JP2689591B2 - Method for manufacturing multilayer printed wiring board - Google Patents

Method for manufacturing multilayer printed wiring board

Info

Publication number
JP2689591B2
JP2689591B2 JP10243389A JP10243389A JP2689591B2 JP 2689591 B2 JP2689591 B2 JP 2689591B2 JP 10243389 A JP10243389 A JP 10243389A JP 10243389 A JP10243389 A JP 10243389A JP 2689591 B2 JP2689591 B2 JP 2689591B2
Authority
JP
Japan
Prior art keywords
catalyst
hole
layer
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10243389A
Other languages
Japanese (ja)
Other versions
JPH02281689A (en
Inventor
圭祐 岡田
智明 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10243389A priority Critical patent/JP2689591B2/en
Publication of JPH02281689A publication Critical patent/JPH02281689A/en
Application granted granted Critical
Publication of JP2689591B2 publication Critical patent/JP2689591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層印刷配線板の製造方法に関し、特に高密
度実装のために導体層が分割して設けられたスルホール
を一部に有する多層印刷配線板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a multilayer printed wiring board, and in particular, multilayer printing partially having through holes formed by dividing conductor layers for high-density mounting. The present invention relates to a method for manufacturing a wiring board.

〔4技術〕 LSI,IC等の高集積化,電子機器の高性能化と経済性向
上のために多層印刷配線板(以下、多層板と称す)の高
密度化が進展している。
[4 Technology] High density integration of multilayer printed wiring boards (hereinafter referred to as “multilayer boards”) is progressing in order to achieve high integration of LSIs and ICs, high performance of electronic devices and improvement of economic efficiency.

多層板の高密度化に対して主に2つの対応が図られて
いる。第1に導体層数の増加、すなわち高多層化であ
り、第2の対応が基本格子間への多配線化である。しか
しながら、第1の対応では、層間の導体層を接続するバ
イアホールの増加になり、第2の対応の多配線化、しい
ては、配線の収容性を著しく制限する。そのために、特
に、このバイア・ホールを多層板に貫通孔として設けた
場合、バイアホールを小径化する事で対応しているが、
板厚/孔径比(アスペクト比)が増加し多層板の製造性
を著しく阻害している。
Two main measures are taken to increase the density of multilayer boards. The first is to increase the number of conductor layers, that is, to increase the number of layers, and the second is to increase the number of wires between basic lattices. However, in the first measure, the number of via holes for connecting the conductor layers between the layers increases, and the multiplicity of wiring measures in the second measure, and consequently, the wiring accommodating ability is significantly limited. Therefore, in particular, when this via hole is provided as a through hole in the multilayer board, it is dealt with by reducing the diameter of the via hole.
The plate thickness / pore diameter ratio (aspect ratio) increases, which significantly impairs the productivity of the multilayer plate.

このため、上述した欠点を解消する手段として第3図
(A)に示す様に、導体回路パターン1を形成した触媒
入り絶縁基板4を2組最外層に配置し、その内側に多層
板の貫通孔の直径より大なる同心円にくり抜いた孔部16
を設けた触媒なしの絶縁基板2と触媒入りプリプレグ5
とを介挿させて、第3図(B)に示す様に、加熱,加圧
して多層化基板7を形成する工程と、第3図(C)に示
す様に、多層化基板7の所定の位置に貫通孔8を穿設す
る工程と、第3図(D)に示す様に、多層化基板7の貫
通孔8の内壁の触媒入り絶縁基板3端面に導体回路パタ
ーン1の端面と導通接続する導体層11を無電解めっきに
より形成する工程を経て、分割されたバイアホール12と
通常のスルホール13とを選択的に形成する事により高密
度化を達成した例がある(特願昭61−029361)。
Therefore, as a means for eliminating the above-mentioned drawbacks, as shown in FIG. 3 (A), two sets of the catalyst-containing insulating substrates 4 on which the conductor circuit patterns 1 are formed are arranged in the outermost layer, and the multilayer plate penetrates inside thereof. Hole part 16 hollowed out in a concentric circle larger than the diameter of the hole
Insulating substrate 2 without catalyst and prepreg with catalyst 5
And a step of forming a multi-layered substrate 7 by heating and pressurizing the multi-layered substrate 7 as shown in FIG. 3 (B), and a predetermined process for forming the multi-layered substrate 7 as shown in FIG. 3 (C). And the step of forming the through hole 8 at the position of the conductive circuit pattern 1 on the end surface of the insulating substrate 3 containing the catalyst on the inner wall of the through hole 8 of the multilayer substrate 7 as shown in FIG. 3D. There is an example in which high density is achieved by selectively forming divided via holes 12 and normal through holes 13 through a step of forming a conductor layer 11 to be connected by electroless plating (Japanese Patent Application No. 61-61). −029361).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述した従来の製造方法では、通常の
スルホール形成用の貫通孔の穿孔位置に貫通孔の直径よ
り大なる同心円にくり抜いた孔部を多層化基板の内側の
触媒なしの絶縁基板に設けるため、貫通孔と前記孔部間
にクリアランスを必要とし、平面方向の基本格子を小さ
くできず、平面方向の高密度化の阻害要因になるという
欠点がある。
However, in the above-mentioned conventional manufacturing method, in order to provide a hole formed in a concentric circle having a diameter larger than the diameter of the through hole at the drilling position of the through hole for forming a normal through hole on the insulating substrate without a catalyst inside the multilayer substrate. However, there is a drawback in that a clearance is required between the through hole and the hole portion, the basic lattice in the plane direction cannot be made small, and it becomes a factor that hinders high density in the plane direction.

又、先の孔部を触媒入プリプレグに含浸された触媒入
りレジンだけで充填する必要があるため、触媒なしの絶
縁基板の厚みが厚すぎるとボイドが発生するために、厚
みの制約が起こり、多層板の電気特性とりわけインピー
ダンス特性に対する制約要因となる欠点がある。
Further, since it is necessary to fill the above-mentioned holes only with the resin containing the catalyst impregnated in the catalyst-containing prepreg, if the thickness of the insulating substrate without the catalyst is too thick, voids will occur, which causes a restriction on the thickness. There is a drawback that it becomes a limiting factor for the electrical characteristics, especially the impedance characteristics, of the multilayer board.

さらに、孔部の穴数に応じて触媒入りプリプレグ層の
樹脂量を調整する必要が生じ、又、孔部の平面方向での
集中度に依って多層板の平滑性や層間厚コントロールが
困難となるという欠点がある。
Furthermore, it is necessary to adjust the amount of resin in the catalyst-containing prepreg layer according to the number of holes, and it is difficult to control the smoothness of the multilayer plate and the interlayer thickness depending on the degree of concentration of the holes in the plane direction. There is a drawback that

本発明の目的は、高密度で、インピーダンス特性に対
する制約がなく、平滑性や層間厚のコントロールが可能
な多層印刷配線板の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a multilayer printed wiring board which has a high density, has no restriction on impedance characteristics, and can control smoothness and interlayer thickness.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の多層印刷配線板の製造方法は、予め導体回路
パターンを表裏両面に設けた触媒なしの絶縁基板を内層
に配置しその外側に片面全体に銅箔を有する2組の触媒
入り絶縁基板をそれぞれ前記銅箔を外側にして触媒入り
プリプレグを介挿させて加熱,加圧して多層化基板を成
型する工程と、前記多層化基板の所定の位置に貫通孔を
穿孔する工程と、前記貫通孔の一部をマスクした後マス
クされていない前記貫通孔内壁に触媒を吸着させる工程
と、前記マスクを除去する工程と、前記貫通孔内壁の前
記触媒入り絶縁基板と前記触媒入りプリプレグとで形成
された触媒入り絶縁挿及び触媒を吸着させた部分を含め
て無電解めっきで導体層を形成する工程とを含んで構成
される。
The method for manufacturing a multilayer printed wiring board according to the present invention comprises two sets of catalyst-containing insulating substrates each having a catalyst-free insulating substrate having conductor circuit patterns provided on both front and back surfaces in advance as an inner layer and having a copper foil on one entire surface outside thereof. A step of forming a multi-layer substrate by inserting a catalyst-containing prepreg with the copper foil on the outside and heating and pressurizing the step; forming a through hole at a predetermined position of the multi-layer substrate; Formed by a step of adsorbing a catalyst on the inner wall of the through hole that has not been masked after masking a part of the above, a step of removing the mask, and an insulating substrate containing the catalyst on the inner wall of the through hole and the prepreg containing the catalyst. And a step of forming a conductor layer by electroless plating including a catalyst-containing insulating plug and a portion where the catalyst is adsorbed.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(A)〜(F)は本発明の第1の実施例の製造
方法を説明する工程順に示した縦断面図である。
1 (A) to 1 (F) are vertical cross-sectional views showing the manufacturing process of the first embodiment of the present invention in the order of steps.

第1の実施例は、まず、第1図(A)に示す様に、予
め表裏両面に導体回路パターン1をホト印刷法により形
成した触媒なしの絶縁基板2を内層として配置し、その
外側に片面全体に銅箔3を有する2組の触媒入り絶縁基
板4をそれぞれ銅箔3を外側にして触媒入りプリプレグ
5を介挿させてセットする。
In the first embodiment, first, as shown in FIG. 1 (A), an insulating substrate 2 without a catalyst, in which conductor circuit patterns 1 are formed on both front and back surfaces in advance by a photoprinting method, is arranged as an inner layer, and the outside thereof is provided. Two sets of catalyst-containing insulating substrates 4 each having a copper foil 3 on one side are set with the copper foil 3 facing outward and a prepreg 5 containing a catalyst interposed therebetween.

次に、第1図(B)に示す様に、加熱,加圧して触媒
入り絶縁層6及び触媒なし絶縁基板2を含む多層化基板
7を得る。
Next, as shown in FIG. 1 (B), heating and pressurization are performed to obtain a multilayer substrate 7 including the catalyst-containing insulating layer 6 and the catalyst-free insulating substrate 2.

次に、第2図(C)に示す様に、所定の位置にN/Cド
リリング装置により貫通孔8a,8bを穿孔する。
Next, as shown in FIG. 2 (C), through holes 8a and 8b are drilled at predetermined positions by an N / C drilling device.

次に、分割されたバイアホールを形成する貫通孔8aを
ホト印刷法により、例えば、デュ・ポン社製ドライフィ
ルムリストン1220 を用いて、マスク9を形成した後、
塩化パラジウムをベースにした触媒液に浸漬して、マス
ク9が施されていない貫通孔8bの内壁全体に触媒10を吸
着させる。
 Next, the through hole 8a forming the divided via hole is formed.
By the photo printing method, for example, a dry film manufactured by Du Pont
Rumliston 1220 After forming the mask 9 using
Dip in a catalyst solution based on palladium chloride to
The catalyst 10 is absorbed on the entire inner wall of the through hole 8b not provided with the groove 9.
To wear.

次に、第1図(E)に示す様に、マスク9を有機溶剤
で除去した後(図示略)、無電解銅めっきを施すと多層
化基板7の表裏両面及び貫通孔8a,8b内壁に導体層11が
形成される。この場合、貫通孔8aに於いては、触媒入絶
縁層6にのみ導体層11が形成され、触媒なし絶縁基板2
には形成されないため、貫通孔8a内壁で導体層11の分離
が起こり、且つ、導体回路パターン1と外層の銅箔3が
接続され、一方、貫通孔8bに於いては、先に吸着させた
触媒10により内壁全体に導体層1が形成される。
Next, as shown in FIG. 1 (E), after removing the mask 9 with an organic solvent (not shown), electroless copper plating is applied to both the front and back surfaces of the multilayer substrate 7 and the inner walls of the through holes 8a, 8b. The conductor layer 11 is formed. In this case, in the through hole 8a, the conductor layer 11 is formed only on the catalyst-containing insulating layer 6, and the catalyst-free insulating substrate 2 is formed.
Therefore, the conductor layer 11 is separated at the inner wall of the through hole 8a, and the conductor circuit pattern 1 and the copper foil 3 of the outer layer are connected to each other, while the through hole 8a is first adsorbed. The catalyst 10 forms the conductor layer 1 on the entire inner wall.

次に、第1図(F)に示す様に、ホト印刷法によっ
て、最外層の回路形成に行う事により、分割されたバイ
アホール12と通常のスルホール13と含む多層印刷配線板
14が得られる。
Next, as shown in FIG. 1 (F), a multilayer printed wiring board including via holes 12 and normal through holes 13 which are divided by forming a circuit of the outermost layer by a photo printing method.
14 is obtained.

第2図は本発明の第2の実施例の製造方法を説明する
工程順に示した縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the manufacturing method of the second embodiment of the present invention in the order of steps.

第1の実施例に於いては、第1図(F)に示すよう
に、内層に触媒なし絶縁基板2を使用したが第2の実施
例では第2図(A)に示すように、触媒なしの絶縁基板
2と導体回路パターン1との間に、薄い触媒入り樹脂層
15を設けた内層を用いて、以下、第1の実施例と同様の
製造方法により、第2図(B)に示す多層印刷配線板14
を得る。
In the first embodiment, as shown in FIG. 1 (F), the insulating substrate 2 without catalyst was used as the inner layer, but in the second embodiment, as shown in FIG. 2 (A), the catalyst was used. A thin resin layer containing a catalyst between the insulating substrate 2 without the conductor and the conductor circuit pattern 1.
A multilayer printed wiring board 14 shown in FIG. 2 (B) is manufactured by the same manufacturing method as in the first embodiment, using the inner layer provided with 15.
Get.

第2の実施例では、分離されたバイアホール12に於い
て、導体層11と導体回路パターン1の接続がT字構造と
なり、この部分での接続信頼性が向上するという利点が
ある。
The second embodiment has the advantage that the connection between the conductor layer 11 and the conductor circuit pattern 1 has a T-shaped structure in the separated via hole 12, and the connection reliability in this portion is improved.

〔発明の効果〕 以上説明したように本発明は、分割されたバイアホー
ルを選択的に多層印刷配線板に形成する場合に、従来技
術の様な基本格子配置,層間厚,特性インピーダンス設
計等の種々設計的制約要素がなく、配線収容性が大幅に
向上した高密度な多層印刷配線板が得られる効果があ
る。
[Effects of the Invention] As described above, according to the present invention, when the divided via holes are selectively formed in the multilayer printed wiring board, the basic grid arrangement, the interlayer thickness, the characteristic impedance design, etc., as in the prior art, can be obtained. There is an effect that it is possible to obtain a high-density multi-layer printed wiring board having various wiring restraint properties without various design constraints.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)〜(F)は本発明の第1の実施例の製造方
法を説明する工程順に示した縦断面図、第2図(A),
(B)は本発明の第2の実施例の製造方法を説明する工
程順に示した縦断面図、第3図(A)〜(D)は従来の
多層印刷配線板の製造方法の一例を説明する工程順に示
した縦断面図である。 1……導体回路パターン、2……触媒なしの絶縁基板、
3……銅箔、4……触媒入り絶縁基板、5……触媒入り
プリプレグ、6……触媒入り絶縁層、7……多層化基
板、8a,8b……貫通孔、9……マスク、10……触媒、11
……導体層、12……分割されたバイアホール、13……通
常のスルーホール、14……多層印刷配線板、15……薄い
触媒入り樹脂層、16……孔部。
1 (A) to 1 (F) are longitudinal sectional views showing the manufacturing method of the first embodiment of the present invention in the order of steps, FIG. 2 (A),
(B) is a longitudinal sectional view showing the manufacturing method of the second embodiment of the present invention in the order of steps, and FIGS. 3 (A) to (D) are examples of the conventional method for manufacturing a multilayer printed wiring board. FIG. 6 is a vertical cross-sectional view showing in the order of steps to be performed. 1 ... Conductor circuit pattern, 2 ... Insulating substrate without catalyst,
3 ... Copper foil, 4 ... Catalyst-containing insulating substrate, 5 ... Catalyst-containing prepreg, 6 ... Catalyst-containing insulating layer, 7 ... Multilayer substrate, 8a, 8b ... Through holes, 9 ... Mask, 10 ...... Catalyst, 11
...... Conductor layer, 12 …… Divided via holes, 13 …… Normal through holes, 14 …… Multilayer printed wiring board, 15 …… Thin catalyst-containing resin layer, 16 …… Hole part.

フロントページの続き (56)参考文献 特開 昭54−43568(JP,A) 特開 昭62−186595(JP,A) 特開 昭63−280496(JP,A) 特開 昭51−27458(JP,A) 特開 昭60−101996(JP,A) 特開 昭62−186594(JP,A)Continuation of the front page (56) Reference JP-A-54-43568 (JP, A) JP-A-62-186595 (JP, A) JP-A-63-280496 (JP, A) JP-A-51-27458 (JP , A) JP-A-60-101996 (JP, A) JP-A-62-186594 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め導体回路パターンを表裏両面に設けた
触媒なしの絶縁基板を内層に配置しその外側に片面全体
に銅箔を有する2組の触媒入り絶縁基板をそれぞれ前記
銅箔を外側にして触媒入りプリプレグを介挿させて加
熱,加圧して多層化基板を成型する工程と、前記多層化
基板の所定の位置に貫通孔を穿孔する工程と、前記貫通
孔の一部をマスクした後マスクされていない前記貫通孔
内壁に触媒を吸着させる工程と、前記マスクを除去する
工程と、前記貫通孔内壁の前記触媒入り絶縁基板と前記
触媒入りプリプレグとで形成された触媒入り絶縁層及び
触媒を吸着させた部分を含めて無電解めっきで導体層を
形成する工程とを含む事を特徴とする多層印刷配線板の
製造方法。
1. A catalyst-free insulating substrate having conductor circuit patterns provided on both front and back surfaces in advance is disposed on an inner layer, and two sets of catalyst-containing insulating substrates each having a copper foil on one entire surface are provided on the outer side with the copper foil on the outer side. And then heat and pressurize the catalyst-containing prepreg to form a multilayer substrate, form a through hole at a predetermined position of the multilayer substrate, and mask a part of the through hole. A step of adsorbing a catalyst on the inner wall of the through hole that is not masked, a step of removing the mask, a catalyst-containing insulating layer and a catalyst formed by the catalyst-containing insulating substrate and the catalyst-containing prepreg on the through-hole inner wall And a step of forming a conductor layer by electroless plating, including a portion to which is adsorbed, a method for manufacturing a multilayer printed wiring board.
JP10243389A 1989-04-21 1989-04-21 Method for manufacturing multilayer printed wiring board Expired - Lifetime JP2689591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10243389A JP2689591B2 (en) 1989-04-21 1989-04-21 Method for manufacturing multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10243389A JP2689591B2 (en) 1989-04-21 1989-04-21 Method for manufacturing multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH02281689A JPH02281689A (en) 1990-11-19
JP2689591B2 true JP2689591B2 (en) 1997-12-10

Family

ID=14327335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10243389A Expired - Lifetime JP2689591B2 (en) 1989-04-21 1989-04-21 Method for manufacturing multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP2689591B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820427B2 (en) 2013-03-15 2020-10-27 Sanmina Corporation Simultaneous and selective wide gap partitioning of via structures using plating resist
US9781844B2 (en) 2013-03-15 2017-10-03 Sanmina Corporation Simultaneous and selective wide gap partitioning of via structures using plating resist

Also Published As

Publication number Publication date
JPH02281689A (en) 1990-11-19

Similar Documents

Publication Publication Date Title
JP2874329B2 (en) Method for manufacturing multilayer printed wiring board
JPH0575269A (en) Manufacture of multilayer printed-wiring board
JP2522869B2 (en) Method for manufacturing multilayer circuit device
US6599617B2 (en) Adhesion strength between conductive paste and lands of printed wiring board, and manufacturing method thereof
US20070272654A1 (en) Method for Manufacturing Circuit Board
JP2001015920A (en) Multilayer printed wiring board and its manufacture
US7278205B2 (en) Multilayer printed wiring board and production method therefor
JPH10284841A (en) Manufacture of multilayer printed wiring board
US20030137815A1 (en) Printed wiring board and method of manufacturing the same
JP2689591B2 (en) Method for manufacturing multilayer printed wiring board
JPH0716097B2 (en) Method for manufacturing multilayer printed wiring board
US6492007B1 (en) Multi-layer printed circuit bare board enabling higher density wiring and a method of manufacturing the same
JP2924194B2 (en) Multilayer printed wiring board
JP2000323841A (en) Multilayer circuit board and manufacture thereof
US20070029109A1 (en) Multilayer printed wiring board and production method therefor
JPH0716096B2 (en) Method for manufacturing multilayer printed wiring board
JPH0542157B2 (en)
JP2760069B2 (en) Method for manufacturing multilayer printed wiring board
JPH10261868A (en) Manufacture of multilayer printed wiring board
JP2892861B2 (en) Composite printed circuit board and method of manufacturing the same
JP2002185099A (en) Printed circuit board and its manufacturing method
JPH0542158B2 (en)
JPH0590762A (en) Manufacture of multilayer printed wiring board
JPH0532919B2 (en)
JP3934883B2 (en) Wiring board and manufacturing method thereof