JP2690836B2 - Manganese zinc selenide Zinc-based optical semiconductor - Google Patents

Manganese zinc selenide Zinc-based optical semiconductor

Info

Publication number
JP2690836B2
JP2690836B2 JP2648292A JP2648292A JP2690836B2 JP 2690836 B2 JP2690836 B2 JP 2690836B2 JP 2648292 A JP2648292 A JP 2648292A JP 2648292 A JP2648292 A JP 2648292A JP 2690836 B2 JP2690836 B2 JP 2690836B2
Authority
JP
Japan
Prior art keywords
substrate
zinc
manganese
optical semiconductor
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2648292A
Other languages
Japanese (ja)
Other versions
JPH05226261A (en
Inventor
茂生 林
和宏 大川
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2648292A priority Critical patent/JP2690836B2/en
Priority to US08/009,240 priority patent/US5341001A/en
Publication of JPH05226261A publication Critical patent/JPH05226261A/en
Application granted granted Critical
Publication of JP2690836B2 publication Critical patent/JP2690836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、可視短波長域の光半導
体素子として有用なII- VI 族化合物半導体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a II-VI group compound semiconductor useful as an optical semiconductor device in the visible short wavelength region.

【0002】[0002]

【従来の技術】光半導体素子は、光通信、光ディスク、
画像処理など広い分野に有用なものであり、その材料も
多く提案されている。
2. Description of the Related Art Optical semiconductor devices are used for optical communication, optical disks,
It is useful in a wide range of fields such as image processing, and many materials have been proposed.

【0003】例えば当初、光半導体素子はGaAs系を
中心にして赤外領域で適用されるものが開発され、その
後AlGaAs系、AlGaInP系など短波長化への
材料が提案されている。短波長化すると半導体レーザー
の可視化、フルカラー化と同時に光ディスクなどの情報
処理機の記録密度向上が図れるからである。このため、
II−VI族ワイドギャップ化合物半導体(混晶)を基礎と
した光半導体素子材料には例えば応用物理60巻(19
91年)536頁に示されているようにZnS、ZnS
e、ZnTe、CdS、CdSeや、これらを組み合わ
せた混晶がおもに提案されている。
For example, initially, an optical semiconductor device was developed which was mainly applied to the GaAs system in the infrared region, and thereafter, materials for shortening the wavelength such as AlGaAs system and AlGaInP system were proposed. This is because if the wavelength is shortened, the semiconductor laser can be visualized and full-colored, and at the same time, the recording density of an information processing device such as an optical disk can be improved. For this reason,
For the optical semiconductor device material based on the II-VI wide-gap compound semiconductor (mixed crystal), for example, applied physics 60 volumes (19
(1991) ZnS, ZnS as shown on page 536.
Mainly proposed are e, ZnTe, CdS, CdSe, and mixed crystals combining these.

【0004】[0004]

【発明が解決しようとする課題】しかしながらレーザダ
イオードなどの光半導体素子に応用する場合には、結晶
性の良いものが必要となるため、格子整合系が使用され
ているが、これらの材料系では青色から紫外域にかけて
のものが得られないという問題点があった。
However, when it is applied to an optical semiconductor element such as a laser diode, a material having good crystallinity is required. Therefore, a lattice matching system is used. There was a problem in that it was not possible to obtain a product in the blue to ultraviolet range.

【0005】本発明はかかる点に鑑み、基板上に格子整
合して優れた結晶性をもち、かつ青色から短波長域にか
けての光半導体素子に応用可能な材料を提供することを
目的とする。
In view of the above points, an object of the present invention is to provide a material which is lattice-matched with a substrate and has excellent crystallinity and which can be applied to an optical semiconductor element in the blue to short wavelength region.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の硫化セレン化マンガン亜鉛系光半導体は、
亜鉛とマンガンと硫黄とセレンとを少なくとも含む硫化
セレン化マンガン亜鉛系エピタキシャル混晶膜が基板上
に形成されており、かつ前記エピタキシャル混晶膜が前
記基板と格子整合しているという構成を備えたものであ
る。
In order to achieve the above object, the manganese zinc sulfide selenide-based optical semiconductor of the present invention comprises:
A manganese sulfide zinc selenide-based epitaxial mixed crystal film containing at least zinc, manganese, sulfur, and selenium is formed on a substrate, and the epitaxial mixed crystal film is lattice-matched with the substrate. It is a thing.

【0007】前記構成においては、基板がGaAsまた
はZnSeであることが好ましい。
In the above structure, the substrate is preferably GaAs or ZnSe.

【0008】[0008]

【作用】前記した本発明の構成によれば、亜鉛とマンガ
ンと硫黄とセレンとを少なくとも含む硫化セレン化マン
ガン亜鉛系エピタキシャル混晶膜が基板上に形成されて
おり、かつこの膜が前記基板と格子整合しているので、
優れた結晶性を有するとともに、バンドギャップの大き
さから、青色から短波長域にかけての光半導体素子に応
用することが可能な光半導体とすることができる。すな
わち、基板にほぼ格子整合した状態でエピタキシャル成
長させると、基板結晶の構造の影響を大きく受けて基板
と同じ構造をとり、結晶構造欠陥の非常に少ない単結晶
膜を得ることができるからである。
According to the above-mentioned constitution of the present invention, the manganese zinc sulfide selenide-based epitaxial mixed crystal film containing at least zinc, manganese, sulfur and selenium is formed on the substrate, and this film is formed on the substrate. Since they are lattice-matched,
An optical semiconductor that has excellent crystallinity and can be applied to an optical semiconductor element in the blue to short wavelength region due to the size of the band gap can be obtained. That is, when epitaxially grown in a state of being substantially lattice-matched with the substrate, the structure of the substrate is largely affected to form the same structure as the substrate, and a single crystal film with very few crystal structure defects can be obtained.

【0009】また、基板がGaAsまたはZnSeであ
るという本発明の好ましい構成によれば、前記硫化セレ
ン化マンガン亜鉛系混晶系のとり得る格子定数の範囲の
格子定数を持つ基板で結晶性の優れたものとすることが
できる。
Further, according to the preferable structure of the present invention in which the substrate is GaAs or ZnSe, the substrate having a lattice constant in the range of the lattice constant that can be taken by the manganese zinc sulfide selenide mixed crystal system is excellent in crystallinity. It can be

【0010】[0010]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。本発明において好ましくは、亜鉛とマンガン
と硫黄とセレンを基板上に供給してエピタキシャル膜を
形成し、基板に格子整合したZn1-X MnX Y Se
1-Y(0<X<1、0<Y<1)混晶を得る。一般に混
晶の結晶構造は、混晶を構成する2元化合物のそれの混
在したものとなることが知られている。このZn1-X
X Y Se1-Y (0<X<1、0<Y<1)混晶の場
合、閃亜鉛鉱型構造、ウルツ鉱型構造、岩塩型構造が混
在する。しかしながら、基板にほぼ格子整合した状態で
エピタキシャル成長さすと、基板結晶の構造の影響を大
きく受けて基板と同じ構造をとり、結晶構造欠陥の非常
に少ない単結晶膜が得られるという作用がある。
The present invention will be described more specifically with reference to the following examples. In the present invention, preferably, zinc, manganese, sulfur, and selenium are supplied onto a substrate to form an epitaxial film, and Zn 1-X Mn X S Y Se that is lattice-matched to the substrate is used.
A 1-Y (0 <X <1, 0 <Y <1) mixed crystal is obtained. It is generally known that the crystal structure of a mixed crystal is a mixture of binary compounds constituting the mixed crystal. This Zn 1-X M
In the case of n X S Y Se 1-Y (0 <X <1, 0 <Y <1) mixed crystal, a sphalerite structure, a wurtzite structure, and a rock salt structure are mixed. However, when epitaxially grown in a state of being substantially lattice-matched to the substrate, there is an effect that a single crystal film having the same structure as that of the substrate is greatly affected by the structure of the substrate crystal and a crystal structure defect is extremely small.

【0011】以下、図面を用いて詳細に説明する。図1
は本発明の一実施例で用いられる分子線エピタキシャル
成長装置である。同図において14a、15a、16
a、17aはそれぞれ原料となるルツボに入った金属亜
鉛14a、金属マンガン15a、結晶硫黄16a、金属
セレン17aであり、加熱蒸発させて亜鉛分子線14
c、マンガン分子線15c、硫黄分子線16c、セレン
分子線17cを得る。
A detailed description will be given below with reference to the drawings. FIG.
Is a molecular beam epitaxial growth apparatus used in one embodiment of the present invention. In the figure, 14a, 15a, 16
Reference numerals a and 17a are metallic zinc 14a, metallic manganese 15a, crystalline sulfur 16a, and metallic selenium 17a, respectively, which are contained in the crucible as a raw material, and are heated and evaporated to produce the zinc molecular beam
c, manganese molecular beam 15c, sulfur molecular beam 16c, and selenium molecular beam 17c are obtained.

【0012】成長手順としては、まず、表面を清浄化し
たGaAs基板13aを真空容器11内に装着し、10
-9Torr程度の超高真空まで排気する。その後基板13a
を約600℃に加熱して表面酸化膜を除去する。その後
基板13aを結晶成長温度にまで下げ、分子線のシャッ
ター14b、15b、16b、17bを開け、成長を開
始する。ここで、基板温度はたとえば300℃とし、各
分子線源の温度は、基板に格子整合するような組成が得
られるようにあらかじめ調節しておく。この場合には例
えば亜鉛、マンガン、硫黄、セレンの温度をそれぞれ4
00℃、1100℃、150℃、350℃とする。
As the growth procedure, first, the GaAs substrate 13a whose surface is cleaned is mounted in the vacuum chamber 11 and the
Evacuate to an ultra-high vacuum of about -9 Torr. Then substrate 13a
Is heated to about 600 ° C. to remove the surface oxide film. After that, the substrate 13a is cooled to the crystal growth temperature, and the molecular beam shutters 14b, 15b, 16b and 17b are opened to start the growth. Here, the substrate temperature is, eg, 300 ° C., and the temperature of each molecular beam source is adjusted in advance so as to obtain a composition that lattice-matches the substrate. In this case, for example, the temperatures of zinc, manganese, sulfur, and selenium are each set to 4
The temperature is set to 00 ° C, 1100 ° C, 150 ° C, and 350 ° C.

【0013】以上のような方法で形成したZn1-X Mn
X Y Se1-Y 混晶は組成比X=0.2、Y=0.2で
あった。X線回折の結果、格子定数はGaAs基板のそ
れとほぼ一致する5.653オングストロームで、回折
スペクトルには立方晶系結晶の示すピーク以外の回折ピ
ークはみられなかった。さらに透過型電子顕微鏡観察の
結果を合わせると、この混晶は完全な閃亜鉛鉱構造をし
ていた。この試料の基板をはがし、透過スペクトルを測
定したところ、室温における禁制帯幅は2.9eVであ
った。
Zn 1-X Mn formed by the above method
The X S Y Se 1-Y mixed crystal had a composition ratio of X = 0.2 and Y = 0.2. As a result of X-ray diffraction, the lattice constant was 5.653 angstrom, which was almost the same as that of the GaAs substrate, and no diffraction peak other than the peak of the cubic crystal was found in the diffraction spectrum. Furthermore, when the results of transmission electron microscope observation were combined, this mixed crystal had a perfect sphalerite structure. When the substrate of this sample was peeled off and the transmission spectrum was measured, the forbidden band width at room temperature was 2.9 eV.

【0014】これに対して、膜の格子定数が基板の格子
定数と0.1%以上違う膜は、1μm 以上膜を形成した
場合には、X線回折スペクトルに六方晶系の回折ピーク
もみられ、完全な単結晶ではなかった。これは、格子整
合が結晶性に非常に大きな影響を与えるからだといえ
る。また、格子整合した膜のフォトルミネッセンススペ
クトルは格子整合していない膜に比べて、深い準位から
の発光が非常に小さかった。
On the other hand, for a film having a lattice constant different from that of the substrate by 0.1% or more, a hexagonal diffraction peak is observed in the X-ray diffraction spectrum when the film having a thickness of 1 μm or more is formed. , Was not a perfect single crystal. This can be said that the lattice matching has a great influence on the crystallinity. In the photoluminescence spectrum of the lattice-matched film, light emission from a deep level was extremely small as compared with the film not lattice-matched.

【0015】図2は、この混晶系の格子定数と禁制帯幅
の関係を示したものである。GaAs基板を用いた場
合、基板に格子整合する混晶組成は点線で示す通りとな
り、禁制帯幅は室温において2.7〜3.6eVをとる
ことが可能である。
FIG. 2 shows the relationship between the lattice constant of this mixed crystal system and the forbidden band width. When a GaAs substrate is used, the mixed crystal composition that lattice-matches the substrate is as shown by the dotted line, and the forbidden band width can be 2.7 to 3.6 eV at room temperature.

【0016】ここで、基板としてはGaAsを用いた
が、このほか、この混晶系のとり得る格子定数の範囲の
格子定数を持つ基板で結晶性の優れたものが好ましく、
ZnSe単結晶基板を用いても同様の効果が得られた。
Here, GaAs was used as the substrate, but in addition to this, a substrate having a lattice constant in the range of the lattice constant that this mixed crystal system can have and having excellent crystallinity is preferable.
The same effect was obtained using a ZnSe single crystal substrate.

【0017】なお、上述の実施例では亜鉛分子線の原料
として金属亜鉛を用いたが、このほかジメチル亜鉛やジ
エチル亜鉛などの構成元素を含む有機金属ガスを用いて
も同様の効果が見られた。また、マンガン分子線の原料
として金属マンガンを用いたが、このほかジシクロペン
タジエニルマンガン[Mn(C5 5 2 ]、トリカル
ボニルメチルシクロペンタジエニルマンガン[C6 8
Mn(CO)3 ]などの構成元素を含む有機金属ガスを
用いても同様の効果が見られた。また、硫黄分子線の原
料として結晶硫黄を用いたが、このほかジメチル硫黄や
ジエチル硫黄、ジメチルジ硫黄などの構成元素を含む有
機硫黄ガスや硫化水素ガスを用いても同様の効果が見ら
れた。また、同じくセレン分子線の原料として金属セレ
ンを用いたが、このほかジメチルセレンやジエチルセレ
ンなどの構成元素を含む有機セレンガスやセレン化水素
ガスを用いても同様の効果が見られた。
Although metallic zinc was used as the raw material of the molecular beam of zinc in the above-mentioned examples, the same effect was observed by using an organometallic gas containing a constituent element such as dimethyl zinc or diethyl zinc. . Although using a metal manganese as a raw material of a manganese molecular beam, the addition dicyclopentadienyl manganese [Mn (C 5 H 5) 2], tricarbonyl methylcyclopentadienyl manganese [C 6 H 8
The same effect was observed when an organometallic gas containing a constituent element such as Mn (CO) 3 ] was used. Although crystalline sulfur was used as a raw material for the molecular beam of sulfur, the similar effect was also obtained by using organic sulfur gas or hydrogen sulfide gas containing constituent elements such as dimethyl sulfur, diethyl sulfur, and dimethyldisulfur. Similarly, although metal selenium was used as the raw material of the selenium molecular beam, the same effect was also obtained by using organic selenium gas or hydrogen selenide gas containing constituent elements such as dimethyl selenium and diethyl selenium.

【0018】また、上述の実施例では結晶成長法として
分子線エピタキシャル成長法を用いたが、このほか有機
金属気相成長法でも同様の効果がみられた。
Although the molecular beam epitaxial growth method was used as the crystal growth method in the above-mentioned embodiment, the same effect was observed with the metal organic chemical vapor deposition method.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
亜鉛とマンガンと硫黄とセレンとを少なくとも含む硫化
セレン化マンガン亜鉛系エピタキシャル混晶膜が基板上
に形成されており、かつこの膜が前記基板と格子整合し
ているので、基板上に格子整合して優れた結晶性を有す
るとともに、青色から紫外域にかけての光半導体素子に
応用することが可能な光半導体とすることができる。
As described above, according to the present invention,
Since a manganese zinc sulfide selenide-based epitaxial mixed crystal film containing at least zinc, manganese, sulfur and selenium is formed on the substrate, and this film is lattice-matched with the substrate, the lattice-matched with the substrate. And has excellent crystallinity, and can be applied to optical semiconductor elements in the blue to ultraviolet range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるZn1-X MnX Y
Se1-Y (0<X<1,0<Y<1)混晶を作製する分
子線エピタキシャル成長装置のを示す概略図である。
FIG. 1 is a Zn 1-X Mn X S Y in one embodiment of the present invention.
It is a schematic diagram showing a molecular beam epitaxial growth device which produces a Se1 -Y (0 <X <1,0 <Y <1) mixed crystal.

【図2】Zn1-X MnX Y Se1-Y (0<X<1,0
<Y<1)混晶の格子定数と禁制帯幅の関係を表す図で
ある。点線で示した領域がGaAs基板に格子整合する
範囲である。
FIG. 2 Zn 1-X Mn X S Y Se 1-Y (0 <X <1,0
<Y <1) It is a figure showing the relationship between the lattice constant of a mixed crystal and a forbidden band width. The region indicated by the dotted line is the range in which lattice matching with the GaAs substrate is performed.

【符号の説明】[Explanation of symbols]

11 真空容器 12 超高真空排気装置 13a GaAs基板 13b 基板ホルダー 14a ルツボに入った金属亜鉛 14b シャッター 14c 亜鉛分子線 15a ルツボに入った金属マンガン 15b シャッター 15c マンガン分子線 16a ルツボに入った結晶硫黄 16b シャッター 16c 硫黄分子線 17a ルツボに入った金属セレン 17b シャッター 17c セレン分子線 11 Vacuum Container 12 Ultra High Vacuum Evacuation Device 13a GaAs Substrate 13b Substrate Holder 14a Metal Zinc in Crucible 14b Shutter 14c Zinc Molecular Beam 15a Metal Manganese in Crucible 15b Shutter 15c Manganese Molecular Beam 16a Crystalline Sulfur in Crucible 16b Shutter 16c Sulfur molecular beam 17a Metal selenium in crucible 17b Shutter 17c Selenium molecular beam

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 JPN.J.APPL.PHYS., VOL.30,NO.9B,(1991),P P.L1620−L1623 JPN.J.APPL.PHYS., VOL.32,PART 2,NO.11 B,(1993),PP.L1657−L1659 ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JPN. J. APPL. PHYS. , VOL. 30, NO. 9B, (1991), PP. L1620-L1623 JPN. J. APPL. PHYS. , VOL. 32, PART 2, NO. 11 B, (1993), PP. L1657-L1659

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜鉛とマンガンと硫黄とセレンとを少な
くとも含む硫化セレン化マンガン亜鉛系エピタキシャル
混晶膜が基板上に形成されており、かつ前記エピタキシ
ャル混晶膜が前記基板と格子整合している硫化セレン化
マンガン亜鉛系光半導体。
1. An epitaxial mixed crystal film of manganese zinc sulfide selenide containing at least zinc, manganese, sulfur and selenium is formed on a substrate, and the epitaxial mixed crystal film is lattice-matched with the substrate. Zinc sulfide selenide zinc-based optical semiconductor.
【請求項2】 基板がGaAsまたはZnSeである請
求項1に記載の硫化セレン化マンガン亜鉛系光半導体。
2. The manganese zinc sulfide selenide-based optical semiconductor according to claim 1, wherein the substrate is GaAs or ZnSe.
JP2648292A 1992-02-13 1992-02-13 Manganese zinc selenide Zinc-based optical semiconductor Expired - Fee Related JP2690836B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2648292A JP2690836B2 (en) 1992-02-13 1992-02-13 Manganese zinc selenide Zinc-based optical semiconductor
US08/009,240 US5341001A (en) 1992-02-13 1993-01-26 Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2648292A JP2690836B2 (en) 1992-02-13 1992-02-13 Manganese zinc selenide Zinc-based optical semiconductor

Publications (2)

Publication Number Publication Date
JPH05226261A JPH05226261A (en) 1993-09-03
JP2690836B2 true JP2690836B2 (en) 1997-12-17

Family

ID=12194719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2648292A Expired - Fee Related JP2690836B2 (en) 1992-02-13 1992-02-13 Manganese zinc selenide Zinc-based optical semiconductor

Country Status (1)

Country Link
JP (1) JP2690836B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN.J.APPL.PHYS.,VOL.30,NO.9B,(1991),PP.L1620−L1623
JPN.J.APPL.PHYS.,VOL.32,PART 2,NO.11B,(1993),PP.L1657−L1659

Also Published As

Publication number Publication date
JPH05226261A (en) 1993-09-03

Similar Documents

Publication Publication Date Title
US5341001A (en) Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode
Yao et al. Photoluminescence properties of ZnSe single crystalline films grown by atomic layer epitaxy
JPH1074980A (en) Semiconductor device
Luo et al. Molecular beam epitaxy of a low strain II‐VI heterostructure: ZnTe/CdSe
US5039626A (en) Method for heteroepitaxial growth of a two-dimensional material on a three-dimensional material
Ryu et al. ZnSe and ZnO film growth by pulsed-laser deposition
JP2690836B2 (en) Manganese zinc selenide Zinc-based optical semiconductor
Dinan et al. Structural properties of epitaxial layers of CdTe, ZnCdTe and HgCdTe
US5057183A (en) Process for preparing epitaxial II-VI compound semiconductor
Hong et al. Growth and optical absorption spectra of ZnO films grown by pulsed laser deposition
JP3334598B2 (en) II-VI compound semiconductor thin film on InP substrate
Yokoyama et al. High quality zinc sulfide epitaxial layers grown on (100) silicon by molecular beam epitaxy
Huang et al. Optical properties of molecular beam epitaxially grown GaAs1− xSbx (0< x< 0.5) on GaAs and InP substrates
JPH09307142A (en) Semiconductor device and its manufacture
US5423284A (en) Method for growing crystals of N-type II-VI compound semiconductors
Hartmann Vapour phase epitaxy of II–VI compounds: A review
US5834361A (en) Multi-layer structure for II-VI group compound semiconductor on an InP substrate and method for forming the same
EP0803594B1 (en) Crystal growing substrate
Tadokoro et al. Growth and characterization of (CdS) 4 (ZnS) 16 superlattices
JPH07240374A (en) Iii-v group compound semiconductor crystal
JP2646841B2 (en) Crystal growth method
JPH06104600B2 (en) Semiconductor manufacturing method
Chen et al. Epitaxial growth of co-doped Eu and Sm in α-Zn0. 05Sr0. 95S on (0 0 1) MgO substrate using α-MnS buffer layer
JPH11204883A (en) Manufacture of semiconductor device
Lee et al. Structural and optical properties in ZnTe/GaAs strained heterostructures grown by temperature‐gradient vapor transport deposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees