JP2684272B2 - Decompression evaporative cooling equipment - Google Patents

Decompression evaporative cooling equipment

Info

Publication number
JP2684272B2
JP2684272B2 JP29628991A JP29628991A JP2684272B2 JP 2684272 B2 JP2684272 B2 JP 2684272B2 JP 29628991 A JP29628991 A JP 29628991A JP 29628991 A JP29628991 A JP 29628991A JP 2684272 B2 JP2684272 B2 JP 2684272B2
Authority
JP
Japan
Prior art keywords
ejector
cooling
low temperature
temperature air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29628991A
Other languages
Japanese (ja)
Other versions
JPH05106955A (en
Inventor
鎮麿 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP29628991A priority Critical patent/JP2684272B2/en
Publication of JPH05106955A publication Critical patent/JPH05106955A/en
Application granted granted Critical
Publication of JP2684272B2 publication Critical patent/JP2684272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷却部を減圧状態にし
て被冷却物を気化冷却するものに関する。具体的には、
各種反応を行う反応釜の冷却装置、食品や合成繊維やフ
ィルム等の気化冷却装置等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for evaporating and cooling an object to be cooled by putting a cooling section in a depressurized state. In particular,
The present invention relates to a cooling device for a reaction kettle that performs various reactions, a vaporization cooling device for foods, synthetic fibers, films and the like.

【0002】[0002]

【従来の技術】従来の反応釜の冷却装置として、例えば
特開平1−315336号公報に示されたものがある。
これは、エゼクタとタンクとポンプを組合せた組合せポ
ンプと、反応釜の流体室に組合せポンプの吐出水の一部
を供給できる切替え弁手段と、エゼクタ内を通過する流
体の温度を制御する温度制御部とから成り、反応釜の流
体室に、冷却用の組合せポンプからの吐出水を供給し
て、反応釜を気化冷却するものである。エゼクタで生じ
る吸引力即ち減圧度は、エゼクタを通過する流体の温度
に対する飽和圧力となるために、エゼクタでの減圧度を
高め、ひいては冷却室の減圧度を高めて、気化冷却をよ
り促進するためには、温度制御部によりエゼクタ内を通
過する流体の温度を低下せしめることによりできる。
2. Description of the Related Art As a conventional cooling device for a reactor, there is, for example, one disclosed in Japanese Patent Application Laid-Open No. 1-315336.
This is a combination pump that combines an ejector, a tank, and a pump, a switching valve that can supply a part of the discharge water of the combination pump to the fluid chamber of the reactor, and a temperature control that controls the temperature of the fluid passing through the ejector And discharge water from a combination pump for cooling to the fluid chamber of the reaction vessel to vaporize and cool the reaction vessel. The suction force generated by the ejector, that is, the degree of decompression, becomes a saturation pressure with respect to the temperature of the fluid passing through the ejector. This can be achieved by lowering the temperature of the fluid passing through the ejector by the temperature control unit.

【0003】[0003]

【本発明が解決しようとする課題】上記従来のもので
は、反応釜の急激な温度上昇を防止することができず、
部分的に熱暴走を生じる問題があった。これは冷却手段
として組合せポンプの吐出水を用い、この吐出水の蒸発
潜熱だけにより冷却しているためである。各種の反応工
程や食品・繊維等の冷却においては、高い温度精度が要
求され、特に熱暴走は被冷却物の熱損傷や組成の変成に
つながるために確実に防止しなければならない。
With the above-mentioned conventional apparatus, it is impossible to prevent a rapid rise in the temperature of the reaction vessel.
There was a problem that partially caused thermal runaway. This is because the discharge water of the combination pump is used as the cooling means and the discharge water is cooled only by the latent heat of vaporization. High temperature accuracy is required in various reaction processes and cooling of foods, fibers, etc. In particular, thermal runaway must be reliably prevented because it causes thermal damage to the object to be cooled and compositional change.

【0004】従って本発明の技術的課題は、熱暴走を確
実に防止することのできる減圧気化冷却装置を得ること
である。
Therefore, a technical object of the present invention is to obtain a decompression evaporative cooling device which can surely prevent thermal runaway.

【0005】[0005]

【課題を解決する為の手段】本発明の減圧気化冷却装置
の構成は次の通りである。圧縮空気を渦流状に旋回せし
めて断熱膨脹による低温空気を発生する渦管と、該渦管
の低温空気発生部とエゼクタのノズルを連通し、該ノズ
ルの周囲に形成した吸込室と給水部を接続し、上記エゼ
クタの出口と冷却部を接続し、該冷却部と真空ポンプを
接続したものである。
The structure of the reduced pressure evaporative cooling device of the present invention is as follows. A vortex tube that swirls compressed air in a vortex shape to generate low-temperature air by adiabatic expansion, and a low-temperature air generation section of the vortex tube and a nozzle of an ejector are connected to each other, and a suction chamber and a water supply section formed around the nozzle are connected to each other. The outlet of the ejector and the cooling unit are connected, and the cooling unit and the vacuum pump are connected.

【0006】[0006]

【作用】渦管は周知の通り、ボルテックス・チュ―ブと
称されるもので、圧縮空気を渦流状に旋回せしめること
により、渦流中心部の圧縮空気が断熱膨脹することによ
り低温空気となるものである。渦管の低温空気発生部と
エゼクタのノズルを連通したことにより、ノズルを低温
空気が高速で流下して吸引力を生じ、周囲の吸込室から
給水部の水を吸引する。吸引された水は、吸込室で低温
空気と混合して微小で軟質状の氷となる。軟質状の氷は
低温空気と共にエゼクタの出口から冷却部に至り、氷の
融解熱と低温空気への熱伝導により被冷却物を冷却す
る。冷却部は真空ポンプと接続されて所定の真空状態と
なっており、冷却により融解した氷の水は、更に被冷却
物の熱を奪って気化することにより、被冷却物を気化冷
却する。気化した蒸気及び低温空気は真空ポンプに吸引
され系外に排出される。
[Function] As is well known, the vortex tube is called a vortex tube, and the compressed air in the center of the vortex is adiabatically expanded by swirling the compressed air into a low temperature air. Is. By connecting the low temperature air generating part of the vortex tube and the nozzle of the ejector, the low temperature air flows down through the nozzle at a high speed to generate suction force, and the water of the water supply part is sucked from the suction chamber around. The aspirated water mixes with the cold air in the suction chamber to form fine, soft ice. The soft ice reaches the cooling part from the outlet of the ejector together with the low temperature air, and cools the object to be cooled by the heat of melting of the ice and the heat conduction to the low temperature air. The cooling unit is connected to a vacuum pump and is in a predetermined vacuum state. The ice water melted by cooling further removes heat from the object to be cooled and is vaporized, thereby evaporating and cooling the object to be cooled. The vaporized vapor and low temperature air are sucked by the vacuum pump and discharged to the outside of the system.

【0007】[0007]

【実施例】図示の実施例を詳細に説明する。本実施例に
おいては、気化冷却装置として反応釜を用いた例を示
す。冷却部としてのジャケット部1を備えた反応釜2
と、渦管3と、エゼクタ4と、給水部5と、真空ポンプ
としての組合せポンプ6とで減圧気化冷却装置を構成す
る。反応釜2は、ほぼ全周にわたりジャケット部1を形
成すると共に、原料入口7、製品出口8、撹拌器9を備
え、ジャケット部1には冷却流体供給口10と流体排出
口11,12を設けてある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In this embodiment, an example in which a reaction vessel is used as a vaporization cooling device will be described. Reaction kettle 2 equipped with jacket 1 as cooling unit
The vortex tube 3, the ejector 4, the water supply unit 5, and the combination pump 6 as a vacuum pump constitute a reduced pressure evaporative cooling device. The reaction kettle 2 forms a jacket portion 1 over substantially the entire circumference and is provided with a raw material inlet 7, a product outlet 8 and a stirrer 9. The jacket portion 1 is provided with a cooling fluid supply port 10 and fluid discharge ports 11 and 12. There is.

【0008】渦管3は図2及び図3に示すように、一端
に隔壁部材16を介して低温空気取出し部材17を設
け、他端に断熱圧縮による高温空気取出し部材18を設
けたものである。低温空気取出し部材17は、圧縮空気
供給管13と接続する導入口19を有し、導入口19は
低温空気取出し部材17の内周壁と隔壁部材16の外周
壁との間に形成した環状空間20に開口する。隔壁部材
16は中央に低温空気取出し口21を有し、低温空気供
給管14と接続する。隔壁部材16は端面に複数の溝2
3を有し、この溝23は環状空間20から渦管3の内壁
の接線方向に開口する噴射通路を形成する。高温空気取
出し部材18に通路25を設けて高温空気排出管15を
接続する。
As shown in FIGS. 2 and 3, the vortex tube 3 is provided with a low temperature air extraction member 17 at one end through a partition member 16 and a high temperature air extraction member 18 by adiabatic compression at the other end. . The low temperature air extraction member 17 has an introduction port 19 connected to the compressed air supply pipe 13, and the introduction port 19 is an annular space 20 formed between the inner peripheral wall of the low temperature air extraction member 17 and the outer peripheral wall of the partition member 16. To open. The partition member 16 has a low temperature air outlet 21 at the center and is connected to the low temperature air supply pipe 14. The partition member 16 has a plurality of grooves 2 on its end face.
3, the groove 23 forms an injection passage opening from the annular space 20 tangentially to the inner wall of the vortex tube 3. The hot air outlet member 18 is provided with a passage 25 to connect the hot air exhaust pipe 15.

【0009】低温空気供給管14とエゼクタ4のノズル
26を接続する。ノズル26の外周に吸込室27を形成
して給水部5と接続する。エゼクタ4のディフュ―ザ2
8とジャケット部1の冷却流体供給口10とを接続す
る。
The low temperature air supply pipe 14 and the nozzle 26 of the ejector 4 are connected. A suction chamber 27 is formed on the outer circumference of the nozzle 26 and connected to the water supply unit 5. Diffuser 2 of ejector 4
8 and the cooling fluid supply port 10 of the jacket part 1 are connected.

【0010】真空ポンプとしての組合せポンプ6は、ポ
ンプ30がタンク31に吸込側を接続され吐出側を組合
せポンプ用のエゼクタ32のノズル33に接続し、エゼ
クタ32のディフュ―ザ34がタンク31の上部空間に
接続された構成のものであり、エゼクタ32と反応釜2
の流体排出口11,12とが接続されている。この組合
せポンプ6は、ポンプ30の作動によりタンク31内の
水をエゼクタ32に供給して吸引作用させ、タンク31
に戻すようになっている。タンク31にはポンプ30を
循環する循環液の水温を調整するための冷却水補給管3
5を接続すると共に、循環液の一部を系外に排出するた
めの排出管36と吸込室27に供給するための循環液供
給管37を接続する。またタンク31の上部には大気と
の連通管40を設ける。
In the combination pump 6 as a vacuum pump, the pump 30 is connected to the tank 31 on the suction side and the discharge side is connected to the nozzle 33 of the ejector 32 for the combination pump, and the diffuser 34 of the ejector 32 is connected to the tank 31. It is configured to be connected to the upper space, and includes the ejector 32 and the reaction kettle 2.
Fluid outlets 11 and 12 are connected. The combination pump 6 supplies the water in the tank 31 to the ejector 32 by the operation of the pump 30 and causes the ejector 32 to perform a suction action.
To return to. The tank 31 has a cooling water supply pipe 3 for adjusting the water temperature of the circulating liquid circulating in the pump 30.
5 is connected, and a discharge pipe 36 for discharging a part of the circulating liquid to the outside of the system and a circulating liquid supply pipe 37 for supplying the circulating liquid to the suction chamber 27 are connected. A communication pipe 40 for communicating with the atmosphere is provided above the tank 31.

【0011】反応釜2を冷却する場合、圧縮空気供給管
13から圧縮空気を渦管3に供給する。渦管3内で断熱
膨脹により生じた低温空気が、低温空気供給管14を経
てエゼクタ4のノズル26に供給される。低温空気がノ
ズル26を流下することにより吸引力を生じ、給水部5
から水を吸引して吸込室27内で低温空気と混合する。
低温空気と水が混合することにより、水は微小で軟質状
の氷となる。軟質状の氷と低温空気はディフュ―ザ28
から冷却流体供給口10を経てジャケット部1に供給さ
れ、反応釜2を冷却する。この場合、軟質状の氷が反応
釜2の外周に付着し、まず氷が溶けることによる融解熱
で反応釜2を冷却し、続いて真空ポンプとしての組合せ
ポンプ6のエゼクタ32によりジャケット部1内は所定
の真空状態に維持されているために、水が気化すること
による蒸発潜熱でもって反応釜2を冷却することができ
る。
When the reaction kettle 2 is cooled, compressed air is supplied from the compressed air supply pipe 13 to the vortex pipe 3. The low temperature air generated by adiabatic expansion in the vortex tube 3 is supplied to the nozzle 26 of the ejector 4 via the low temperature air supply tube 14. When the low-temperature air flows down the nozzle 26, suction force is generated and the water supply unit 5
The water is sucked from and mixed with the low temperature air in the suction chamber 27.
When cold air and water mix, the water becomes tiny, soft ice. Diffuser 28 for soft ice and cold air
Is supplied to the jacket portion 1 through the cooling fluid supply port 10 to cool the reaction kettle 2. In this case, soft ice adheres to the outer periphery of the reaction kettle 2, and the reaction kettle 2 is first cooled by the heat of melting caused by the melting of the ice, and then the ejector 32 of the combination pump 6 serving as a vacuum pump inside the jacket 1 Is maintained in a predetermined vacuum state, the reaction vessel 2 can be cooled by the latent heat of vaporization caused by the vaporization of water.

【0012】反応釜2を冷却することによって生じた気
化蒸気、圧縮空気、及び、気化しきれなかった水はエゼ
クタ32に吸引されタンク31に至りポンプ30に吸引
されて循環する。循環液の一部は、循環液供給管37を
介して吸込室27に供給することができる。これは反応
釜2を冷却して比較的高温状態となった循環液の一部を
吸込室27に供給することにより、給水部5からの吸水
とくらべて比較的高温の冷却流体を作り出すことができ
るものである。
The vaporized steam, compressed air, and water that have not been vaporized by cooling the reaction kettle 2 are sucked by the ejector 32, reach the tank 31, and are sucked by the pump 30 to be circulated. A part of the circulating liquid can be supplied to the suction chamber 27 via the circulating liquid supply pipe 37. This is to cool the reaction vessel 2 and supply a part of the circulating liquid having a relatively high temperature to the suction chamber 27, thereby producing a cooling fluid having a relatively high temperature as compared with the water absorption from the water supply section 5. It is possible.

【0013】[0013]

【発明の効果】本発明は次のような効果を奏する。冷却
水の蒸発潜熱のみならず氷の融解熱をも加えた冷却を行
うことができ、急冷を行うことにより熱暴走を確実に防
止することができる。また、水が低温空気により軟質状
の氷となることにより、軟質状の氷が被冷却物の表面に
付着し、被冷却物の全面を均一に冷却することができ
る。
The present invention has the following effects. Cooling can be performed by adding not only the latent heat of evaporation of cooling water but also the heat of melting of ice, and rapid cooling can reliably prevent thermal runaway. Further, since the water becomes soft ice due to the low temperature air, the soft ice adheres to the surface of the object to be cooled, and the entire surface of the object to be cooled can be cooled uniformly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の減圧気化冷却装置の実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a reduced-pressure evaporative cooling device of the present invention.

【図2】図1における渦管の拡大断面図である。FIG. 2 is an enlarged sectional view of the vortex tube in FIG.

【図3】図2におけるA−A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2;

【符号の説明】[Explanation of symbols]

1 ジャケット部 2 反応釜 3 渦管 4 エゼクタ 5 給水部 6 組合せポンプ 10 冷却流体供給口 11 流体排出口 13 圧縮空気供給管 14 低温空気供給管 1 Jacket Part 2 Reactor Kettle 3 Vortex Tube 4 Ejector 5 Water Supply Section 6 Combination Pump 10 Cooling Fluid Supply Port 11 Fluid Discharge Port 13 Compressed Air Supply Pipe 14 Low Temperature Air Supply Pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮空気を渦流状に旋回せしめて断熱膨
脹による低温空気を発生する渦管と、該渦管の低温空気
発生部とエゼクタのノズルを連通し、該ノズルの周囲に
形成した吸込室と給水部を接続し、上記エゼクタの出口
と冷却部を接続し、該冷却部と真空ポンプを接続した減
圧気化冷却装置。
1. A suction pipe formed around a nozzle, wherein a vortex tube for swirling compressed air to generate low temperature air by adiabatic expansion, a low temperature air generating portion of the vortex tube and a nozzle of an ejector are communicated with each other. A reduced pressure evaporative cooling device in which a chamber is connected to a water supply unit, an outlet of the ejector is connected to a cooling unit, and the cooling unit is connected to a vacuum pump.
JP29628991A 1991-10-15 1991-10-15 Decompression evaporative cooling equipment Expired - Fee Related JP2684272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29628991A JP2684272B2 (en) 1991-10-15 1991-10-15 Decompression evaporative cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29628991A JP2684272B2 (en) 1991-10-15 1991-10-15 Decompression evaporative cooling equipment

Publications (2)

Publication Number Publication Date
JPH05106955A JPH05106955A (en) 1993-04-27
JP2684272B2 true JP2684272B2 (en) 1997-12-03

Family

ID=17831635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29628991A Expired - Fee Related JP2684272B2 (en) 1991-10-15 1991-10-15 Decompression evaporative cooling equipment

Country Status (1)

Country Link
JP (1) JP2684272B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885891B2 (en) * 2008-02-15 2012-02-29 株式会社テイエルブイ Vacuum steam heater
CN105953598B (en) * 2015-12-24 2018-03-06 天津市布加迪环保科技发展有限公司 Condensing water vapor heat-exchange system

Also Published As

Publication number Publication date
JPH05106955A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
JPH06174348A (en) Method and device for circulating heat transfer fluid and cooling heat load
US5950436A (en) Method of beverage cooling/heating on vehicles
JP2684272B2 (en) Decompression evaporative cooling equipment
JPH062964A (en) Ejector
TWI686251B (en) Micro powder forming device
JP2684266B2 (en) Decompression evaporative cooling equipment
JP2724774B2 (en) Decompression evaporative cooling equipment
JP2969209B2 (en) Decompression evaporative cooling equipment
JP2821958B2 (en) Decompression evaporative cooling equipment
JP3210999B2 (en) Heating and cooling device
JPS60108600A (en) Ejector suction pump
JP2729417B2 (en) Decompression evaporative cooling equipment
JPS62132634A (en) Vacuum cooling apparatus of foamed styrol forming machine
JP2684289B2 (en) Decompression evaporative cooling equipment
RU2152542C1 (en) Steam and water pump-heater
JPH0515774A (en) Heating and cooling apparatus
JP3211000B2 (en) Decompression evaporative cooling system
SU1283499A1 (en) Vortex refrigerator
SU1076712A1 (en) Vortex-type freezer
JPH0581296B2 (en)
JP3188990B2 (en) Steam heating evaporative cooling system
RU2263856C2 (en) Method of operation of a temperature transformer and the temperature transformer
JP2006284093A (en) Cooling device
JP3790001B2 (en) Heat exchanger
JPH0884925A (en) Vacuum evaporation-cooling apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees