JP2688482B2 - Hybrid type parametric motor - Google Patents

Hybrid type parametric motor

Info

Publication number
JP2688482B2
JP2688482B2 JP62215474A JP21547487A JP2688482B2 JP 2688482 B2 JP2688482 B2 JP 2688482B2 JP 62215474 A JP62215474 A JP 62215474A JP 21547487 A JP21547487 A JP 21547487A JP 2688482 B2 JP2688482 B2 JP 2688482B2
Authority
JP
Japan
Prior art keywords
magnetic
core circuit
magnetic core
circuit
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62215474A
Other languages
Japanese (ja)
Other versions
JPS6460251A (en
Inventor
美津雄 栗原
Original Assignee
学校法人 東海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東海大学 filed Critical 学校法人 東海大学
Priority to JP62215474A priority Critical patent/JP2688482B2/en
Publication of JPS6460251A publication Critical patent/JPS6460251A/en
Application granted granted Critical
Publication of JP2688482B2 publication Critical patent/JP2688482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Induction Machinery (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、定電圧回路や逓倍器等における電力変換器
として利用され得るハイブリッド型パラメトリックモー
タに関するものである。 [従来の技術] 従来、定電圧回路や逓倍器等における電力変換器とし
ては一般に静止形機器が利用されてきたが、最近従来の
静止形機器に代わって磁気回路と電動機との一体化が可
能となる回転子形機器の研究開発が進められており、こ
の種の装置として先に、二つのU字形磁心を互いに直交
配置して半載し、その中心部に単相用かご形回転子を組
み込んだ変換器を提案し、これにより従来から定電圧回
路や逓倍器等に用いられている静止形機器を回転子形機
器に置き換えることが可能となった。 [発明が解決しようとする問題点] ところで、上述のような従来の装置では磁極間にはい
かなる場合でも回転が必要となるためのギャップが存在
し、この部分での磁気抵抗は極めて大きくなる。このた
め磁束はこの部分を余り通らず、通りやすい磁路すなわ
ちギャップがなく磁気抵抗の小さい外枠の磁路を通るこ
とになり、その結果回転磁界が弱いという問題点があっ
た。 そこで、本発明は、従来装置の問題点を解決して各磁
極間を直接磁束が通過できるようにして強い回転磁界を
得ることのできると共にパラメトリック回路の特性を備
えたハイブリッド型パラメトリックモータを提供するこ
とを目的としている。 [問題点を解決するための手段] 上記の目的を達成するために、本発明によるハイブリ
ッド型パラメトリックモータは、平面上で互いに直交す
るI字形鉄心と、これらI字形鉄心の外方端にそれぞれ
固定され上記I字形鉄心と共に閉磁路を形成する外方鉄
心と、上記外方鉄心に巻かれ、互いに直列に接続された
複数個の巻回からなりしかも両端子間に入力電源を接続
した一次側コイルと、上記I字形鉄心および外方鉄心に
よって形成される各磁路に巻かれ、互いに直列に接続さ
れた複数個の巻回からなりしかも両端子間に共振用のコ
ンデンサを並列に接続した二次側コイルと、上記I字形
鉄心の直交部の中央部分に形成した穴に挿置された回転
子とを有し、一次側及び二次側コイルの起磁力による主
磁束が互いに直交する独立磁路を形成するように構成し
たことを特徴としている。 好ましくは、二次側コイルに並列に接続した共振用の
コンデンサに並列に磁路の磁気抵抗調節用の可変抵抗を
接続して回転子の回転速度を制御できるように構成する
こともできる。 [作用] 本発明による装置では、直交磁心構成が取られている
ため、磁束は各磁極間を直接通過でき、強い回転磁界を
得ることができる。一次側コイルに接続された入力電源
電圧を徐々に増加していくと、ある時点でパラメトリッ
ク発振が生じられ、二次側コイル端子間には90゜の位相
差をもった出力電圧が得られる。これにより生じられる
回転磁界により、各磁極間に設けられた回転子は高トル
クで回転することになる。 また二次側コイルに並列に接続された共振用のコンデ
ンサに並列に可変抵抗を接続した場合には、この可変抵
抗を適当に調節することにより、磁路の磁気抵抗が変わ
るので、回転子の回転速度を制御することができる。 [実施例] 以下、添付図面を参照して本発明の実施例について説
明する。 第1図および第2図には本発明の一実施例によるハイ
ブリッド型パラメトリックモータの構成を概略的に示
し、これらの図面において1、2はI字形鉄心で、平面
上で互いに直交して配置され、以下に説明するように互
いに堅固に固定されている。各I字形鉄心1、2の外方
端を囲んで外方鉄心3が固定され、複数の磁路を形成し
ている。I字形鉄心1、2の直交部の中央部分に形成し
た穴4内にはかご形回転子5が組み込まれており、この
かご形回転子5は、第2図に示すように、I字形鉄心
1、2の上面および下面にそれぞれ二つのブラケット
6、7を当て、これらブラケット6、7をボルト8によ
って互いに締付けることにより穴4内にブラケット6、
7によって固定されている。 各磁路には第1図に示すように一次側コイルを成す三
つの巻線N1a、N1b、N1cおよび二次側コイルを成す四つ
の巻線N2a、N2b、N2c、N2dが設けられており、第1図で
は省略してあるが一次側コイルの三つの巻線N1a、N1b、
N1cは互いに直列に接続され、すなわち、第1図および
第2図のモータの等価回路を示す第3図からわかるよう
に、巻線N1aの端子1a′は巻線N1bの端子1bに接続され、
巻線N1bの端子1b′は巻線N1cの端子1cに接続され、巻線
N1aの端子1aと巻線N1cの端子1c′との間には単相入力電
源9が接続されている。二次側の巻線についても同様に
巻線N2aの端子2a′は巻線N2bの端子2bに接続され、この
巻線N2bの端子2b′は巻線N2dの端子2d′に接続され、巻
線N2dの端子2dは巻線N2cの端子2c′に接続され、巻線N2
a、N2cの端子2a、2c間には共振用のコンデンサ10が接続
されている。 第3図において、Iの回路部分はパラメトリック回路
であり、IIの部分は誘導機部分の等価回路である。 第4図には、鉄心リアクトルLとコンデンサCを並列
接続した並列共振回路を示す。この回路の特徴は印加電
圧Viに対して回路に流入する電流Io(合成電流Ic+IL)
の大きさと位相が変化することである。すなわち、第5
図のようにCを流れる進み電流IcはViに比例するがLを
流れる遅れ電流ILはViの小さな範囲ではほとんど流れ
ず、ViがVmより大きくなると鉄心飽和のため急に増加す
る。その結果、回路電流Ioは電圧Viの小さな範囲ではVi
に比例して進み電流になり、ViがVmより大きくなると減
少していわゆる負特性を示す。次いでViがVoになると進
み電流Icと遅れ電流ILの大きさが等しくなり回路電流Io
は零になり、ViがVoより大きくなると今後は遅れ電流に
なり、電圧Viが増すとその電流Ioは急激に増加する。す
なわち、Ic=ILのとき並列共振電圧Voが確立し、このと
きViに対してVoは90゜の位相差を持つことになり、この
Voを特に並列共振電圧という。 従って、上述の第1図、第2図及び第3図で示したよ
うに構成した装置において、一次側コイルに接続された
入力電源9の電圧を徐々に増加していると、ある時点で
パラメトリック発振が生じ、二次側コイルには90゜の位
相差をもつ出力電圧が得られる。 一方、一次側コイルの起磁力による主磁束φiと二次
側コイルの起磁力による主磁束φoは独立磁路を形成
し、共通面で互いに直交している。このときの電圧波形
は第9図に示すように二相交流である。交流波形も一次
側コイルを流れる電流iAに対し二次側コイルを流れる電
流iBは90゜の位相差を持つから、二相交流の時間と電流
の関係を示すと第6図のようになる。この波形を基にし
て固定コイルと回転磁界を考えてみる。ここで、電流が
正(+)のとき、コイル辺A及びBからそれぞれA′及
びBからそれぞれA′及びB′に流れるものとすれば、
右ネジの法則に従う方向に電流の大きさに比例する磁界
ができる。いま、時間t1の瞬間にはiAは正方向、iBは零
であるから右ネジの法則により磁界の方向は第7図
(a)に示すように上向きとなる。つぎに、t2では、iA
は正方向、iBも正方向であるからt1から45度の右方向に
回転する(第7図(b)参照)。t3の場合、iAは零、iB
は正方向であるから磁界は90゜右向き)となる(第7図
(c)参照)。同様に、t4の場合iAは負、iBは正で135
゜の向き、L5のとき、iAが負、iBは零で下向きとなる
(第7図(d)及び第7図(e)参照)。このようにし
て、各磁極と回転子との間には第7図の(a)から
(e)の回転磁界が生じていることは周知の事実であ
る。このように、一次側と二次側の磁極と回転子間には
二相交流の回転磁界が生じているため、固定子にはスロ
ットやくまとりコイルは全く必要がないので構造が簡単
で且つ始動性の高い回転が得られることになり、従っ
て、第1図、第2図及び第3図に示した装置において
は、二次側コイルで得られる出力電圧によって発生され
る回転磁界により各磁極間に設けられた回転子5は高ト
ルクで回転させられる。 図示装置において、I字形鉄心1、2はけい素鋼板か
ら成り、また各巻線はフォルマール線から成り、一次側
の三つの巻線の巻回はそれぞれ300回であり、二次側の
四つの巻線の巻回はそれぞれ250回である。 第8図には入力電圧Viに対する出力電圧Voおよび回転
数Nの関係を示す。 二次側に接続された共振用のコンデンサ10の容量を24
μFにし、入力電源9からの入力電圧Viを徐々に増加し
ていくと、Vi=66ボルトでパラメトリック発振が生じ、
その時の出力電圧Voは142ボルトとなり、跳躍現象が起
る。この状態になると、入力電圧Viが上昇しても出力電
圧Voはほぼ一定の値を保ち、良好な定電圧性を示してい
ることがわかる。 次に入力電圧Viと回転数Nとの関係について考察して
みると、跳躍現象が起ると同時に回転数NはN=2600rp
mとなり、入力電圧Viを上昇してもほぼ一定回転にとど
まることが認められる。図示装置の場合、二極で磁心を
通過する磁束が磁極間において直交しているために、強
い回転磁界が得られ、その結果移動磁界を生じさせるた
めのくま取りコイルは全く必要でなく、充分な起動性を
もち滑らかな回転が得られ得る。 入力電圧Viおよび出力電圧Voの電圧波形は第9図に示
すように良好な正弦波形を有している。 第10図には二次側に接続されたコンデンサ10の両端に
可変抵抗を並列に接続した場合の特性を示し、跳躍現象
の起きた後入力電圧Viを一定(Vi=66ボルト)にして可
変抵抗の抵抗値Rを変えた場合の各々の特性が例示され
ている。モータは、特に、回転数Nが2620rpm〜2420rpm
の範囲にわたつて制御されていることが認められる。す
なわち二次側に抵抗を接続することによつて磁気回路の
磁気抵抗が変化し、その結果モータの回転数Nが変化す
ることになる。なお、モータの回転数Nの制御範囲に関
しては、共振特性の鋭敏でない鉄心を使用することによ
り、より良好な特性を得ることが可能となる。 本モータの同期速度NsおよびすべりSは次式で表され
る。 Ns=120f/P(rpm) S=Ns−N/Ns ここで、Fは周波数、Pは極数である。 上式より、Ns=3000rpm、N=2600rpmである。回転磁
界に対する相対速度はNs−Nとなり、この相対速度と同
期速度との比がすべりである。従って、有効な回転トル
クを発生させるためにはNがNsより小さいことが必要で
ある。本発明によるモータにおいては実験によればすべ
りSは13%となっており、モータとし十分な特性を有す
ることがみとめられる。 [発明の効果] 以上説明してきたように、本発明による装置において
は、各磁極関を直接磁束が通過できるように構成すると
共にパラメトリック回路の特性を備えるように構成して
いるので、変換器と電動機とを一体化でき、また特性的
には有効な回転トルクを発生させることができる。また
本モータは平面的な回路構成をもち、構造が極めて簡単
で固定子にスロットを必要とせず、巻線を圧巻すること
ができる。また、二次側のコンデンサに並列に磁気抵抗
調節用の抵抗を挿置した場合には回転速度の制御が可能
となる。さらに、本発明のモータでは変換器自体がフイ
ルター作用を有しているため矩形波の入力電源を用いる
こともできしかも定電圧性がよく出力電圧も良好な波形
となる。さらにまた、本発明のモータは使用する回転子
の種類によって同期電動機やヒステリシス電動機として
機能させることも可能である。
Description: TECHNICAL FIELD The present invention relates to a hybrid parametric motor that can be used as a power converter in a constant voltage circuit, a multiplier, or the like. [Prior Art] Conventionally, a static device has been generally used as a power converter in a constant voltage circuit or a multiplier, but recently, a magnetic circuit and an electric motor can be integrated in place of the conventional static device. Research and development of a rotor-type machine has been promoted. As a device of this type, two U-shaped magnetic cores are first placed orthogonally to each other and half-mounted, and a single-phase squirrel-cage rotor is placed in the center. We proposed a built-in converter, which made it possible to replace the static equipment used in the conventional constant voltage circuits and multipliers with rotor equipment. [Problems to be Solved by the Invention] In the conventional device as described above, there is a gap between the magnetic poles that requires rotation in any case, and the magnetic resistance in this portion becomes extremely large. For this reason, the magnetic flux does not pass through this portion so much and passes through a magnetic path that easily passes, that is, a magnetic path of an outer frame having a small magnetic resistance without a gap, resulting in a problem that the rotating magnetic field is weak. Therefore, the present invention provides a hybrid parametric motor that solves the problems of the conventional device and allows a magnetic flux to directly pass between the magnetic poles to obtain a strong rotating magnetic field, and has the characteristics of a parametric circuit. Is intended. [Means for Solving the Problems] In order to achieve the above object, the hybrid parametric motor according to the present invention is fixed to I-shaped iron cores which are orthogonal to each other on a plane and to outer ends of these I-shaped iron cores. A primary coil having an outer iron core forming a closed magnetic circuit together with the I-shaped iron core and a plurality of windings wound around the outer iron core and connected in series with each other, and having an input power source connected between both terminals. And a secondary winding comprising a plurality of windings wound around each magnetic path formed by the I-shaped iron core and the outer iron core and connected in series with each other, and having a resonance capacitor connected in parallel between both terminals. An independent magnetic path having a side coil and a rotor inserted in a hole formed in a central portion of the orthogonal portion of the I-shaped iron core, and main magnetic fluxes due to magnetomotive forces of the primary side coil and the secondary side coil are orthogonal to each other. To form It is characterized by being configured as follows. Preferably, a variable resistor for adjusting the magnetic resistance of the magnetic path may be connected in parallel to the resonance capacitor connected in parallel to the secondary coil so that the rotation speed of the rotor can be controlled. [Operation] In the device according to the present invention, since the orthogonal magnetic core structure is adopted, the magnetic flux can directly pass between the magnetic poles, and a strong rotating magnetic field can be obtained. When the input power supply voltage connected to the primary coil is gradually increased, parametric oscillation occurs at a certain point, and an output voltage having a phase difference of 90 ° is obtained between the secondary coil terminals. The rotating magnetic field generated by this causes the rotor provided between the magnetic poles to rotate with high torque. When a variable resistor is connected in parallel to the resonance capacitor connected in parallel to the secondary coil, the magnetic resistance of the magnetic path changes by adjusting this variable resistor appropriately. The rotation speed can be controlled. Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings. 1 and 2 schematically show the structure of a hybrid type parametric motor according to an embodiment of the present invention. In these drawings, 1 and 2 are I-shaped iron cores, which are arranged orthogonal to each other on a plane. , Are rigidly fixed to each other as described below. The outer core 3 is fixed to surround the outer ends of the respective I-shaped cores 1 and 2 to form a plurality of magnetic paths. A squirrel cage rotor 5 is incorporated in a hole 4 formed in the central portion of the I-shaped iron cores 1 and 2 in the orthogonal portion. As shown in FIG. 2, the squirrel cage rotor 5 has an I-shaped iron core. Two brackets 6 and 7 are respectively applied to the upper surface and the lower surface of 1 and 2, and the brackets 6 and 7 are tightened to each other by bolts 8 in the hole 4,
7 fixed. As shown in FIG. 1, each magnetic path is provided with three windings N1a, N1b, N1c forming a primary coil and four windings N2a, N2b, N2c, N2d forming a secondary coil, Although omitted in FIG. 1, three windings N1a, N1b of the primary coil,
N1c are connected in series with each other, ie, as can be seen from FIG. 3 which shows the equivalent circuit of the motor of FIGS. 1 and 2, the terminal 1a ′ of winding N1a is connected to the terminal 1b of winding N1b,
Terminal 1b 'of winding N1b is connected to terminal 1c of winding N1c,
A single-phase input power supply 9 is connected between the terminal 1a of N1a and the terminal 1c 'of the winding N1c. Similarly for the secondary winding, terminal 2a 'of winding N2a is connected to terminal 2b of winding N2b, terminal 2b' of this winding N2b is connected to terminal 2d 'of winding N2d, Terminal 2d of N2d is connected to terminal 2c 'of winding N2c,
A resonance capacitor 10 is connected between terminals 2a and 2c of a and N2c. In FIG. 3, the circuit portion I is a parametric circuit, and the portion II is an equivalent circuit of the induction machine portion. FIG. 4 shows a parallel resonant circuit in which an iron core reactor L and a capacitor C are connected in parallel. The characteristic of this circuit is that the current Io (combined current Ic + IL) that flows into the circuit with respect to the applied voltage Vi.
Is that the magnitude and phase of the changes. That is, the fifth
As shown in the figure, the advance current Ic flowing through C is proportional to Vi, but the delay current IL flowing through L hardly flows in the range where Vi is small, and when Vi becomes larger than Vm, it rapidly increases due to iron core saturation. As a result, the circuit current Io is Vi in the small range of voltage Vi.
The current increases in proportion to, and decreases when Vi becomes larger than Vm, which shows a so-called negative characteristic. Next, when Vi becomes Vo, the magnitudes of the advance current Ic and the delay current IL become equal and the circuit current Io
Becomes zero, and when Vi becomes larger than Vo, it becomes a delayed current in the future, and when the voltage Vi increases, the current Io sharply increases. That is, when Ic = IL, the parallel resonance voltage Vo is established, and at this time, Vo has a phase difference of 90 ° with respect to Vi.
Vo is especially called a parallel resonance voltage. Therefore, when the voltage of the input power supply 9 connected to the primary side coil is gradually increased in the device configured as shown in FIG. 1, FIG. 2 and FIG. Oscillation occurs and an output voltage having a phase difference of 90 ° is obtained in the secondary coil. On the other hand, the main magnetic flux φi due to the magnetomotive force of the primary coil and the main magnetic flux φo due to the magnetomotive force of the secondary coil form an independent magnetic path and are orthogonal to each other on a common plane. The voltage waveform at this time is a two-phase alternating current as shown in FIG. As for the AC waveform, the current iB flowing through the secondary coil has a phase difference of 90 ° with respect to the current iA flowing through the primary coil, so that the relationship between the time and the current of the two-phase AC is shown in FIG. Consider a fixed coil and a rotating magnetic field based on this waveform. Here, when the current is positive (+), it is assumed that the current flows from the coil sides A and B to A ′ and B to A ′ and B ′, respectively.
A magnetic field proportional to the magnitude of current is created in the direction according to the right-handed screw law. Since iA is positive and iB is zero at the instant of time t1, the direction of the magnetic field is upward as shown in FIG. 7 (a) according to the right-handed screw law. Next, at t2, iA
Is in the positive direction, and iB is also in the positive direction, so it rotates 45 degrees to the right from t1 (see FIG. 7 (b)). For t3, iA is zero, iB
Is a positive direction, the magnetic field is 90 ° to the right) (see FIG. 7 (c)). Similarly, for t4, iA is negative and iB is positive and 135
When the angle is L5, iA is negative and iB is zero, which is downward (see FIGS. 7 (d) and 7 (e)). In this way, it is a well known fact that the rotating magnetic fields of (a) to (e) of FIG. 7 are generated between each magnetic pole and the rotor. In this way, since a two-phase AC rotating magnetic field is generated between the primary side and secondary side magnetic poles and the rotor, the stator does not need any slots or shading coils, so the structure is simple and Rotation with high startability can be obtained. Therefore, in the device shown in FIGS. 1, 2, and 3, each magnetic pole is generated by the rotating magnetic field generated by the output voltage obtained by the secondary coil. The rotor 5 provided therebetween is rotated with high torque. In the illustrated apparatus, the I-shaped iron cores 1 and 2 are made of silicon steel plate, each winding is made of formal wire, the three windings on the primary side are 300 times each, and the four windings on the secondary side are four. Each winding has 250 turns. FIG. 8 shows the relationship between the output voltage Vo and the rotation speed N with respect to the input voltage Vi. Set the capacity of the resonance capacitor 10 connected to the secondary side to 24
When it is set to μF and the input voltage Vi from the input power supply 9 is gradually increased, parametric oscillation occurs at Vi = 66 V,
The output voltage Vo at that time becomes 142 V, and a jump phenomenon occurs. In this state, it can be seen that the output voltage Vo maintains a substantially constant value even if the input voltage Vi rises, and exhibits a good constant voltage property. Next, considering the relationship between the input voltage Vi and the rotation speed N, a jump phenomenon occurs and at the same time, the rotation speed N is N = 2600rp.
It is recognized that even if the input voltage Vi is increased, the rotation speed remains almost constant. In the case of the illustrated device, since the magnetic flux passing through the magnetic core with two poles is orthogonal between the magnetic poles, a strong rotating magnetic field is obtained, and as a result, a bear removing coil is not necessary at all to generate a moving magnetic field. Smooth rotation can be obtained with good startability. The voltage waveforms of the input voltage Vi and the output voltage Vo have good sine waveforms as shown in FIG. Fig. 10 shows the characteristics when a variable resistor is connected in parallel across both ends of the capacitor 10 connected to the secondary side. After the jump phenomenon occurs, the input voltage Vi is kept constant (Vi = 66 volts) and variable. The respective characteristics when the resistance value R of the resistance is changed are illustrated. The motor has a rotation speed N of 2620 rpm to 2420 rpm.
It is recognized that it is controlled over the range of. That is, by connecting a resistor to the secondary side, the magnetic resistance of the magnetic circuit changes, and as a result, the rotation speed N of the motor changes. With regard to the control range of the rotation speed N of the motor, it is possible to obtain better characteristics by using an iron core having insensitive resonance characteristics. The synchronous speed Ns and slip S of this motor are expressed by the following equations. Ns = 120f / P (rpm) S = Ns-N / Ns Here, F is frequency and P is the number of poles. From the above equation, Ns = 3000 rpm and N = 2600 rpm. The relative speed with respect to the rotating magnetic field is Ns-N, and the ratio of this relative speed and the synchronous speed is the slip. Therefore, N must be smaller than Ns in order to generate effective rotation torque. According to an experiment, the motor according to the present invention has a slip S of 13%, and it is found that the motor has sufficient characteristics. [Effects of the Invention] As described above, in the device according to the present invention, since the magnetic flux can directly pass through each magnetic pole function and the characteristic of the parametric circuit is provided, It can be integrated with an electric motor, and can generate effective rotational torque characteristically. Further, the motor has a planar circuit structure, has an extremely simple structure, does not require slots in the stator, and can wind the winding. Further, when a resistor for adjusting the magnetic resistance is inserted in parallel with the capacitor on the secondary side, the rotation speed can be controlled. Further, in the motor of the present invention, since the converter itself has a filter function, a rectangular wave input power source can be used, and the constant voltage characteristic is good and the output voltage has a good waveform. Furthermore, the motor of the present invention can function as a synchronous motor or a hysteresis motor depending on the type of rotor used.

【図面の簡単な説明】 第1図は本発明によるハイブリッド型パラメイトリック
モータの一実施例を示す概略斜視図、第2図は第1図の
モータの回転子部分の取付け状態を示す図、第3図は第
1図のモータの等価回路を示す回路線図、第4図は並列
共振回路を示す回路線図、第5図は並列共振特性を示す
グラフ、第6図は2相交流の時間−電流特性を示すグラ
フ、第7図は固定子と回転子の回転磁界を示す図、第8
図は入力電圧に対する出力電圧および回転数の特性を示
すグラフ、第9図は入力電圧および出力電圧波形を例示
するグラフ、第10図は抵抗接続による回転数の制御例を
示すグラフである。 図中、 1、2:I字形鉄心、4:穴 5:かご形回転子、6、7:ブラケット 8:ボルト、9:単相入力電源 10:コンデンサ、N1a〜N1c:巻線 N2a〜N2d:巻線
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view showing an embodiment of a hybrid parametric motor according to the present invention, and FIG. 2 is a view showing a mounted state of a rotor portion of the motor shown in FIG. 1, FIG. 3 is a circuit diagram showing an equivalent circuit of the motor of FIG. 1, FIG. 4 is a circuit diagram showing a parallel resonance circuit, FIG. 5 is a graph showing parallel resonance characteristics, and FIG. 6 is a two-phase AC. FIG. 7 is a graph showing time-current characteristics, FIG. 7 is a graph showing rotating magnetic fields of a stator and a rotor, and FIG.
FIG. 9 is a graph showing the characteristics of the output voltage and the rotation speed with respect to the input voltage, FIG. 9 is a graph showing the input voltage and the output voltage waveform, and FIG. 10 is a graph showing an example of the rotation speed control by resistance connection. In the figure, 1, 2: I-shaped iron core, 4: Hole 5: Cage type rotor, 6, 7: Bracket 8: Bolt, 9: Single-phase input power supply 10: Capacitor, N1a to N1c: Winding N2a to N2d: Winding

Claims (1)

(57)【特許請求の範囲】 1.回転子、一次平面磁心回路、及び二次平面磁心回路
から成り、 前記一次平面磁心回路を、閉磁路を形成するように両端
が対向する平面状の磁性体と、前記磁性体に巻回される
一次コイルと、一次コイルに直列に接続される交流電源
とで構成し、 前記二次平面磁心回路を、閉磁路を形成するように両端
が対向する平面状の磁性体と、前記磁性体に巻回される
二次コイルと、二次コイルの両端子間に並列に接続され
る共振用コンデンサとで構成し、 前記一次平面磁心回路の磁性体における両端間を結ぶ線
と、二次平面磁心回路の磁性体における両端間を結ぶ線
とが直交するように一次平面磁心回路と二次平面磁心回
路とを同一平面上に配置し、かつ、 一次平面磁心回路の磁性体の一部と二次平面磁心回路の
磁性体の一部とを、一次平面磁心回路に生じる閉磁路と
二次平面磁心回路に生じる閉磁路が同じ磁性体を通るよ
うに一体的に構成し、 前記一次平面磁心回路の磁性体における両端間を結ぶ線
と、二次平面磁心回路の磁性体における両端間を結ぶ線
とが直交する位置に回転子を配置して、 一次平面磁心回路に生じる一次磁束と、二次平面磁心回
路に生じる一次磁束と位相の異なる二次磁束とにより、
回転子の位置で回転磁束が生じるように構成したこと を特徴とするハイブリット型パラメトリックモータ。 2.二次コイルに並列に接続した共振用コンデンサに並
列に磁路の磁気抵抗調節用の可変抵抗を接続したこと を特徴とする特許請求の範囲第1項に記載のハイブリッ
ト型パラメトリックモータ。
(57) [Claims] A rotor, a primary plane magnetic core circuit, and a secondary plane magnetic core circuit, and the primary plane magnetic core circuit is wound around the magnetic body and a planar magnetic body whose both ends face each other to form a closed magnetic circuit. A primary coil and an AC power source connected in series to the primary coil, and the secondary plane magnetic core circuit is wound around the magnetic body and a planar magnetic body having opposite ends to form a closed magnetic circuit. A secondary coil that is rotated, and a resonance capacitor that is connected in parallel between both terminals of the secondary coil; a line that connects both ends of the magnetic body of the primary planar magnetic core circuit; and a secondary planar magnetic core circuit The primary plane magnetic core circuit and the secondary plane magnetic core circuit are arranged on the same plane so that the line connecting the both ends of the magnetic body of is perpendicular to each other, and a part of the magnetic body of the primary plane magnetic core circuit and the secondary plane magnetic circuit are arranged. Part of the magnetic material of the magnetic core circuit The closed magnetic circuit generated in the secondary planar magnetic core circuit and the closed magnetic circuit generated in the secondary planar magnetic core circuit are integrally configured so as to pass through the same magnetic material, and a line connecting between both ends of the magnetic material of the primary planar magnetic core circuit and a secondary planar magnetic core circuit. By arranging the rotor at a position where the line connecting both ends of the magnetic body is orthogonal to each other, the primary magnetic flux generated in the primary plane magnetic core circuit and the secondary magnetic flux having a phase different from that of the primary magnetic flux generated in the secondary plane magnetic core circuit,
A hybrid parametric motor characterized in that a rotating magnetic flux is generated at the position of the rotor. 2. 2. The hybrid parametric motor according to claim 1, wherein a variable resistor for adjusting the magnetic resistance of the magnetic path is connected in parallel to the resonance capacitor connected in parallel to the secondary coil.
JP62215474A 1987-08-31 1987-08-31 Hybrid type parametric motor Expired - Lifetime JP2688482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62215474A JP2688482B2 (en) 1987-08-31 1987-08-31 Hybrid type parametric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62215474A JP2688482B2 (en) 1987-08-31 1987-08-31 Hybrid type parametric motor

Publications (2)

Publication Number Publication Date
JPS6460251A JPS6460251A (en) 1989-03-07
JP2688482B2 true JP2688482B2 (en) 1997-12-10

Family

ID=16672971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62215474A Expired - Lifetime JP2688482B2 (en) 1987-08-31 1987-08-31 Hybrid type parametric motor

Country Status (1)

Country Link
JP (1) JP2688482B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010086956A (en) * 2000-03-06 2001-09-15 제정형 A manufacturing process and a product of a signboard for using an air

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716734A (en) 1971-10-18 1973-02-13 Canadian Patents Dev Parametric motor
US4185217A (en) 1975-06-17 1980-01-22 Institutul De Cercetare Si Proiectare Pentru Industria Electrotehnica Three pole electric motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144769A (en) * 1979-04-28 1980-11-11 Koichi Murakami Ac motor composed of stator magnetic path having parametric oscillating characteristics
JPS60167658A (en) * 1984-02-09 1985-08-31 Matsushita Electric Ind Co Ltd Manufacture of stator for induction motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716734A (en) 1971-10-18 1973-02-13 Canadian Patents Dev Parametric motor
US4185217A (en) 1975-06-17 1980-01-22 Institutul De Cercetare Si Proiectare Pentru Industria Electrotehnica Three pole electric motor

Also Published As

Publication number Publication date
JPS6460251A (en) 1989-03-07

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
US4808868A (en) Single and polyphase electromagnetic induction machines having regulated polar magnetic symmetry
US4959573A (en) Electromagnetic induction machines having regulated polar magnetic symmetry
US8928199B2 (en) Wound rotor brushless doubly-fed motor
Salminen et al. Performance analysis of fractional slot wound PM-motors for low speed applications
Cistelecan et al. Study of the number of slots/pole combinations for low speed permanent magnet synchronous generators
WO2005034331A1 (en) Electromagnetic motor
US20100026122A1 (en) Variable speed constant frequency motor
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
Nipp Alternative to field-weakening of surface-mounted permanent-magnet motors for variable-speed drives
JP2688482B2 (en) Hybrid type parametric motor
JP2939914B2 (en) Brushless self-excited synchronous generator
JPH03245755A (en) Brushless self-excitation synchronous electric motor
Gorginpour et al. Reduction of the torque ripple in brushless doubly-fed machine
Murakami et al. Characteristics of two new parametric motors for high speed rotation and disk rotation
JP2675591B2 (en) Phase conversion motor
Chevailler et al. Short-circuit faults in distributed and concentrated windings of PM synchronous motors
JP3489108B2 (en) Brushless self-excited single-phase synchronous generator
Arkkio Synchronous torques of a cage induction motor from time-discretized finite element analysis
RU2123754C1 (en) Inductor electric machine
Yamada et al. High-speed ac motor including the function of a magnetic frequency tripler
SU1483562A1 (en) Ac commutator generator
Low et al. Characteristics and performance analysis of a permanent-magnet motor with a multistacked imbricated rotor
KR860000925B1 (en) Self-excited generator
Tiejun et al. Phase-shifting transformers of round shape used for multi-module inverters