JP2686276B2 - Three-phase flow reaction method and apparatus - Google Patents

Three-phase flow reaction method and apparatus

Info

Publication number
JP2686276B2
JP2686276B2 JP8518588A JP8518588A JP2686276B2 JP 2686276 B2 JP2686276 B2 JP 2686276B2 JP 8518588 A JP8518588 A JP 8518588A JP 8518588 A JP8518588 A JP 8518588A JP 2686276 B2 JP2686276 B2 JP 2686276B2
Authority
JP
Japan
Prior art keywords
liquid
suction
gas
suction pipe
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8518588A
Other languages
Japanese (ja)
Other versions
JPH01258736A (en
Inventor
雅人 金子
晴義 藤田
雅博 林
文広 河野
敏彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8518588A priority Critical patent/JP2686276B2/en
Publication of JPH01258736A publication Critical patent/JPH01258736A/en
Application granted granted Critical
Publication of JP2686276B2 publication Critical patent/JP2686276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体と液体の分離を効率よく行うようにした
気体、液体、固体の三相流動反応方法及び同装置に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a three-phase flow reaction method for gas, liquid and solid, and an apparatus thereof for efficiently separating gas and liquid.

〔従来の技術〕[Conventional technology]

気体、液体、固体の三相流動反応装置は、三相の接触
効率が良好であり、かつ反応器内部の混合が良好である
ことから、反応装置、特に触媒を用い多量の反応熱を発
生する発熱反応系に対し有効であることが知られてい
る。その例としては、原油から分留された重、中質留分
を触媒の存在下で水素ガスを供給しながら行なわさせる
水素化脱硫反応装置、又は水素化分解反応装置等があ
る。また、他の例としては、一酸化炭素と水素とを主成
分とする混合ガスを溶媒と融媒との混合物中に供給し、
メチルアルコールを合成させるための合成反応装置等が
ある。
A gas, liquid, and solid three-phase flow reactor produces a large amount of heat of reaction using a reactor, especially a catalyst, because the three-phase contact efficiency is good and the mixing inside the reactor is good. It is known to be effective for exothermic reaction systems. Examples thereof include a hydrodesulfurization reactor, a hydrocracking reactor, and the like, in which heavy and medium fractions fractionated from crude oil are fed in the presence of a catalyst while supplying hydrogen gas. In addition, as another example, a mixed gas containing carbon monoxide and hydrogen as main components is supplied into a mixture of a solvent and a melting medium,
There is a synthetic reaction device for synthesizing methyl alcohol.

三相流動反応装置の一般的流動状態は、田中栄一,化
学工学第34巻,第12号,1265頁(1970年)等に詳しく述
べられている通りであり、竪形円筒状容器内の1/2〜2/3
程度に充填された触媒等の固体粒子を流動させるに充分
であり、かつ、固体粒子が同伴、上昇しない速度で液体
及び気体を容器の下部から上方に流動させることにより
安定した固体粒子の流動層を形成させてなるものであ
る。この流動状態を実現させるためには、膨張した触媒
層の上部から液を抜き出し、ポンプを用いて円筒状容器
下部に供給する液の循環が行われるが、これは触媒の流
動化に必要な液流速を液の循環により維持するために不
可欠な手段である。
The general flow state of a three-phase flow reactor is as described in detail in Eiichi Tanaka, Vol. 34, No. 12, p. 1265 (1970), Chemical Engineering, etc. / 2 to 2/3
A fluidized bed of solid particles, which is sufficient to flow solid particles such as a catalyst filled to a certain degree, and which causes liquid and gas to flow upward from the lower part of the container at a speed at which solid particles are not entrained and rise. Is formed. In order to realize this fluidized state, the liquid is extracted from the upper part of the expanded catalyst layer and circulated through the liquid supplied to the lower part of the cylindrical container using a pump, which is the liquid necessary for fluidizing the catalyst. It is an indispensable means for maintaining the flow velocity by circulating the liquid.

また、この三相流動反応器を用いた具体例を挙げれ
ば、石油系重、中質留分の水素化脱硫を行なわさせる場
合は100〜150kg/cm2G、350〜400℃の条件下で0.5〜2mm
φの円柱状もしくは球状のニツケル−モリブデン系の触
媒を供給油とガス状水素とに接触させることにより行わ
れる。
Further, specific examples using this three-phase flow reactor, petroleum-based heavy, in the case of hydrodesulfurization of the middle distillate 100-150 kg / cm 2 G, under the conditions of 350-400 ℃ 0.5-2 mm
It is carried out by bringing a φ-cylindrical or spherical nickel-molybdenum-based catalyst into contact with the feed oil and gaseous hydrogen.

第5図を用いて従来の典型的な三相流動反応装置の構
造を説明する。
The structure of a conventional typical three-phase flow reactor will be described with reference to FIG.

反応器本体1内部に触媒が充填されており、この触媒
層の上面2は液、ガスの上昇流により流動化し、膨張触
媒層上面3まで膨張する。触媒層の下部には多孔板等の
分散板4が設けられており、下部から供給されるガス、
液の分散を良好にすると共に、触媒が容器下部に落下し
て堆積しないようになつている。供給ガス5及び供給液
6は循環液7と一緒に又は別々に反応器本体1の下部よ
り供給され分散板4を通過し、触媒層を上昇する間に反
応する。触媒層を通過した後、ガス及び液は触媒を分離
するための清澄層8を通り、反応ガス9は反応器本体1
の外部に抜き出される。反応液の一部は反応生成液12と
して系外に排出されるが、大部分は循環液7として反応
器本体1の内部又は外部に置かれたポンプ13により吸引
管入口10、吸引管11を介して反応器本体1に循環され
る。
The inside of the reactor main body 1 is filled with a catalyst, and the upper surface 2 of this catalyst layer is fluidized by the upward flow of liquid and gas and expands to the upper surface 3 of the expanded catalyst layer. A dispersion plate 4 such as a perforated plate is provided in the lower part of the catalyst layer, and gas supplied from the lower part,
The liquid is well dispersed and the catalyst is prevented from falling to the bottom of the container and accumulating. The supply gas 5 and the supply liquid 6 are supplied together with or separately from the circulating liquid 7 from the lower part of the reactor main body 1, pass through the dispersion plate 4, and react while rising the catalyst layer. After passing through the catalyst layer, the gas and the liquid pass through the clarification layer 8 for separating the catalyst, and the reaction gas 9 passes through the reactor body 1
Is extracted to the outside of. A part of the reaction liquid is discharged as a reaction product liquid 12 to the outside of the system, but most of the reaction liquid is a circulating liquid 7, and a suction pipe inlet 10 and a suction pipe 11 are provided by a pump 13 placed inside or outside the reactor main body 1. It is circulated to the reactor main body 1 via.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上は、従来方式による典型的な三相流動反応装置で
あるが、このような構造である場合、供給されたガスの
うち未反応のガスは液と共に膨張触媒層上面3から流出
し、清澄層8を上昇し、吸引管入口部10に充分気液分離
されないまま流入していた。このため、ポンプ13の吐出
性能を極度に低下させるという不具合があつた。
The above is a typical three-phase flow reactor according to the conventional method. In the case of such a structure, unreacted gas among the supplied gases flows out from the expansion catalyst layer upper surface 3 together with the liquid, and the clarification layer is used. No. 8 was raised, and it was flowing into the inlet 10 of the suction pipe without being sufficiently separated into gas and liquid. Therefore, there is a problem that the discharge performance of the pump 13 is extremely lowered.

本発明は上述した従来技術の不具合を解消した三相流
動反応方法及び同装置を提供しようとするものである。
The present invention is intended to provide a three-phase flow reaction method and apparatus in which the above-mentioned problems of the prior art are solved.

〔課題を解決するための手段〕 本発明は(1)固体粒子層に層底部より分散器を介し
ガスと液を供給し三相流動層を形成させ、液を流動層を
通過後該層の中央を上下に貫通して設けた吸引管より抜
き出し、再び装置内へ循環させる三相流動層反応方法に
おいて、該吸引管入口部の下部の筒状の吸引部外周に設
けられた錐状の気泡合体器において一時気泡を滞留させ
てその径を生長させて気泡の浮力を増大させ、該吸引部
に気体が液体に同伴して吸引されることを防止すること
を特徴とする三相流動反応方法及び(2)固体粒子層に
層底部より分散器を介しガスと液を供給し三相流動層を
形成させ、液を流動層を通過後該層の中央を上下に貫通
して設けた吸引管より抜出し、再び装置内へ循環させる
形式の三相流動層反応装置において、該吸引管入口部は
逆錐状の接続部と同接続部の上部に設けられた筒状の吸
引部及び該吸引管接続部直下の吸引管の外周に錐状の気
泡合体器を複数個形成してなる三相流動反応装置であ
る。
[Means for Solving the Problems] The present invention provides (1) a gas and a liquid are supplied to a solid particle layer from the bottom of the bed through a disperser to form a three-phase fluidized bed, and the liquid is passed through the fluidized bed to form a solid phase bed. In a three-phase fluidized bed reaction method of extracting from a suction pipe provided vertically through the center and circulating it again in the apparatus, cone-shaped bubbles provided on the outer periphery of a cylindrical suction part below the inlet of the suction pipe. A three-phase flow reaction method characterized in that a bubble is temporarily retained in a coalescing vessel to grow its diameter to increase the buoyancy of the bubble and to prevent the gas from being entrained in the liquid and sucked into the suction part. And (2) a suction pipe provided with gas and liquid from the bottom of the bed through a disperser to form a three-phase fluidized bed, and the liquid passes through the fluidized bed and vertically passes through the center of the bed. In the three-phase fluidized bed reactor of the type in which it is further extracted and circulated again in the apparatus, the suction The pipe inlet part has a reverse conical connection part, a cylindrical suction part provided on the upper part of the connection part, and a plurality of conical bubble coalescing devices are formed on the outer circumference of the suction pipe immediately below the connection part of the suction pipe. It is a three-phase flow reactor.

〔作 用〕(Operation)

本発明方法及び装置においては液と共に上昇したガス
が吸引管入口部の下を通過するとき該吸引管の外周に設
けた錐状の気泡合体器に衝突する。この際、気泡合体器
は錐状で内側は空間部となつているためガスが滞留し易
くなる。滞留したガスは大きな泡となり、下面の円周上
より溢流し吸引管入口部の逆錐状部及び筒状部の外周を
上昇する。
In the method and apparatus of the present invention, when the gas rising together with the liquid passes under the inlet of the suction pipe, it collides with a conical bubble coalescing device provided on the outer circumference of the suction pipe. At this time, since the bubble coalescing device has a conical shape and has a space inside, the gas is likely to stay. The accumulated gas becomes a large bubble, overflows from the circumference of the lower surface, and rises on the outer circumference of the inverted conical portion and the tubular portion of the suction pipe inlet.

この際液が吸引管内へ吸入されるため吸引管上端より
下方に向う液流れも存在するが、ガスの気泡径が大きい
ため浮力が大きいので、ガスはこの液流れに同伴せずに
上昇する。このため気液分離が容易に行なわれる。
At this time, since the liquid is sucked into the suction pipe, there is also a liquid flow directed downward from the upper end of the suction pipe, but since the bubble diameter of the gas is large, the buoyancy is large, and therefore the gas rises without being entrained in the liquid flow. Therefore, gas-liquid separation is easily performed.

〔実施例〕〔Example〕

本発明の一実施例を第1図及び第2図によつて説明す
る。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図はこの実施例に係る液吸引部入口部付近の拡大
図、第2図は第1図のA−A断面図である。
FIG. 1 is an enlarged view of the vicinity of the inlet of the liquid suction section according to this embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG.

この実施例は、以下説明する点以外は第5図に示され
る従来の三相流動反応装置と同様の構造を有している。
この実施例においては、吸引管11の上部に逆円錐状の接
続部19、同接続部19の上端より上方に伸びる円筒状の吸
引部16が設けられていて、吸引管入口部10を形成してい
る。同吸引管入口部10直下の吸引管11の外周には支持棒
18で固定された円錐型の気泡合体器17が上下、円周方向
にわたつて複数個設けられている。
This example has the same structure as the conventional three-phase flow reactor shown in FIG. 5 except for the points described below.
In this embodiment, an inverted conical connection part 19 is provided on the upper part of the suction pipe 11, and a cylindrical suction part 16 extending upward from the upper end of the connection part 19 is provided to form the suction pipe inlet part 10. ing. A support rod is provided on the outer circumference of the suction pipe 11 just below the suction pipe inlet 10.
A plurality of conical bubble coalescers 17 fixed by 18 are provided vertically and circumferentially.

この気泡合体器17は、第2図に示すように支持棒18の
長さ及び吸引管11への取付け位置をそれぞれ変え、反応
器内の円周方向のほぼ全域に設置している。
As shown in FIG. 2, the bubble coalescing device 17 is installed in almost the entire area in the circumferential direction in the reactor by changing the length of the support rod 18 and the attachment position to the suction pipe 11.

この実施例において、三相流動反応装置の定常運転時
には、触媒層14は数10%程度膨張する。触媒層14から流
出した液は清澄層8を上昇し吸引管入口部10より吸引さ
れ、吸引管11より抜出される。ガスは気泡となつて上昇
する。液に同伴されているガスは気泡状態であるため、
自らの浮力によつて、液の上昇速度より速く上昇する。
In this embodiment, during steady operation of the three-phase flow reactor, the catalyst layer 14 expands by several tens of percent. The liquid flowing out from the catalyst layer 14 rises in the clarification layer 8, is sucked through the suction pipe inlet 10, and is discharged through the suction pipe 11. The gas rises as bubbles. Since the gas entrained in the liquid is in a bubble state,
Due to its own buoyancy, it rises faster than the rising speed of the liquid.

ガスは液に同伴して清澄層8を上昇し、吸引管11の外
周に支持棒18で固定された気泡合体器17に衝突する。気
泡合体器17は陣笠状の円錐型であり、上端の中心部が閉
じられており空間部20が形成されており、一部のガスと
液はこの空間部20に滞留する。滞留したガスが空間部20
に満杯となると、気泡合体器17よりあふれ出し、大きな
気泡21となつて円筒状の吸引部16の外側を上昇し、吸引
管入口部10上端より上昇する。この気泡21は液中の気泡
より径が大きく、従つて浮力も大きいため、吸引部16に
吸引される液に同伴することは少なく反応器本体1の上
方に設けられた反応器出口22へ向う。このため、ガスと
液の分離効果が大きく、吸引液中へのガスの同伴が少な
くなる。
The gas accompanies the liquid, rises in the fining layer 8, and collides with the bubble coalescing device 17 fixed to the outer circumference of the suction pipe 11 by the support rod 18. The bubble coalescing device 17 has a conical shape like a camp, the central portion of the upper end is closed to form a space portion 20, and a part of gas and liquid stay in the space portion 20. The accumulated gas is space 20
When it becomes full, it overflows from the bubble coalescing device 17, becomes a large bubble 21 and rises outside the cylindrical suction portion 16 and rises from the upper end of the suction pipe inlet portion 10. Since the bubble 21 has a larger diameter than the bubble in the liquid and accordingly has a large buoyancy, it is rarely entrained in the liquid sucked by the suction portion 16 and goes to the reactor outlet 22 provided above the reactor body 1. . Therefore, the effect of separating the gas and the liquid is large, and the gas is less entrained in the suction liquid.

以上の効果をコールドモデルによつて検討した例を以
下に示す。
An example of examining the above effects by using a cold model is shown below.

第3図に示すように透明フラスチツク製のコールドモ
デル装置を用いて循環液7中に含まれるガス量を比較し
た。用いた装置の反応器本体1の内径は1000mmであり、
高さは6000mmである。分散器4としてはバブルキヤツプ
を用いた。吸引管11は内径が230mmであり、吸引管入口
部10及びその直下に設けた気泡合体器17は上記実施例と
同じ構造とし、吸引管入口部上部の内径を700mmとし、
気泡合体器17は底面の内径150mm、高さ100mm、8個設置
とした。
As shown in FIG. 3, the amount of gas contained in the circulating liquid 7 was compared using a cold model device made of transparent plastic. The inner diameter of the reactor body 1 of the used apparatus is 1000 mm,
The height is 6000 mm. A bubble cap was used as the disperser 4. The suction pipe 11 has an inner diameter of 230 mm, the suction pipe inlet portion 10 and the bubble coalescer 17 provided immediately below the suction pipe 11 have the same structure as the above embodiment, and the inner diameter of the suction pipe inlet portion upper portion is 700 mm,
The bubble coalescing device 17 has an inner diameter of 150 mm on the bottom surface and a height of 100 mm, and is provided with eight bubbles.

触媒粒子としては直径1.2mm、長さ約2mmの押出し成型
品を用いた。ガスは空気を用い、液はエタノール20重量
%の水溶液を用いた。
As the catalyst particles, an extruded product having a diameter of 1.2 mm and a length of about 2 mm was used. Air was used as the gas, and an aqueous solution containing 20% by weight of ethanol was used as the liquid.

吸引管入口部10の気液分離性能を確認するため、循環
液7をポンプ13で循環し循環液7中のガス量と供給ガス
5の空塔速度との関係を求めた。この際液流速は約5cm/
sとした。
In order to confirm the gas-liquid separation performance of the inlet 10 of the suction pipe, the circulating liquid 7 was circulated by the pump 13 and the relationship between the amount of gas in the circulating liquid 7 and the superficial velocity of the supply gas 5 was obtained. At this time, the liquid flow rate is about 5 cm /
s.

第5図に示す従来技術に係る吸引管入口部構造のもの
と上記実施例に係る構造のものとによつて得られた結果
を第4図に示す。
FIG. 4 shows the results obtained with the suction pipe inlet structure according to the prior art shown in FIG. 5 and the structure according to the above-described embodiment.

第4図から明らかなように従来例bではポンプの操作
域がガス空塔速度で約1.5cm/s以下であつたものが、本
発明の実施例aにおいては約4.5cm/s以上となり、ポン
プの操作範囲が広がつたことが判明した。
As is clear from FIG. 4, in the conventional example b, the operation area of the pump was about 1.5 cm / s or less in the gas superficial velocity, but in Example a of the present invention, it was about 4.5 cm / s or more, It turned out that the operating range of the pump had expanded.

本発明に係る三相流動反応装置の吸引管入口部10の望
ましい構造は、逆円錐状の吸引管接続部19直下に設けた
気泡合体器17を上下、円周方向に交互に第1図及び第2
図のごとく複数個配設し、できるだけ反応器内全面のガ
スを衝突させることである。
The desirable structure of the suction pipe inlet portion 10 of the three-phase flow reactor according to the present invention is that the bubble coalescing device 17 provided immediately below the suction pipe connecting portion 19 having an inverted conical shape is vertically and circumferentially alternately arranged in FIG. 1 and FIG. Second
As shown in the figure, a plurality of them are arranged so that the gas on the entire surface of the reactor is allowed to collide with each other as much as possible.

なお、上記実施例においては、円錐状で同径の気泡合
体器を用いているが、異径のものあるいは角錐状、円筒
状等にすることもできる。
In the above embodiment, the bubble coalescing device having a conical shape and the same diameter is used, but it is also possible to use a different diameter, a pyramid shape, a cylindrical shape or the like.

〔発明の効果〕〔The invention's effect〕

以上のように本発明に係る三相流動反応方法及び同装
置は、装置内の液吸引管入口部にて気液を効率よく分離
し、吸引液中に含まれるガス量を抑制することによつ
て、ポンプの操作域を拡大し安定運転を実現することが
できる。
INDUSTRIAL APPLICABILITY As described above, the three-phase flow reaction method and the device according to the present invention efficiently separate gas and liquid at the liquid suction pipe inlet in the device and suppress the amount of gas contained in the suction liquid. Therefore, the operation range of the pump can be expanded to realize stable operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の要部の縦断面図、第2図は
第1図のA−A断面図、第3図は本発明の性能を把握す
るためのコールドモデル装置の説明図、第4図は第3図
に示すコールドモデル装置を用いた実験によるガス空塔
速度、空隙率及びポンプ運転不能域との関係を示す線
図、第5図は従来の三相流動反応装置の説明図である。 図において、1……反応器本体、2……静止時触媒層上
面、3……膨張触媒層上面、4……分散板、5……供給
ガス、6……供給液、7……循環液、8……清澄層、9
……反応ガス、10……吸引管入口部、11……吸引管、12
……反応生成液、13……ポンプ、14……触媒層、15……
気泡、16……吸引管吸引部、17……気泡合体器、18……
支持棒、19……吸引管接続部、20……空間部、21……大
きい気泡、22……反応器出口。
FIG. 1 is a longitudinal sectional view of a main part of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is an explanation of a cold model device for grasping the performance of the present invention. Fig. 4 is a diagram showing the relationship between the gas superficial velocity, the porosity, and the pump inoperable region by the experiment using the cold model device shown in Fig. 3, and Fig. 5 is the conventional three-phase flow reactor. FIG. In the figure, 1 ... Reactor body, 2 ... Top of catalyst layer at rest, 3 ... Expansion catalyst layer top surface, 4 ... Dispersion plate, 5 ... Supply gas, 6 ... Supply liquid, 7 ... Circulating liquid , 8 …… Kiyosumi layer, 9
...... Reaction gas, 10 …… Suction tube inlet, 11 …… Suction tube, 12
...... Reaction product liquid, 13 ...... Pump, 14 ...... Catalyst layer, 15 ......
Bubbles, 16 …… Suction tube suction part, 17 …… Bubble coalescing device, 18 ……
Support rod, 19 ... Suction tube connection, 20 ... Space, 21 ... Large bubbles, 22 ... Reactor outlet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 文広 神奈川県横浜市鶴見区上末吉4―15―5 (72)発明者 増田 敏彦 神奈川県相模原市共和1―14―8 (56)参考文献 特開 昭64−38136(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumihiro Kono 4-15-5 Kamisueyoshi, Tsurumi-ku, Yokohama-shi, Kanagawa (72) Inventor Toshihiko Masuda 1-1-14-8, Kyowa, Sagamihara-shi, Kanagawa (56) References Special Kai 64-38136 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体粒子層に層底部より分散器を介しガス
と液を供給し三相流動層を形成させ、液を流動層を通過
後該層の中央を上下に貫通して設けた吸引管より抜き出
し、再び装置内へ循環させる三相流動層反応において、
該吸引管入口部の下部の筒状の吸引部外周に設けられた
錐状の気泡合体器において一時気泡を滞留させてその径
を生長させて気泡の浮力を増大させ、該吸引部に気体が
液体に同伴して吸引されることを防止することを特徴と
する三相流動反応方法。
1. A suction system in which a gas and a liquid are supplied to the solid particle layer from the bottom of the layer through a disperser to form a three-phase fluidized bed, and the liquid is passed through the fluidized bed and vertically penetrates through the center of the bed. In the three-phase fluidized bed reaction in which it is withdrawn from the tube and circulated again in the device,
In the cone-shaped bubble coalescing device provided on the outer periphery of the cylindrical suction portion below the inlet of the suction pipe, the bubbles are temporarily retained and their diameter is grown to increase the buoyancy of the bubbles. A three-phase flow reaction method, characterized in that it is prevented from being sucked along with a liquid.
【請求項2】固体粒子層に層底部より分散器を介しガス
と液を供給し三相流動層を形成させ、液を流動層を通過
後該層の中央を上下に貫通して設けた吸引管より抜出
し、再び装置内へ循環させる形式の三相流動層反応装置
において、該吸引管入口部は逆錐状の接続部と同接続部
の上部に設けられた筒状の吸引部及び該吸引管接続部直
下の吸引管の外周に錐状の気泡合体器を複数個形成して
なる三相流動反応装置。
2. A suction provided by supplying gas and liquid to the solid particle layer from the bottom of the layer through a disperser to form a three-phase fluidized bed, and passing the liquid through the fluidized bed and vertically penetrating through the center of the bed. In a three-phase fluidized bed reactor of the type in which the suction pipe is withdrawn from the pipe and circulated again in the device, the suction pipe inlet part is a reverse cone-shaped connection part and a cylindrical suction part provided above the connection part and the suction part. A three-phase flow reactor in which a plurality of cone-shaped bubble coalescing devices are formed on the outer circumference of a suction pipe immediately below a pipe connecting portion.
JP8518588A 1988-04-08 1988-04-08 Three-phase flow reaction method and apparatus Expired - Fee Related JP2686276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8518588A JP2686276B2 (en) 1988-04-08 1988-04-08 Three-phase flow reaction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8518588A JP2686276B2 (en) 1988-04-08 1988-04-08 Three-phase flow reaction method and apparatus

Publications (2)

Publication Number Publication Date
JPH01258736A JPH01258736A (en) 1989-10-16
JP2686276B2 true JP2686276B2 (en) 1997-12-08

Family

ID=13851603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8518588A Expired - Fee Related JP2686276B2 (en) 1988-04-08 1988-04-08 Three-phase flow reaction method and apparatus

Country Status (1)

Country Link
JP (1) JP2686276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140927A1 (en) * 2005-12-16 2007-06-21 Chevron U.S.A. Inc. Reactor for use in upgrading heavy oil admixed with a highly active catalyst composition in a slurry

Also Published As

Publication number Publication date
JPH01258736A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US4221653A (en) Catalytic hydrogenation process and apparatus with improved vapor liquid separation
US4886644A (en) Liquid degaser in an ebullated bed process
AU664117B2 (en) Bubble column, tube side slurry process and apparatus
AU664429B2 (en) Catalytic multi-phase reactor
US2944009A (en) Fluidized solids technique
JP4172831B2 (en) Method and reactor for carrying out catalytic reactions
JP4203129B2 (en) Method for producing a liquid product and optionally a gaseous product from a gaseous reactant
WO2007066142A1 (en) Gas distributor
US3523763A (en) Catalytic reactor
US4705621A (en) Catalytic reactor system with crosscurrent liquid and gasflow
CN101678301A (en) Contain the capsule and the interior middle gas phase liquid phase distribution that circulates of flowing of rising of capsule of grain bed
JP2686276B2 (en) Three-phase flow reaction method and apparatus
US5066467A (en) Liquid degasser in an ebullated bed process
US7067559B2 (en) Process for the production of liquid hydrocarbons
US3957626A (en) Multiple bubble-collecting annular plates in a fluidized hydrodesulfurization of heavy oil
EP0980412B1 (en) Gas and solids reducing slurry downcomer
AU2002328852A1 (en) Process for the production of liquid hydrocarbons
US3873283A (en) Vapor-liquid separator
WO2003040069A2 (en) Slurry hydrocarbon synthesis with isomerization zone in external lift reactor loop
CN105944627A (en) Device for preparing ethylene from acetylene through selective hydrogenation
CA1319124C (en) Liquid inventory control in an ebullated bed process
US4810359A (en) Gas-liquid separation in an ebullated bed process
RU2369432C2 (en) Reactor for solid/fluid/gaseous substances
EP0133986A2 (en) Method and apparatus for separating emulsions by coalescense
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees