the method for synthesizing a cBN crystal, a system in which a C source, a Si source and an alkali hydride or an alkaline earth hydride are combined is arranged so as to come into contact with at least one of a boron nitride source and a cBN synthesis catalyst. This is a method for synthesizing a cubic boron nitride crystal characterized by performing the above synthesis.

以下、本発明の構成を説明する。 Hereinafter, the configuration of the present invention will be described.

窒化ほう素源としては、黒鉛類似構造を有する六方晶
窒化ほう素(hBN)、ウルツ鉱構造を有する六方晶窒化
ほう素(wBN)、および立方晶窒化ほう素(cBN)からな
る群より選択された少なくとも1種以上を用いることが
好ましいが、これらに限定されるものではなくBとNを
供給できる物質であれば使用可能である。
The source of boron nitride is selected from the group consisting of hexagonal boron nitride (hBN) having a graphite-like structure, hexagonal boron nitride (wBN) having a wurtzite structure, and cubic boron nitride (cBN). It is preferable to use at least one kind, but the material is not limited to these, and any substance that can supply B and N can be used.

高温側と低温側の温度差は大きすぎると不規則成長が
起こり易く、一方小さすぎると成長時間が長くなるの
で、これらの不都合が起こらないように定める。この温
度範囲は従来の温度差法と一部重複するが低温側であ
り、具体的には温度差は50〜200℃である。
If the temperature difference between the high temperature side and the low temperature side is too large, irregular growth tends to occur, while if it is too small, the growth time becomes long. This temperature range partially overlaps with the conventional temperature difference method, but is on the low temperature side, and specifically, the temperature difference is 50 to 200 ° C.

cBN種結晶は市販のものでよく、特に制限がない。そ
の外形構成面は{111}面から構成されることが好まし
いが、{111}面以外の構成面があってもよい。また粒
度は#60〜20が好ましいが、この範囲外のものも使用で
きる。
The cBN seed crystal may be commercially available and is not particularly limited. It is preferable that the outer configuration surface is composed of a {111} plane, but there may be a configuration surface other than the {111} plane. The particle size is preferably # 60 to 20, but particles outside this range can also be used.

C源と、Si源と、水素化アルカリ又は水素化アルカリ
土類とを組み合わせた系(以下、沿面成長促進系とい
う)によって、窒化ほう素源およびcBN合成触媒の少な
くとも一方が高温高圧処理中に後述の作用を受けるよう
に、沿面成長促進系と窒化ほう素源等の両者を、好まし
くはできるだけ広い面積で接触させるように配置する。
この配置方法としては、沿面成長促進系をcBN合成触媒
と混合配置するのが最も簡単である。この外に薄いシー
ト状に成形し、これらを積層する方法等の配置が可能で
ある。
At least one of the boron nitride source and the cBN synthesis catalyst is treated during high-temperature high-pressure treatment by a system that combines a C source, a Si source, and an alkali hydride or an alkaline earth hydride (hereinafter referred to as a creeping growth promoting system). Both the creeping growth promoting system and the boron nitride source are preferably arranged so as to be in contact with each other over as large an area as possible so as to receive the action described later.
The simplest way of this arrangement is to mix the creeping growth promoting system with the cBN synthesis catalyst. In addition to this, it is possible to arrange it by forming a thin sheet and laminating these.

C源としては、ステアリン酸、パルミチン酸等の脂肪
酸、ドコサン(CH3(CH)20CH3)、ターフェニール等の
炭化水素、メラミン等、単体もしくは無機化合物として
の炭素、カーボンブラック、B4Cなどを使用することが
できる。これらの炭素源の中で黒鉛のように結晶化した
安定なものよりも、上記のように添加時には化合物の構
成要素となっているが、cBN成長時に化合物から分解と
生じる活性な状態であることが望ましい。
As the C source, fatty acids such as stearic acid and palmitic acid, hydrocarbons such as docosane (CH 3 (CH) 20 CH 3 ), terphenyl and the like, carbon such as melamine and the like, carbon as an inorganic compound, carbon black, B 4 C Etc. can be used. Of these carbon sources, it is a constituent of the compound when added as described above, rather than a stable crystallized one like graphite, but it must be in an active state that decomposes from the compound during cBN growth. Is desirable.

炭素源の使用量は、BN源及びcBN合成触媒中に異物と
して随伴するB2O31モルに対して0.1〜100モルのCとな
るように定めることが好ましい。通常純度のHBNについ
てはC源の使用量は全原料に対して0.001〜15%であ
る。
The amount of the carbon source used is preferably determined so as to be 0.1 to 100 moles of C based on 1 mole of B 2 O 3 that accompanies the BN source and the cBN synthesis catalyst as a foreign substance. For normal-purity HBN, the amount of C source used is 0.001 to 15% based on the total amount of raw materials.

Si源としては、Si粉末、B4Si、Si3N4などの化合物を
使用することができる。Si源は原料混合物を混合しても
よいが、cBNへのSi含有量を多くするためにはcBN合成触
媒に予め含有させておくことが好ましい。この含有方法
としては、Si源とcBN合成触媒を加熱溶融させる方法を
採用される。Si源の使用量は、1モルのBN源及びcBN合
成触媒に対してSiが10-5〜10-2モルとなるようにするこ
とが好ましい。この使用量が10-5未満であると、SiのcB
Nへの固溶が不充分になり、一方10-2モルを越えるとSi
がcBN内でマクロ的欠陥を有するので、Si源の使用量は
上記範囲が好ましい。
As the Si source, compounds such as Si powder, B 4 Si and Si 3 N 4 can be used. A raw material mixture may be mixed as the Si source, but it is preferable that the Si source is contained in the cBN synthesis catalyst in advance in order to increase the Si content in cBN. As a method of containing this, a method of heating and melting the Si source and the cBN synthesis catalyst is adopted. The amount of the Si source used is preferably 10 −5 to 10 −2 mol of Si based on 1 mol of the BN source and the cBN synthesis catalyst. If the amount used is less than 10 -5 , cB of Si
If the solid solution in N becomes insufficient, on the other hand, if it exceeds 10 -2 mol, Si
Has a macroscopic defect in cBN, so the amount of the Si source used is preferably within the above range.

水素化アルカリおよび水素化アルカリ土類としては、
LiH,NaH,CaH2,SrH2などを使用することができる。これ
らの水素源の使用量は他のcBN合成触媒と一緒に用いる
場合、cBN合成触媒に対して0.1〜50%であることが好ま
しい。
As the alkali hydride and alkaline earth hydride,
LiH, NaH, CaH 2 , SrH 2 and the like can be used. When used in combination with other cBN synthesis catalysts, the amount of these hydrogen sources used is preferably 0.1 to 50% with respect to the cBN synthesis catalyst.

cBN合成触媒としては、(イ)Li,Na,K等のアルカリ、
これらの窒化物(Li3N,Na3N等、複窒化物(Li3BN
2等)、(ロ)Ca,Sr,Mg,Ba等のアルカリ土類、これらの
窒化物(Ca3N2,Sr3N2,Mg3N2,Ba3N2等)、複窒化物(Ca3
BN2等)および(ハ)アルカリとアルカリ土類の複合窒
化物(LiCaBN2,LiBaBN2等)を使用することができる。
原料中のB2O3が多いために、C源の添加量が多くなる場
合には、下記反応式によりほう素が生成する。
As the cBN synthesis catalyst, (a) alkali such as Li, Na, K,
These nitrides (Li 3 N, Na 3 N, etc., double nitrides (Li 3 BN
2 ), (b) alkaline earths such as Ca, Sr, Mg, Ba, etc., and their nitrides (Ca 3 N 2 , Sr 3 N 2 , Mg 3 N 2 , Ba 3 N 2 etc.), double nitrides (Ca 3
(BN 2 etc.) and (c) alkali and alkaline earth composite nitrides (LiCaBN 2 , LiBaBN 2 etc.) can be used.
Since the amount of B 2 O 3 in the raw material is large, when the amount of the C source added is large, boron is produced according to the following reaction formula.

B2O3+3C→B+3CO このBが所望の尖端を有するcBN単結晶粒の合成上望
ましくないので、N源を添加してBをBNとして固定し無
害化することが好ましい。このN源としてはメラミン、
尿素等を使用することができる。使用量は発生するB量
にもよるが、通常、BN源及びcBN合成触媒1モルに対し
て10-4〜10-1モルが好ましい。
B 2 O 3 + 3C → B + 3CO Since this B is not desirable in the synthesis of cBN single crystal grains having a desired tip, it is preferable to add an N source and fix B as BN to render it harmless. Melamine is the source of N
Urea or the like can be used. Although the amount used depends on the amount of B generated, it is usually preferably 10 −4 to 10 −1 mol per 1 mol of the BN source and the cBN synthesis catalyst.

(作用) 沿面成長促進系は{111}面平行方向の成長速度を高
める。このため沿面成長に好ましい条件が整えられる。
また{111}面平行方向の成長速度が高められる結果、
{111}面垂直方向の成長速度を高めても、不規則成長
は起こらなくなる。すなわち、結晶成長速度を高める健
全な結晶を速く、効率的に成長させることができる。
(Function) The creeping growth promoting system increases the growth rate in the direction parallel to the {111} plane. Therefore, favorable conditions for creeping growth are set.
Also, as a result of increasing the growth rate in the {111} plane parallel direction,
Irregular growth does not occur even if the growth rate in the {111} plane vertical direction is increased. That is, a healthy crystal that increases the crystal growth rate can be grown quickly and efficiently.

以下、実施例により本発明をより詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例) 第1図に実施例で使用した高温高圧処理装置および被
処理材の概略を示す。
(Example) FIG. 1 schematically shows the high temperature and high pressure processing apparatus and the material to be processed used in the example.

図中、1はMo容器、2はMo蓋、3はMo容器本体、4は
cBN種結晶、5は溶媒部分、6は窒化ほう素源圧粉体、
7はhBN粉を用いた圧力媒体、8は黒鉛ヒータ、9はパ
イロフィライトよりなる圧力媒体、10はシードマスクと
して用いられるMo箔である。
In the figure, 1 is a Mo container, 2 is a Mo lid, 3 is a Mo container body, 4 is a
cBN seed crystal, 5 solvent part, 6 boron nitride source green compact,
Reference numeral 7 is a pressure medium using hBN powder, 8 is a graphite heater, 9 is a pressure medium made of pyrophyllite, and 10 is a Mo foil used as a seed mask.

実施例1 溶媒部分5は、その87wt%が0.5wt%のSiを含むLiCaB
N(cBN合成触媒)、10wt%がLiH、2wt%がhBN、残り1wt
%がメラミンである混合物より構成された。上記3種類
のものは粉末状態では充分混合した後、直径8mm、厚み6
mmに成形したものを用いた。
Example 1 The solvent portion 5 is LiCaB in which 87 wt% contains 0.5 wt% Si.
N (cBN synthesis catalyst), 10wt% is LiH, 2wt% is hBN, and the rest is 1wt
% Of melamine. The above 3 types are mixed well in powder form, then diameter 8mm, thickness 6
What was shape | molded to mm was used.

窒化ほう素源圧粉体6としては、その49.5wt%がcBN
(昭和電工製SBN−T,G−45平均粒径約40μm)、49.5wt
%がhBN(昭和電工製UHP−1平均粒径約15μm)、残り
1wt%がメラミンである混合物を予め直径8mm、厚み2mm
に成形したものを用いた。
49.5 wt% of the boron nitride source green compact 6 is cBN
(Showa Denko SBN-T, G-45 average particle size about 40 μm), 49.5 wt
% HBN (Showa Denko UHP-1 average particle size about 15 μm), the rest
A mixture containing 1 wt% melamine in advance with a diameter of 8 mm and a thickness of 2 mm
What was shape | molded was used.

上記窒化ほう素源圧粉体6と溶媒部分5をMo容器本体
1に上下に詰め、Mo蓋3で蓋をした合成空間カプセルを
作った。種結晶4としては粒度#30/40(約500μm)の
cBN砥粒を3粒、Mo容器2の底に配置した。
The above-mentioned boron nitride source green compact 6 and the solvent portion 5 were vertically packed in the Mo container body 1, and the synthetic space capsule covered with the Mo lid 3 was produced. The seed crystal 4 has a particle size of # 30/40 (about 500 μm)
Three cBN abrasive grains were placed on the bottom of the Mo container 2.

上記のように構成した合成反応系を55kb,1600℃で10
時間高温高圧に維持した後、cBNを回収した。約1.5−2.
0mm径に成長し、かつ{111}面が大きく成長した透明感
のある褐色のcBN結晶を3粒得た。
The synthetic reaction system constructed as above was run at 55 kb and 1600 ° C for 10
After maintaining at high temperature and high pressure for an hour, cBN was recovered. About 1.5-2.
Three transparent brown cBN crystals were obtained which grew to a diameter of 0 mm and had large {111} faces.

実施例2 窒化ほう素源として、99wt%cBN、残りメラミンを使
用したほかは実施例1と同様の合成を行ない、実施例1
と同様の結果を得た。
Example 2 The same synthesis as in Example 1 was carried out except that 99 wt% cBN and the remaining melamine were used as the boron nitride source.
And similar results were obtained.

実施例3 実施例1で使用した溶媒部分5のメラミンに替えてド
コサンを使用し、その他の条件は実施例1と同様にして
合成を行なったところ、得られたcBN粒子の直径は1.5〜
2.0mmであった。その粒の色は黒味を帯びていた。
Example 3 Docosane was used in place of the melamine of the solvent portion 5 used in Example 1, and synthesis was carried out in the same manner as in Example 1 under other conditions, and the obtained cBN particles had a diameter of 1.5 to
2.0 mm. The color of the grain was blackish.

比較例1 実施例1で使用した溶媒部分5のLiHおよびメラミン
を除き、その分だけcBN合成触媒を多くした溶媒部分と
し、その他の条件は実施例1と同様にして合成を行なっ
たところ、得られたcBN粒子の直径は1.5〜2.0mmであっ
た。しかし、ここで得られた結晶は{111}、{100}や
{311}と考えられる面が複雑に組合わさっていて明瞭
な晶癖を有しない。又、沿面成長が阻害された結晶とし
て生じると考えられる条痕(一定方向に筋が並んだ様に
見える表面欠陥)が多数認められた。
Comparative Example 1 LiH and melamine of the solvent portion 5 used in Example 1 were removed, and the solvent portion was prepared by increasing the amount of cBN synthesis catalyst by the corresponding amount. Other conditions were the same as in Example 1, and synthesis was carried out. The diameter of the obtained cBN particles was 1.5-2.0 mm. However, the crystals obtained here do not have a clear crystal habit due to the complicated combination of the planes considered to be {111}, {100} and {311}. In addition, a number of streaks (surface defects that seem to be lined up in a certain direction) that are considered to occur as crystals in which creeping growth is inhibited were recognized.

この為この結晶は単石バイトやダイオード用には適さ
ない。
Therefore, this crystal is not suitable for monolithic tools and diodes.

(発明の効果) 以上説明したように、本発明によれば健全な大型cBN
結晶が効率的に得られる。
(Effects of the Invention) As described above, according to the present invention, a healthy large cBN is used.
Crystals are efficiently obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、高温高圧処理装置および被処理材料の概略を
示す図面である。 1……Mo容器、2……Mo蓋、3……Mo容器本体、4……
cBN種結晶、5……溶媒部分、6……窒化ほう素源圧粉
体、7……hBN圧力媒体、8……黒鉛ヒータ、9……パ
イロフィライト圧力媒体、10……Mo箔
FIG. 1 is a diagram schematically showing a high temperature and high pressure processing apparatus and a material to be processed. 1 ... Mo container, 2 ... Mo lid, 3 ... Mo container body, 4 ...
cBN seed crystal, 5 ... Solvent part, 6 ... Boron nitride source powder, 7 ... hBN pressure medium, 8 ... Graphite heater, 9 ... Pyrophyllite pressure medium, 10 ... Mo foil

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温側の窒化ほう素源と低温側の立方晶窒
化ほう素種結晶を立方晶窒化ほう素合成触媒で隔てて配
置し、立方晶窒化ほう素が安定である温度圧力条件下で
かつ立方晶窒化ほう素合成触媒の融点以上の温度条件下
で、立方晶窒化ほう素結晶を合成する方法において、C
源と、Si源と、水素化アルカリ又は水素化アルカリ土類
とを組み合わせた系を前記窒化ほう素源および立方晶窒
化ほう素合成触媒少なくとも一方と接触させるように配
置して合成を行なうことを特徴とする立方晶窒化ほう素
結晶の合成方法。
1. A high temperature side boron nitride source and a low temperature side cubic boron nitride seed crystal are separated by a cubic boron nitride synthesis catalyst, and the cubic boron nitride is stable under temperature and pressure conditions. And a method for synthesizing a cubic boron nitride crystal at a temperature above the melting point of the cubic boron nitride synthesizing catalyst, C
A source, a Si source, and a system in which an alkali hydride or an alkaline earth hydride is combined are arranged so as to be in contact with at least one of the boron nitride source and the cubic boron nitride synthesis catalyst to perform synthesis. A method for synthesizing a characteristic cubic boron nitride crystal.
【請求項2】前記窒化ほう素源として、黒鉛類似構造を
有する六方晶窒化ほう素、ウルツ鉱構造を有する六方晶
窒化ほう素、および立方晶窒化ほう素からなる群より選
択された少なくとも1種以上を用いることを特徴とする
請求項1記載の立方晶窒化ほう素結晶の合成方法。
2. The source of boron nitride is at least one selected from the group consisting of hexagonal boron nitride having a graphite-like structure, hexagonal boron nitride having a wurtzite structure, and cubic boron nitride. The method for synthesizing a cubic boron nitride crystal according to claim 1, wherein the above is used.
【請求項3】前記系にさらにN源が組み合わされている
ことを特徴とする請求項1または2記載の立方晶窒化ほ
う素結晶の合成方法。
3. The method for synthesizing a cubic boron nitride crystal according to claim 1, wherein an N source is further combined with the system.
【請求項4】前記立方晶窒化ほう素合成触媒が、Si源
と、水素化アルカリ又は水素化アルカリ土類との少なく
とも一方を兼ねることを特徴とする請求項1から3まで
の何れか1項記載の立方晶窒化ほう素結晶の合成方法。
4. The cubic boron nitride synthesizing catalyst also serves as a Si source and at least one of an alkali hydride and an alkaline earth hydride. A method for synthesizing the described cubic boron nitride crystal.
JP26724888A 1988-10-25 1988-10-25 Method for synthesizing cubic boron nitride crystals Expired - Fee Related JP2691183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26724888A JP2691183B2 (en) 1988-10-25 1988-10-25 Method for synthesizing cubic boron nitride crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26724888A JP2691183B2 (en) 1988-10-25 1988-10-25 Method for synthesizing cubic boron nitride crystals

Publications (2)

Publication Number Publication Date
JPH02115034A JPH02115034A (en) 1990-04-27
JP2691183B2 true JP2691183B2 (en) 1997-12-17

Family

ID=17442196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26724888A Expired - Fee Related JP2691183B2 (en) 1988-10-25 1988-10-25 Method for synthesizing cubic boron nitride crystals

Country Status (1)

Country Link
JP (1) JP2691183B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471167B2 (en) * 1996-05-21 2003-11-25 昭和電工株式会社 Method for producing cubic boron nitride
JP4183317B2 (en) * 1997-11-25 2008-11-19 昭和電工株式会社 Method for producing cubic boron nitride
JP4202521B2 (en) * 1999-04-08 2008-12-24 昭和電工株式会社 Method for producing cubic boron nitride
US7214359B2 (en) 2003-02-03 2007-05-08 Showa Denko K.K. Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride
ATE508791T1 (en) * 2003-02-03 2011-05-15 Showa Denko Kk CATALYST FOR PRODUCING SYNTHETIC CUBIC BORON NITRIDE AND METHOD FOR PRODUCING CUBIC BORON NITRIDE
JP5002886B2 (en) * 2004-07-09 2012-08-15 住友電気工業株式会社 Method for producing cubic boron nitride polycrystal
JP4788524B2 (en) * 2005-08-24 2011-10-05 三菱化学株式会社 Group 13 metal nitride crystal production methods and solutions and melts used in these production methods
CN101243011B (en) * 2005-08-24 2012-09-05 三菱化学株式会社 Method of producing group 13 metal nitride crystal, method for manufacturing semiconductor device, and solution and melt used in those methods

Also Published As

Publication number Publication date
JPH02115034A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US5000760A (en) CBN abrasive-grains, method for producing the same, and grinding wheel
JP2691183B2 (en) Method for synthesizing cubic boron nitride crystals
US4016244A (en) Process for production of cubic boron nitride
US6984448B1 (en) Cubic boron nitride clusters
JP3471167B2 (en) Method for producing cubic boron nitride
US4349517A (en) Method of producing cubic boron nitride
US4406871A (en) Process for growing diamonds
JPH0236293A (en) Cubic boron nitride grinding abrasive grain, production thereof and grindstone
JPH0510282B2 (en)
JP4183317B2 (en) Method for producing cubic boron nitride
JP3565615B2 (en) Method for producing cubic boron nitride
JPH042296B2 (en)
JPS6253218B2 (en)
JP2645719B2 (en) Diamond synthesis method
JP4202521B2 (en) Method for producing cubic boron nitride
JPS59199513A (en) Synthesis of boron nitride of cubic system
JPS6077110A (en) Synthesis of cubic boron nitride
JPS6117405A (en) Production of cubic boron nitride
JPS6225601B2 (en)
JPH0433489B2 (en)
JPS59199514A (en) Synthesis of boron nitride of cubic system
JP3563879B2 (en) Method for producing cubic boron nitride
JPH0321212B2 (en)
KR19990045454A (en) Method for producing cubic boron nitride
JPH0745652B2 (en) Diamond abrasive grain manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees