JP2686398B2 - Method for preparing sample for transmission electron microscope observation - Google Patents

Method for preparing sample for transmission electron microscope observation

Info

Publication number
JP2686398B2
JP2686398B2 JP4139745A JP13974592A JP2686398B2 JP 2686398 B2 JP2686398 B2 JP 2686398B2 JP 4139745 A JP4139745 A JP 4139745A JP 13974592 A JP13974592 A JP 13974592A JP 2686398 B2 JP2686398 B2 JP 2686398B2
Authority
JP
Japan
Prior art keywords
sample
transmission electron
electron microscope
tissue
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4139745A
Other languages
Japanese (ja)
Other versions
JPH05306979A (en
Inventor
善介 太田
Original Assignee
善介 太田
太田 康介
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 善介 太田, 太田 康介 filed Critical 善介 太田
Priority to JP4139745A priority Critical patent/JP2686398B2/en
Publication of JPH05306979A publication Critical patent/JPH05306979A/en
Application granted granted Critical
Publication of JP2686398B2 publication Critical patent/JP2686398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体(動植物)の組織・
細胞や高分子材料の任意の部位の高分子の形態や超微細
構造等を透過型電子顕微鏡によって観察するのに有用な
透過型電子顕微鏡観察用試料の作成方法に関するもので
ある。更に詳しくは、物質の種類、特定の官能基の有無
に依存することなく、試料内に存在するあらゆる構造物
・高分子に明瞭なコントラストを与え、透過型電子顕
微鏡で観察可能な試料の作成方法である。
[Field of Industrial Application] The present invention relates to tissue (animal and plant) of a living body
The present invention relates to a method for preparing a transmission electron microscope observing sample useful for observing the morphology, ultrafine structure, etc. of a polymer at an arbitrary site of a cell or a polymer material by a transmission electron microscope. More specifically, the type of material, creation of a particular independent of the presence or absence of functional groups, that Ru gives a clear contrast to any structure-polymer present in the sample, which can be observed by a transmission electron microscope sample Is the way.

【0002】[0002]

【従来の技術】従来、生体の組織・細胞や高分子材料中
の高分子や超微細構造を電子顕微鏡的に観察するために
は、以下に述べるいくつかの方法が知られているが、欠
点も多い。例えば、超薄切片法、走査型電子顕微鏡法、
凍結レプリカ法、シャドウイング法などでは、分解能に
限度があって高分子の形態や組織の超微細構造を十分に
明らかにすることは不可能であ
2. Description of the Related Art Conventionally, several methods described below are known for observing macromolecules and ultrafine structures in tissues and cells of living bodies and macromolecular materials with an electron microscope. There are also many. For example, ultrathin sectioning, scanning electron microscopy,
Freeze replica method, in such shadowing method, Ru impossible der that there is a limit to the resolution to fully reveal the hyperfine structure of the polymer morphology and organization.

【0003】日常、生物学の分野で頻用される超薄切片
法を用いた透過型電子顕微鏡による観察では、組織を予
め固定・染色することが必要であるが、観察しようとす
る目的の高分子や微細構造が十分固定・染色されないた
め、観察不能であることもよくある。一方、高分子やウ
イルスの形態や超微細構造を知る方法としてネガティブ
染色法があるが、これは観察対象が精製されてほぼ純粋
になった材料を用いることが必要である。
In observation with a transmission electron microscope using an ultra-thin section method, which is frequently used in the field of biology, it is necessary to fix and stain the tissue in advance. It is often unobservable because the fine structure is not fixed and dyed sufficiently. On the other hand, there is a negative staining method as a method of knowing the morphology and ultrastructure of a polymer or virus, but this requires the use of a material in which an observation target is purified to be almost pure.

【0004】[0004]

【発明が解決しようとする課題】このために、組織・細
胞や複数の高分子物質の混合物中の特定の部位に存在し
たり、存在が予測される高分子や超微細構造をあるがま
まの状態で観察することは、これまで知られている方法
のみでは不可能であることが多い。そこで、本発明者は
物質の種類や特定の官能基の有無に依存しない、適用範
囲の広い、生体の組織・細胞や高分子材料中の任意の部
位の高分子や超微細構造をあるがままの状態で知る方法
について検討を行なった結果、本発明に至ったのであ
る。
Therefore, for this reason, a polymer or ultrafine structure that exists in a specific site in a tissue / cell or a mixture of a plurality of polymer substances, or is expected to exist is left as it is. Observing the condition is often not possible with previously known methods alone. Therefore, the inventor of the present invention does not depend on the type of substance or the presence or absence of a specific functional group, has a wide range of application, and has a macromolecule or an ultrafine structure of a tissue or cell of a living body or an arbitrary site in a polymer material as it is. As a result of conducting a study on a method of knowing in this state, the present invention has been achieved.

【0005】[0005]

【課題を解決するための手段】すなわち、生体の組織・
細胞や高分子材料等の試料を固定・包埋して超薄切片を
作製後、全部又は部分的に脱包埋を行ない、次いで、こ
の材料全体をネガティブ染色剤でネガティブ染色を行な
うことを特徴とする透過型電子顕微鏡観察用試料の作成
方法である。
[Means for Solving the Problems] That is,
It is characterized by fixing and embedding samples such as cells and polymer materials to make ultrathin sections, then completely or partially deembedding, and then negatively staining the entire material with a negative staining agent. And a method for preparing a sample for transmission electron microscope observation.

【0006】更に詳しくは、生体の組織・細胞や高分子
材料等の試料を固定・エポキシ樹脂包埋して超薄切片を
作製後、カーボン膜を張った金属メッシュ上にのせて、
前記エポキシ樹脂をアルカリ性アルコール溶媒により全
部又は部分的に脱包埋を行ない、次いでこの材料全体を
親水処理した後、試料超薄切片面のみをネガティブ染色
して、試料の背景の黒色を増大させて任意の部位の高分
の形態組織の超微細構造を観察するのである。
[0006] More specifically, after fixing a sample of a tissue, cell or polymer material of a living body and embedding it in an epoxy resin to prepare an ultrathin section, it is placed on a metal mesh coated with a carbon film,
The epoxy resin is completely or partially de-embedded with an alkaline alcohol solvent, and then the whole material is
After hydrophilic treatment, only the ultrathin section surface of the sample is negatively stained
Then , the black color of the background of the sample is increased to observe the morphology of the polymer and the ultrafine structure of the tissue at an arbitrary site.

【0007】ここに言う試料の固定・包埋とは、これま
での透過型電子顕微鏡用試料と同様に、組織などを固定
剤により固定し、これをエポキシ樹脂中に埋め込んで包
埋することである。電子顕微鏡用超薄切片とは、この固
定・包埋した試料をウルトラミクロトームによりスライ
スして超薄切片にすることである。
The fixing and embedding of the sample referred to here is to fix the tissue and the like with a fixing agent and embed and embed this in an epoxy resin as in the case of conventional transmission electron microscope samples. is there. The ultra-thin section for an electron microscope is to slice this fixed and embedded sample with an ultramicrotome to make an ultra-thin section.

【0008】脱包埋は、この超薄切片から樹脂などの包
埋剤を除去する操作であり、カーボン膜を張った金属メ
ッシュ、例えば銅メッシュ上にのせてアルカリ性アルコ
ール溶媒により樹脂を溶かし出して全部又は部分的に除
去する。
[0008] Datsutsutsumiuma is embedding agent operation for removing such a resin from the ultra-thin section, metal main strung mosquitoes Bon film
Ash, for example alkaline copper
The resin is melted out with a solvent and completely or partially removed.

【0009】次いで、膜上の残った試料を水と接触させ
て親水処理を行い、試料面に対してネガティブ染色剤、
例えばリンタングステン酸により試料の背景の黒色を増
大させて試料を浮き出させるのである。この際、膜の両
面共に染色すると、超微細構造の解像力が低下する。試
料の片面のみの染色には滴下法が好ましい。
The remaining sample on the membrane was then contacted with water.
Hydrophilic treatment with a negative stain on the sample surface ,
For example, phosphotungstic acid increases the black color of the background of the sample to raise the sample. At this time, both sides of the membrane
When the both surfaces are dyed, the resolution of the ultrafine structure decreases. Trial
The drop method is preferred for dyeing only one side of the material.

【0010】[0010]

【作用】固定・包埋により、生体の組織・細胞などの試
料をありのまま、精製することなく固することができ
る。通常はこのまま超薄切片として、直接に電子顕微鏡
観察するのであるが、その場合は解像力が不十分であ
る。
[Action] by the fixed-embedding, the sample such as tissues and cells in vivo truth can be solid wear without purification. Usually, an ultrathin section is directly observed under an electron microscope as it is, but in that case, the resolution is insufficient.

【0011】この超薄切片の全部又は部分的に脱包埋し
た試験片の片面のみをネガティブ染色するので背景の黒
色が増大し、したがって、生体内高分子などを精製する
ことなく自然態のままで、かつ優れた解像力で高分子の
形態や超微細構造の観察を可能にする。
Since only one side of the test piece which is completely or partially deembedded in the ultrathin section is negatively stained, the black color of the background is increased, and therefore, the in-vivo macromolecule is left in its natural state without purification. It enables observation of polymer morphology and ultrafine structure with excellent resolution.

【0012】[0012]

【実施例】以下実施例によって詳細に説明する。 実施例1 ネフローゼ症候群患者の腎生検により腎組織を採取し、
常法によりグルタールアルデヒド・オスミウム酸固定後
エポン812(エポキシ樹脂,イギリスTAAB社製)に包埋
した。これをウルトラミクロトームにより超薄切片とし
た後、カーボン膜を張った銅メッシュ上に載せ、エタノ
ール100ml中にカセイソーダ4gを溶解した液を使用直前
エタノールにより10倍希釈した液に3時間浸して部分的
脱包埋した。次いで、メッシュを組織の載った面を下
部にして15分間蒸留水上に浮遊させて親水処理をした
後、メッシュの組織面上に1%リンタングステン酸水溶
液を1滴落して、更に濾紙によって余分の水溶液を吸い
取った後、ネフローゼ症候群患者の腎組織を本発明の方
法による透過型電子顕微鏡により観察した。図1にその
結果を示す。
Embodiments will be described in detail below with reference to embodiments. Example 1 Kidney tissue was collected by renal biopsy of a patient with nephrotic syndrome,
After fixing glutaraldehyde and osmic acid by a conventional method, it was embedded in Epon 812 (epoxy resin, manufactured by TAAB, England). After the ultra-thin sections by which the ultramicrotome, placed on a copper mesh stretched carbon film, 3 hours immersed partially in the liquid diluted 10-fold by the liquid to use immediately before ethanol dissolved sodium hydroxide 4g in ethanol 100ml
It was Datsutsutsumiuma to. Then, the mesh was suspended in distilled water for 15 minutes with the surface on which the tissue was placed as a lower part to be hydrophilically treated, and then 1 drop of 1% phosphotungstic acid aqueous solution was dropped on the tissue surface of the mesh. After absorbing the aqueous solution, the renal tissue of the nephrotic syndrome patient was observed by a transmission electron microscope according to the method of the present invention. The result is shown in FIG.

【0013】図1は腎組織の糸球体基底膜の超微細構造
であり、網目構造を形成する細線維は直径約1.9nm,細線
維は矢頭の部分で消失しており、直径50nm程度のネフロ
ーゼトンネルを形成してい。このようなネフローゼト
ンネルが証明されたのは世界で初めてであり、これがネ
フローゼ症候群患者の蛋白尿の原因となると考えられる
病変である。本発明によってこのような観察が可能とな
った。なお、図1は倍率10万倍である。
FIG. 1 shows the ultrafine structure of the glomerular basement membrane of renal tissue. The fine fibers forming the mesh structure have a diameter of about 1.9 nm, the fine fibers disappear at the arrowheads, and the nephrosis has a diameter of about 50 nm. It had formed a tunnel. It was the first time in the world that such a nephrotic tunnel was proved, and it is a lesion that is thought to cause proteinuria in patients with nephrotic syndrome. The present invention enables such observation.
Was. Note that the magnification in FIG. 1 is 100,000 times.

【0014】一方、上記超薄切片をそのまま顕微鏡観察
した場合は図2に示すように解像力が不足し、糸球体基
底膜(G)の網目構造の細部については全く判読不可能で
あった。倍率5万倍。
On the other hand, when the above ultrathin section was observed under a microscope as it was, the resolution was insufficient as shown in FIG. 2, and the details of the network structure of the glomerular basement membrane (G) could not be read at all. 50,000 times magnification.

【0015】実施例2 正常ヒト腎生検材料より実施例1と同様の方法により標
本を作成して糸球体を観察すると図3のようになり、毛
細血管内赤血球(R)のヘモグロビン分子が明瞭に観察さ
れた。これによりヘモグロビン分子の形や配列が判明で
きた。倍率5万倍。図4は従来の超薄切片法による顕微
鏡写真である。赤血球(R)内のヘモグロビン分子は推定
値よりはるかに大きく分子そのものとは考えにくかっ
。倍率5万倍。
Example 2 A sample was prepared from a normal human kidney biopsy material by the same method as in Example 1 and the glomeruli were observed. As shown in FIG. 3, the hemoglobin molecule of capillary erythrocyte (R) was clear. Was observed. From this, the shape and sequence of the hemoglobin molecule could be identified. 50,000 times magnification. FIG. 4 is a photomicrograph of a conventional ultrathin section method. Erythrocyte cut hemoglobin molecules in the (R) is difficulty considered much larger molecule itself than the estimated value
Was . 50,000 times magnification.

【0016】実施例3 腎炎患者の腎生検材料より実施例1と同様の方法により
標本を作成して腎組織の間質を観察すると、図5のよう
になり、コラーゲン線維の縞模様が明瞭に観察された。
これによりコラーゲン線維の超微細構造が判明した。倍
率10万倍。図6は従来の超薄切片法による顕微鏡写真
で、コラーゲン線維の超微細構造はあまり明らかでな
った。倍率10万倍。
Example 3 When a sample was prepared from a renal biopsy material of a patient with nephritis by the same method as in Example 1 and the interstitium of renal tissue was observed, it was as shown in FIG. 5, and the collagen fiber striped pattern was clear. Was observed.
This revealed the ultrastructure of collagen fibers. Magnification 100,000 times. Figure 6 is a photomicrograph of the conventional ultramicrotomy, or ultrastructure of the collagen fibers, such less clear
Was . Magnification 100,000 times.

【0017】[0017]

【発明の効果】以上説明したように、本発明の透過型電
子顕微鏡観察用試料の作成方法は、物質の種類や特定の
官能基の有無に依存しないで、適用範囲が広く、ま
た、生体の組織・細胞や高分子材料中の任意の部位の高
分子や超微細構造を知ることが可能となった。
As described above, according to the present invention, a method for creating a transmission electron microscope observation samples of the present invention, is not to be dependent on the presence or absence of the type and specific functional groups of the substance, the application range is wide, The biological It has become possible to know the polymer and ultrastructure of any part of the tissue / cell or polymer material.

【0018】特に、取り出すことや、精製することの困
難である生体内の高分子の、あるがままの状態での形態
を観察・解析するのに利用でき、新規事実の発見に大い
に寄与する方法である。
In particular, it can be used for observing and analyzing the morphology of macromolecules in the living body, which are difficult to take out and purify, as they are, and greatly contribute to the discovery of new facts. Is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ネフローゼ症候群患者の腎組織の糸球体基底膜
の本発明の方法による透過型電子顕微鏡写真である(×1
0万倍)。
FIG. 1 is a transmission electron micrograph of the glomerular basement membrane of the renal tissue of a patient with nephrotic syndrome according to the method of the present invention (× 1
0,000 times).

【図2】従来の超薄切片法による電子顕微鏡写真である
(×5万倍)。
FIG. 2 is an electron micrograph by a conventional ultrathin section method.
(× 50,000 times).

【図3】正常ヒト腎生検材料の糸球体の毛細血管内赤血
球中のヘモグロビン分子の本発明の方法による透過型電
子顕微鏡写真である(×5万倍)。
FIG. 3 is a transmission electron micrograph by a method of the present invention of a hemoglobin molecule in erythrocytes in capillaries of glomeruli of a normal human kidney biopsy material (× 50,000).

【図4】従来の超薄切片法による電子顕微鏡写真である
(×5万倍)。
FIG. 4 is an electron micrograph by a conventional ultrathin section method.
(× 50,000 times).

【図5】腎炎患者の腎生検材料よりの腎組織の間質のコ
ラーゲン線維の本発明の方法による透過型電子顕微鏡写
真である(×10万倍)。
FIG. 5 is a transmission electron micrograph (× 100,000) of interstitial collagen fibers of renal tissue from renal biopsy material of a patient with nephritis according to the method of the present invention.

【図6】従来の超薄切片法による電子顕微鏡写真である
(×10万倍)。
FIG. 6 is an electron micrograph by a conventional ultrathin section method.
(× 100,000 times).

フロントページの続き (56)参考文献 実開 昭61−202050(JP,U) 実開 昭63−35940(JP,U) 実開 昭58−132870(JP,U) 特公 平2−25447(JP,B2) 特公 昭64−4148(JP,B2) 中村輝太郎,中田一朗 責任編集 「実験物理学講座13 試料の作成と加 工」 初版 (昭56−7−10) 共立出 版株式会社 P.711−713Continued front page (56) References Open 61-202050 (JP, U) Open 63-35940 (JP, U) Open 58-132870 (JP, U) Japanese Patent Publication 2-25447 (JP , B2) Japanese Patent Publication Sho 64-4148 (JP, B2) Terutaro Nakamura, Ichiro Nakata Responsible Editing “Experimental Physics Course 13 Preparation and Processing of Samples” First Edition (56-7-10) Kyoritsu Edition P. . 711-713

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生体の組織・細胞や高分子材料等の試料
を固定・エポキシ樹脂包埋して超薄切片を作製後、カー
ボン膜を張った金属メッシュ上にのせて、前記エポキシ
樹脂をアルカリ性アルコール溶媒により全部又は部分的
に脱包埋を行ない、次いでこの材料全体を親水処理した
後、試料超薄切片面のみをネガティブ染色して、試料の
背景の黒色を増大させて高分子の形態や組織の超微細構
造の観察を可能にすることを特徴とする透過型電子顕微
鏡観察用試料の作成方法。
1. An ultrathin section is prepared by fixing and embedding a sample of biological tissue, cells, polymer material, etc. in an epoxy resin, and then placing it on a metal mesh coated with a carbon film to make the epoxy resin alkaline. Complete or partial de-embedding with alcohol solvent and then hydrophilic treatment of the whole material
After that only the sample Ultrathin sections surface by negative staining, for transmission electron microscopy by increasing the black sample background, characterized in that to allow observation of the hyperfine structure of the polymer morphology and tissue How to make a sample.
JP4139745A 1992-05-01 1992-05-01 Method for preparing sample for transmission electron microscope observation Expired - Fee Related JP2686398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4139745A JP2686398B2 (en) 1992-05-01 1992-05-01 Method for preparing sample for transmission electron microscope observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4139745A JP2686398B2 (en) 1992-05-01 1992-05-01 Method for preparing sample for transmission electron microscope observation

Publications (2)

Publication Number Publication Date
JPH05306979A JPH05306979A (en) 1993-11-19
JP2686398B2 true JP2686398B2 (en) 1997-12-08

Family

ID=15252394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4139745A Expired - Fee Related JP2686398B2 (en) 1992-05-01 1992-05-01 Method for preparing sample for transmission electron microscope observation

Country Status (1)

Country Link
JP (1) JP2686398B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925039B2 (en) * 2011-05-02 2016-05-25 三菱レイヨン株式会社 Staining agent for electron microscope observation and staining method using the staining agent
CN113686605B (en) * 2021-08-16 2023-07-07 北京林业大学 Ultrathin pollen tube slice and preparation method thereof
CN114459851A (en) * 2021-12-28 2022-05-10 苏州药明检测检验有限责任公司 Method for detecting viruses in UPB (ultra-thin sheet) by using ultrathin section electron microscope technology

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132870U (en) * 1982-03-02 1983-09-07 サクラ精機株式会社 Container for fixation and embedding of micro tissue pieces
JPS61202050U (en) * 1985-06-07 1986-12-18
US4839194A (en) * 1985-07-05 1989-06-13 Bone Diagnostic Center Methods of preparing tissue samples
JPS6335940U (en) * 1986-08-27 1988-03-08
JPS644148A (en) * 1987-06-26 1989-01-09 Nippon Telegraph & Telephone Telephone set with bar code reader
JPH0225447A (en) * 1988-07-13 1990-01-26 Nippon Oil & Fats Co Ltd Production of highly unsaturated fatty acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中村輝太郎,中田一朗 責任編集 「実験物理学講座13 試料の作成と加工」 初版 (昭56−7−10) 共立出版株式会社 P.711−713

Also Published As

Publication number Publication date
JPH05306979A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
DE69917779T2 (en) CYTOLOGICAL AND HISTOLOGICAL FIXING COMPOSITION AND METHOD OF USE
JP5120998B2 (en) Tissue, cell or organ preservation solution
Eisenberg et al. Size changes in single muscle fibers during fixation and embedding
JPH076893B2 (en) Method for preserving tissue fixative and animal tissue
Lin et al. Rapid chemical dehydration of plant material for light and electron microscopy with 2, 2‐dimethoxypropane and 2, 2‐diethoxypropane
Kim et al. A ratiometric two-photon probe for Ca2+ in live tissues and its application to spinal cord injury model
Nordenstam et al. Chromaffin granules and their cellular location in human skin
O'brien et al. Coagulant and non-coagulant fixation of plant cells
JP2686398B2 (en) Method for preparing sample for transmission electron microscope observation
Bhat et al. Fixation and different types of fixatives: Their role and functions: A review
JP7053860B2 (en) A composition for clearing a spheroid, a method for clearing a spheroid using the composition, and a kit comprising the same.
Bechtold Ultrastructural evaluation of mouse mutations
Potter et al. Light and electron microscope studies of the dermal capillaries in three species of hagfishes and three species of lampreys
Miko et al. Histologic examination of peripheral nerves
KR20170119936A (en) A refractive index matching composition for biological tissue
Takizawa et al. Ultrastructure of human scalp hair shafts as revealed by freeze‐substitution fixation
Tsujii et al. The anionic barrier system in the mesonephric renal glomerulus of the arctic lamprey, Entosphenus japonicus (Martens)(Cyclostomata)
JP2002537554A (en) Histological processing of tissues and other substances
JP2007202472A (en) Cell fixation solution, method and kit for cell fixation using the same
Stratton et al. The lipid solubility of fixative, staining and embedding media, and the introduction of LX-112 and Poly/bed-812 as dehydrants for epoxy resin embedment
EP2572184A1 (en) Direct examination of biological material ex vivo
Dellmann et al. Preservation of fine structure in vibratome-cut sections of the central nervous system stained for light microscopy
KR20130136345A (en) Composition for aggregating biological sample
Van Der Horst et al. Use of membrane filters and osmium tetroxide etching in the preparation of sperm for scanning electron microscopy
Monfils et al. A quantitative comparison of synaptic density following perfusion versus immersion fixation in the rat cerebral cortex

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees