JP2685788B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2685788B2
JP2685788B2 JP63069641A JP6964188A JP2685788B2 JP 2685788 B2 JP2685788 B2 JP 2685788B2 JP 63069641 A JP63069641 A JP 63069641A JP 6964188 A JP6964188 A JP 6964188A JP 2685788 B2 JP2685788 B2 JP 2685788B2
Authority
JP
Japan
Prior art keywords
layer
carrier concentration
cladding layer
composition
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63069641A
Other languages
Japanese (ja)
Other versions
JPH01243598A (en
Inventor
肇 奥田
正行 石川
秀夫 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63069641A priority Critical patent/JP2685788B2/en
Priority to US07/307,278 priority patent/US5034957A/en
Priority to DE68925219T priority patent/DE68925219T2/en
Priority to EP89102326A priority patent/EP0328134B1/en
Publication of JPH01243598A publication Critical patent/JPH01243598A/en
Application granted granted Critical
Publication of JP2685788B2 publication Critical patent/JP2685788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、可視光領域でレーザ発振する半導体発光素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a semiconductor light emitting device that oscillates in a visible light region.

(従来の技術) (AlxGa1-x0.5In0.5P系の材料は、高品質なGaAs基
板と格子整合し、AlとGaの組成を変えることによって、
すなわちXの値を0から1まで変えることによって、バ
ンドギャップを約1.8eVから約2.35eVの範囲で変化させ
ることができる。発振波長にすると約0.68μmから約0.
56μmに相当する。このように自由に波長を変えること
のできる中で、活性層をX=0、すなわちGa0.5In0.5
とし、クラッド層を(AlxGa1-x0.5In0.5Pとする構造
が最近では主流になっている。通常、半導体レーザを低
しきい値でかつ高温まで発振させるには、活性層とクラ
ッド層のバンドギャップ差ΔEgをできるだけ大きくする
必要がある。一般的には、ΔEgは0.3eV以上が必要とさ
れる。従ってクラッド層のAl組成Xの値としては0.4か
ら0.5が選ばれている。しかしながら、Al組成Xを変化
させて室温(25℃)におけるホトルミネッセンスピーク
波長を測定したところ、第8図に示すようになった。横
軸にAl組成X、縦軸に波長をとってある。X<0.7にお
いて、ほぼλ=−172X+662(nm)という式で表せるこ
とが判った。この図から、活性層とクラッド層とのバン
ドギャップ差ΔEgを求めてみると、X=0.4のときΔEg
=0.215eV、X=0.5のときΔEg=0.28eVとなった。これ
らの値は半導体レーザを低しきい値発振させるには不十
分であると考えられる。実際に全面電極型半導体レーザ
を試作したところ、X=0.4のときの発振しきい値電流
密度は3kA/cm2と非常に大きく、またX=0.5のときでも
1.6〜2kA/cm2と比較的大きかった。更に、特性温度T0
小さく高温発振は得られなかった。
(Prior Art) (Al x Ga 1-x ) 0.5 In 0.5 P-based material is lattice-matched with a high-quality GaAs substrate, and by changing the composition of Al and Ga,
That is, by changing the value of X from 0 to 1, the band gap can be changed in the range of about 1.8 eV to about 2.35 eV. The oscillation wavelength is about 0.68 μm to about 0.
This corresponds to 56 μm. While the wavelength can be freely changed in this way, the active layer is X = 0, that is, Ga 0.5 In 0.5 P
The structure in which the cladding layer is (Al x Ga 1-x ) 0.5 In 0.5 P has recently become the mainstream. Usually, in order to oscillate the semiconductor laser at a low threshold and at a high temperature, it is necessary to make the band gap difference ΔEg between the active layer and the cladding layer as large as possible. Generally, ΔEg is required to be 0.3 eV or more. Therefore, the value of Al composition X of the cladding layer is selected from 0.4 to 0.5. However, when the photoluminescence peak wavelength at room temperature (25 ° C.) was measured while changing the Al composition X, it became as shown in FIG. The horizontal axis represents Al composition X and the vertical axis represents wavelength. It was found that when X <0.7, it can be expressed by an equation of approximately λ = −172X + 662 (nm). From this figure, the band gap difference ΔEg between the active layer and the clad layer is calculated, and when X = 0.4, ΔEg
= 0.215eV and X = 0.5, ΔEg = 0.28eV. These values are considered to be insufficient for low threshold oscillation of the semiconductor laser. When a full-face electrode type semiconductor laser was actually prototyped, the oscillation threshold current density at X = 0.4 was extremely high at 3 kA / cm 2, and even when X = 0.5.
It was relatively large at 1.6 to 2 kA / cm 2 . Further, the characteristic temperature T 0 was also small, and high temperature oscillation could not be obtained.

(発明が解決しようとする課題) 以上のように、従来のダルブヘテロ構造(X=0.4〜
0.5)ではクラッド層と活性層のバンドギャップ差ΔEg
を実質的に0.3eV以上にすることは難しく、発振しきい
値電流密度が大きかった。
(Problems to be Solved by the Invention) As described above, the conventional dalb heterostructure (X = 0.4 to
0.5), the band gap difference ΔEg between the clad layer and the active layer is ΔEg
It was difficult to raise the voltage to 0.3eV or more, and the oscillation threshold current density was large.

この発明は、上記の欠点を除去し、低しきい値でかつ
高温動作可能な半導体発光素子を提供することを目的と
する。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a semiconductor light emitting device that can operate at high temperature with a low threshold value.

[発明の構成] (課題を解決するための手段) この発明は、GaInPを活性層、(AlxGa1-xyIn1-yPを
Pクラッド層とするダブルヘテロ構造を有する半導体発
光素子において、P−クラッド層のAlの組成Xを0.65〜
0.75としたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) This invention relates to semiconductor light emission having a double hetero structure in which GaInP is an active layer and (Al x Ga 1-x ) y In 1-y P is a P clad layer. In the device, the Al composition X of the P-clad layer is 0.65 to
The feature is that it is 0.75.

(作用) この発明によれば、クラッド層のAl組成Xを0.65〜0.
75としているためΔEgを大きくとることができ、半導体
レーザの特性温度T0を増大させ、低しきい値でかつ高温
動作を実現することができる。
(Operation) According to the present invention, the Al composition X of the cladding layer is 0.65 to 0.
Since it is set to 75, ΔEg can be made large, the characteristic temperature T 0 of the semiconductor laser can be increased, and a low threshold and high temperature operation can be realized.

(実施例) 以下、本発明の詳細を図示の実施例によって説明す
る。第1図(a)は、本発明の第1の実施例を示す断面
図である。n−GaAs基板101上にn−GaAsバッファ層10
2,厚さ0.6μmのn−(Al0.7Ga0.30.5In0.5P第1の
クラッド層103,厚さ0.1μmのGa0.5In0.5P活性層104,
厚さ0.6μmのp−(Al0.7Ga0.30.5In0.5P第2のク
ラッド層105,p−In0.5Ga0.5P中間バンドギャップ層112
まで除去した厚さ1μmのn−GaAs電流狭窄層106,オー
ミックコンタクトを形成する厚さ3μmのp−GaAsコン
タクト層107が形成された構造である。p−GaAsコンタ
クト層107上には、P型電極であるAuZn108,及びn−GaA
s基板101の表面には、N型電極であるAuGe109が形成さ
れている。本実施例の素子に電流を注入すると、n−Ga
As電流狭窄層106によるpn反転層のため注入電流は電流
狭窄部110に制限される。このためこの電流狭窄部110に
ほぼ沿った活性層4で発光が生じ、またレーザ発振も得
られる。
(Examples) Hereinafter, details of the present invention will be described with reference to the illustrated examples. FIG. 1A is a sectional view showing a first embodiment of the present invention. n-GaAs buffer layer 10 on n-GaAs substrate 101
2, n- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P first cladding layer 103 having a thickness of 0.6 μm, Ga 0.5 In 0.5 P active layer 104 having a thickness of 0.1 μm,
P- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P second cladding layer 105 having a thickness of 0.6 μm, p-In 0.5 Ga 0.5 P intermediate bandgap layer 112
In this structure, the n-GaAs current confinement layer 106 having a thickness of 1 μm and the p-GaAs contact layer 107 having a thickness of 3 μm for forming ohmic contact are formed. On the p-GaAs contact layer 107, P-type electrodes AuZn108 and n-GaA are formed.
AuGe109, which is an N-type electrode, is formed on the surface of the substrate 101. When a current is injected into the device of this example, n-Ga
The injection current is limited to the current confinement portion 110 due to the pn inversion layer formed by the As current confinement layer 106. Therefore, light emission occurs in the active layer 4 substantially along the current constriction portion 110, and laser oscillation is also obtained.

ここで第2図に本実施例による半導体レーザでn−ク
ラッド層のキャリア濃度を変化させた場合の40℃,3mWの
通電試験における通電時間と動作電流の関係を示す。
尚、p−クラッド層のキャリア濃度は2×1017cm-3、活
性層のキャリア濃度は1×1016以下であり、レーザのス
トライプ幅は7μm、共振器長は300μmとした。その
結果、n−クラッド層のキャリア濃度が5×1017cm-3
越えると、初期の通電によって急激に動作電流が上昇
し、安定な連続発振は不可能となった。しかし、n−ク
ラッド層のキャリア濃度が5×1017cm-3未満であれば動
作電流はほぼ90mAで安定しており、これらの半導体レー
ザは1000時間以上にわたり安定に動作した。従って、n
−クラッド層側の不純物としてSiを用いキャリア濃度を
5×1017cm-3未満とすれば、低しきい値で高信頼の半導
体レーザを得ることができる。
Here, FIG. 2 shows the relationship between the energization time and the operating current in an energization test of 40 ° C. and 3 mW when the carrier concentration of the n-clad layer is changed in the semiconductor laser according to the present embodiment.
The carrier concentration of the p-cladding layer was 2 × 10 17 cm −3 , the carrier concentration of the active layer was 1 × 10 16 or less, the stripe width of the laser was 7 μm, and the resonator length was 300 μm. As a result, when the carrier concentration of the n-cladding layer exceeded 5 × 10 17 cm −3 , the operating current rapidly increased due to the initial energization, and stable continuous oscillation became impossible. However, if the carrier concentration of the n-cladding layer is less than 5 × 10 17 cm -3 , the operating current is stable at about 90 mA, and these semiconductor lasers operate stably for 1000 hours or more. Therefore, n
If Si is used as the impurity on the cladding layer side and the carrier concentration is less than 5 × 10 17 cm −3 , a highly reliable semiconductor laser with a low threshold value can be obtained.

次に、P−InGaAlPクラッド層のAl組成の最適範囲を
示すため、このクラッド層をP−(AlxGa1-xyIn1-yP,
(0<X<1,0<y<1)と表わし、以下このAl組成X
の最適範囲について説明する。
Then, P-InGaAlP to indicate the optimum range of the Al composition of the clad layers, the clad layer P- (Al x Ga 1-x ) y In 1-y P,
(0 <X <1,0 <y <1), and this Al composition X
The optimum range of will be described.

(AlxGa1-x)の組成yについては、GaAs基板上に(Al
xGa1-xyIn1-yPを格子整合をとって形成するために、
yは0.5である必要があるが、0.45から0.55の範囲なら
ば良い。
For the composition y of (Al x Ga 1-x ), (Al x Ga 1-x ) on the GaAs substrate
x Ga 1-x ) y In 1-y P in order to form a lattice match,
y needs to be 0.5, but may be in the range of 0.45 to 0.55.

第3図は、横軸にA|組成X,縦軸には左側に第1図に示
す半導体レーザの発振しきい値電流密度Jthを、右側に
は特性温度T0及び最高発振温度cw maxをとったもので、
実験値を示してある。半導体レーザの特性を示すものに
最高発振温度Tmaxがあり、これをいかに大きくできるか
で、半導体レーザの良否を決めることができる。このTm
axと他のレーザパラメータである特性温度T0、直列抵抗
Rs、熱抵抗Rth、パルス発振しきい値Ith pとは、次式の
関係がある。
In FIG. 3, the horizontal axis is A | composition X, the vertical axis is the oscillation threshold current density J th of the semiconductor laser shown in FIG. 1 on the left, and the characteristic temperature T 0 and the maximum oscillation temperature cw max are on the right. Was taken,
Experimental values are shown. The maximum oscillation temperature Tmax is one of the characteristics of the semiconductor laser, and the quality of the semiconductor laser can be determined by how large it can be. This Tm
ax and other laser parameters characteristic temperature T 0 , series resistance
Rs, thermal resistance Rth, and pulse oscillation threshold value I th p have the following relationship.

Ith p=I0exp(T/To) Ith cw=I0exp[(T+ΔT)/T0] ΔT=(Vj+Ith cwRs)Ith cwRth ここで、I0は0℃における発振しきい値、Tはヒート
シンク温度、ΔTは活性領域の温度上昇、Vjは接合電
圧、Ith cwは連続発振しきい値である。上式より、Tmax
とパラメータとの関係を計算すると第4図のようにな
る。横軸にT0、縦軸にTmaxをとり、Ith pをパラメータに
とって示した。図から判るように、T0が大きくなればな
るほどTmaxは大きくなる。また、Ith pが小さくなればTm
axは大きくなる。そしてこのT0はp−クラッド層の不純
物キャリア濃度に大きく依存する。第5図に、実験的に
求めたT0とpキャリア濃度との関係を示す。p−キャリ
ア濃度が増大するにつれて、T0は大きくなることが判
る。
I th p = I 0 exp (T / To) I th cw = I 0 exp [(T + ΔT) / T 0 ] ΔT = (Vj + I th cw Rs) I th cw R th where I 0 is oscillation at 0 ° C. Threshold, T is the heat sink temperature, ΔT is the temperature rise in the active region, Vj is the junction voltage, and I th cw is the continuous oscillation threshold. From the above formula, Tmax
Figure 4 shows the relationship between the and parameters. The horizontal axis shows T 0 and the vertical axis shows T max, and I th p is shown as a parameter. As can be seen, the more Tmax if large T 0 increases. If I th p becomes smaller, Tm
ax becomes large. This T 0 largely depends on the impurity carrier concentration of the p-cladding layer. FIG. 5 shows the relationship between the experimentally determined T 0 and the p carrier concentration. It can be seen that T 0 increases as the p-carrier concentration increases.

先ず第3図でJthに注目するとX=0.4のとき、約3kA/
cm2と大きく、X=0.5でも1.8kA/cm2と比較的大きいこ
とが判る。ところが、X=0.7とすると、1.3kA/cm2まで
低減できX=0.4〜0.5に比べてX=0.7が非常に優れて
いる。また、特性温度T0についてXの値が大きくなるに
つれてT0は大きくなることが判る。例えば、Xが0.5か
ら0.7になるとT0は70Kから85Kとなり、Tmaxは約20℃も
上昇することになる。
First, paying attention to Jth in FIG. 3, when X = 0.4, about 3 kA /
large and cm 2, X = 0.5, even it can be seen that relatively large 1.8kA / cm 2. However, when X = 0.7, it can be reduced to 1.3 kA / cm 2 , and X = 0.7 is extremely superior to X = 0.4 to 0.5. Further, it can be seen that T 0 increases as the value of X increases for the characteristic temperature T 0 . For example, when X changes from 0.5 to 0.7, T 0 changes from 70K to 85K, and Tmax increases by about 20 ° C.

ここで、Al組成Xの最適範囲について述べる。先ず、
P型クラッド層のP型ドーパントとして、Mgがあるが、
このMgではPN接合部形成の制御が困難である。そこで、
P型ドーパントとして、制御性の良いZnを用いるが、こ
のZnの場合、Al組成Xが、X=0.8の場合、P−キャリ
ア濃度を1×1017(cm-3)までしか実現できず、T0が低
下し最高発振温度が下がる。本発明者らの実験によれば
X=0.75の場合、P−キャリア濃度を2×1017(cm-3
とすることができ、T0を90Kと良好にできることが確認
された。
Here, the optimum range of the Al composition X will be described. First,
As a P-type dopant for the P-type cladding layer, there is Mg,
It is difficult to control the PN junction formation with this Mg. Therefore,
Zn, which has good controllability, is used as the P-type dopant. In the case of this Zn, when the Al composition X is X = 0.8, the P-carrier concentration can be realized only up to 1 × 10 17 (cm −3 ), T 0 decreases and the maximum oscillation temperature decreases. According to the experiments by the present inventors, when X = 0.75, the P-carrier concentration is 2 × 10 17 (cm −3 ).
It was confirmed that T 0 can be made as good as 90K.

また、このInGaAlP系の半導体レーザでは、50(℃)
での新来世手試験を行う場合、Tmax cwが70(℃)未満に
なるとレーザ発振を安定に行なわせることが困難である
ことが判った。このTmax cwが70(℃)未満になるのは、
第3図から判るようにX=0.6未満である。従って、P
−(AlxGa1-xyIn1-yPのAl組成Xは0.65から0.75の範
囲であれば良い。尚、このAl組成の範囲を25℃における
ホトルミネッセンスピーク波長に変換すると530nmから5
50nmとなる。
Also, with this InGaAlP-based semiconductor laser, 50 (° C)
It was found that when T max cw is less than 70 (° C), it is difficult to make the laser oscillation stable in the new generation hand test. This T max cw is less than 70 (° C)
As can be seen from FIG. 3, X is less than 0.6. Therefore, P
The Al composition X of-(Al x Ga 1-x ) y In 1-y P may be in the range of 0.65 to 0.75. In addition, when the range of this Al composition is converted into the photoluminescence peak wavelength at 25 ° C, it is changed from 530 nm to 5
It becomes 50 nm.

次に、このP−クラッド層のP−キャリア濃度の最適
範囲について示す。先ず、n−クラッド層のキャリア濃
度は前述のとおり信頼性(寿命)の点で5×1017(c
m-3)未満にする必要がある。このときにP−クラッド
層のP型ドーパントをZnとした場合、ZnがP−クラッド
層から活性層を介してn−クラッド層へ拡散するのを防
止するため、P−キャリア濃度は5×1017未満にしなけ
ればならないことを実験的に確認した。すなわち、第6
図に示すように、XをX=0.5,0.6,0.7と変化させた場
合、いずれもP−キャリア濃度が5×1017(cm-3)を超
えると、Znの拡散により発振しきい値が急激に上昇す
る。このP−キャリア濃度が2×1017(cm-3)より小さ
くなると、電気抵抗が高くなり、半導体レーザの発熱が
生じ発振しきい値が70mA程度から80mA程度への上昇し、
且つT0が小さくなり問題がある。従って、P−(AlxGa
1-xyIn1-yPのP−キャリア濃度は2×1017(cm-3)か
ら5×1017(cm-3)の範囲であれば良い。
Next, the optimum range of the P-carrier concentration of this P-clad layer will be shown. First, the carrier concentration of the n-clad layer is 5 × 10 17 (c
It must be less than m -3 ). If Zn is used as the P-type dopant of the P-clad layer at this time, the P-carrier concentration is 5 × 10 5 to prevent Zn from diffusing from the P-clad layer to the n-clad layer through the active layer. It was confirmed experimentally that it should be less than 17 . That is, the sixth
As shown in the figure, when X is changed to X = 0.5, 0.6, and 0.7, when the P-carrier concentration exceeds 5 × 10 17 (cm -3 ), the oscillation threshold is caused by Zn diffusion. Rises sharply. When the P-carrier concentration becomes smaller than 2 × 10 17 (cm -3 ), the electric resistance becomes high, the heat generation of the semiconductor laser occurs, and the oscillation threshold value increases from about 70 mA to about 80 mA,
Moreover, there is a problem that T 0 becomes small. Therefore, P- (Al x Ga
The P-carrier concentration of 1-x ) y In 1-y P may be in the range of 2 × 10 17 (cm −3 ) to 5 × 10 17 (cm −3 ).

以上、P−(AlxGa1-xyIn1-yPクラッド層のAl組成
及びP−キャリア濃度の最適範囲を示したが、n型の
(AlxGa1-xyIn1-yPクラッド層においても、同様の理
由でAl組成Xを0.65から0.75の範囲にすることが望まし
い。但し、半導体レーザとしてのキャリアのリークへの
影響度はn型クラッド層よりもP型クラッド層の方が大
きい。従って、P型クラッド層のAl組成を上記範囲とす
ることがより効果がある。
The optimum ranges of the Al composition and the P-carrier concentration of the P- (Al x Ga 1-x ) y In 1-y P cladding layer have been shown above, but the n-type (Al x Ga 1-x ) y In 1 Also in the -y P clad layer, it is desirable to set the Al composition X in the range of 0.65 to 0.75 for the same reason. However, the degree of influence of carriers as a semiconductor laser on leakage is greater in the P-type cladding layer than in the n-type cladding layer. Therefore, it is more effective to set the Al composition of the P-type cladding layer in the above range.

さらに、本発明は、第1図に示した半導体レーザに適
用されるのみでなく、第7図に示すような半導体レーザ
にも適用される。第7図に示すようにn−GaAs基板211
上にはSiドープn−GaAsバッファ層212,n−(Al0.7Ga
0.30.5In0.5Pクラッド層213,Ga0.5In0.5P活性層21
4,P−(Al0.7Ga0.30.5In0.5Pクラッド層218をメサ型
に形成し、この両側にn−GaAs電流ブロック層217を選
択成長させ、最後にP−GaAsコンタクト層を全面に成長
した構造となっている。この構造の特徴はP−(Al0.7G
a0.30.5In0.5Pクラッド層215の厚さを0.3μm程度ま
で薄くすること、n−GaAs電流ブロック層における吸収
により、横モードが制御されていることである。従って
低しきい値で、安定した基本横モード発振が得られる。
またP−Ga0.5In0.5Pエッチングストップ層216が存在
するため、エッチングの制御性も非常にすぐれている。
この場合、P−クラッド層215は、このクラッド層をP
−(AlxGa1-xyIn1-yPとした場合Al組成Xが0.65〜0.7
5の範囲内にあれば良い。またP−キャリア濃度は2〜
5×1017の範囲内にあれば良い。
Furthermore, the present invention is applied not only to the semiconductor laser shown in FIG. 1 but also to the semiconductor laser as shown in FIG. As shown in FIG. 7, n-GaAs substrate 211
The Si-doped n-GaAs buffer layer 212, n- (Al 0.7 Ga
0.3 ) 0.5 In 0.5 P clad layer 213, Ga 0.5 In 0.5 P active layer 21
4, P- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 218 is formed in a mesa type, n-GaAs current blocking layers 217 are selectively grown on both sides of this, and finally a P-GaAs contact layer is grown on the entire surface. It has a structure. The feature of this structure is P- (Al 0.7 G
a 0.3 ) 0.5 In 0.5 P The thickness of the clad layer 215 is reduced to about 0.3 μm, and the transverse mode is controlled by absorption in the n-GaAs current blocking layer. Therefore, a stable fundamental transverse mode oscillation can be obtained at a low threshold value.
Further, since the P-Ga 0.5 In 0.5 P etching stop layer 216 is present, the controllability of etching is also very excellent.
In this case, the P-cladding layer 215 forms the cladding layer P
-(Al x Ga 1-x ) y In 1-y P, Al composition X is 0.65 to 0.7
It should be within the range of 5. The P-carrier concentration is 2 to
It should be in the range of 5 × 10 17 .

[発明の効果] 以上説明したように、本発明によれば、低しきい値で
かつ高温動作可能な半導体レーザが得られる。
[Advantages of the Invention] As described above, according to the present invention, a semiconductor laser having a low threshold and capable of operating at high temperature can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用した半導体レーザの一実施例を示
す図、第2図はn型クラッド層のキャリア濃度特性を示
す図、第3図はP型クラッド層のAl組成Xと発振しきい
値電流密度Jth′特性温度T0及び最高発振温度Tcw max
関係を示す図、第4図はT0と▲TCW max▼の関係を示す
図,第5図はP−キャリア濃度と特性温度T0を示す図、
第6図はP−キャリア濃度と発振しきい値の関係を示す
図、第7図は本発明が適用できる他の半導体レーザの例
を示す図、第8図はAl組成Xとホトルミネッセンスピー
ク波長との関係を示す図である。 108……AuZn電極 107……P−GaAs 106……n−GaAs 112……P−In0.5Ga0.5Pキャップ層 105……P−In0.5(Ga0.3Al0.70.5P 104……アンドープIn0.5Ga0.5P活性層 103……n−In0.5(Ga0.3Al0.70.5P 102……n−GaAs 101……n−GaAs基板 109……AuGe電極
FIG. 1 is a diagram showing an embodiment of a semiconductor laser to which the present invention is applied, FIG. 2 is a diagram showing carrier concentration characteristics of an n-type cladding layer, and FIG. 3 is an oscillation with Al composition X of a P-type cladding layer. Threshold current density J th'Characteristic temperature T 0 and maximum oscillation temperature T cw max are shown in FIG. 4, FIG. 4 is a diagram showing the relationship between T 0 and ▲ T CW max ▼, and FIG. 5 is P-carrier concentration And a diagram showing the characteristic temperature T 0 ,
FIG. 6 is a diagram showing the relationship between the P-carrier concentration and the oscillation threshold value, FIG. 7 is a diagram showing an example of another semiconductor laser to which the present invention can be applied, and FIG. 8 is an Al composition X and photoluminescence peak wavelength. It is a figure which shows the relationship with. 108 ... AuZn electrode 107 ... P-GaAs 106 ... n-GaAs 112 ... P-In 0.5 Ga 0.5 P cap layer 105 ... P-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P 104 ... Undoped In 0.5 Ga 0.5 P active layer 103 …… n-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P 102 …… n-GaAs 101 …… n-GaAs substrate 109 …… AuGe electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−285991(JP,A) 特開 平1−145882(JP,A) 特開 平1−243482(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 63-285991 (JP, A) JP 1-145882 (JP, A) JP 1-243482 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】GaInPを活性層とし、少なくとも(AlxGa
1-xyIn1-yPをP型及びNのクラッド層としたダブルヘ
テロ構造を有する半導体発光素子において、前記P型ク
ラッド層のAlの組成Xを0.65から0.75の範囲内とし且つ
その不純物キャリア濃度を5×1017cm-3以下とし、前記
N型クラッド層の不純物キャリア濃度を5×1017cm-3
満としたことを特徴とする半導体発光素子。
1. An active layer of GaInP, comprising at least (Al x Ga
1-x ) y In 1-y P is a semiconductor light emitting device having a double heterostructure in which P-type and N-type cladding layers are used, and the Al composition X of the P-type cladding layer is within the range of 0.65 to 0.75 and the semiconductor light-emitting device of the impurity carrier concentration of 5 × 10 17 cm -3, characterized in that the said N-type cladding layer less than 5 × 10 17 cm -3 impurity carrier concentration of.
【請求項2】前記P型クラッド層の25℃におけるホトル
ミネッセンスピーク波長は530nmから550nmであることを
特徴とする請求項1記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the photoluminescence peak wavelength of the P-type cladding layer at 25 ° C. is 530 nm to 550 nm.
JP63069641A 1988-02-10 1988-03-25 Semiconductor light emitting device Expired - Lifetime JP2685788B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63069641A JP2685788B2 (en) 1988-03-25 1988-03-25 Semiconductor light emitting device
US07/307,278 US5034957A (en) 1988-02-10 1989-02-07 Semiconductor laser device
DE68925219T DE68925219T2 (en) 1988-02-10 1989-02-10 Semiconductor laser device and manufacturing method for the semiconductor laser device
EP89102326A EP0328134B1 (en) 1988-02-10 1989-02-10 Semiconductor laser device and method of manufacturing semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069641A JP2685788B2 (en) 1988-03-25 1988-03-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH01243598A JPH01243598A (en) 1989-09-28
JP2685788B2 true JP2685788B2 (en) 1997-12-03

Family

ID=13408688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069641A Expired - Lifetime JP2685788B2 (en) 1988-02-10 1988-03-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2685788B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145882A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Short-wave semiconductor laser
JP2662792B2 (en) * 1988-03-24 1997-10-15 三菱電線工業株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH01243598A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
JP2831667B2 (en) Semiconductor laser device and method of manufacturing the same
JP3242967B2 (en) Semiconductor light emitting device
US5559819A (en) Semiconductor laser device
Ueno et al. Novel window-structure AlGaInP visible-light laser diodes with non-absorbing facets fabricated by utilizing GaInP natural superlattice disordering
US5556804A (en) Method of manufacturing semiconductor laser
JPH1174607A (en) Semiconductor laser
JPH11243259A (en) Semiconductor laser and drive method thereof
JPH04312991A (en) Semiconductor laser
US5388116A (en) Semiconductor laser device
JP2685788B2 (en) Semiconductor light emitting device
JPH07245447A (en) Semiconductor laser
JP3606933B2 (en) Semiconductor laser
US20040136427A1 (en) Semiconductor optical device
JP3027664B2 (en) Semiconductor laser device
JP2669139B2 (en) Semiconductor laser
JP2003017813A (en) Semiconductor laser
JP2909144B2 (en) Semiconductor laser device and method of manufacturing the same
Jung et al. Experimental determination of the influence of gain saturation on the temperature dependence of threshold current in short AlGaAs‐GaAs quantum‐well lasers
JP2685778B2 (en) Semiconductor laser device
JP3071021B2 (en) Method of manufacturing semiconductor laser device
JP2723944B2 (en) Semiconductor laser device and semiconductor laser array
JP2941285B2 (en) Semiconductor laser device
JP3144821B2 (en) Semiconductor laser device
JP3258990B2 (en) Semiconductor laser device and crystal growth method
JP3427649B2 (en) Self-oscillation type semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11