JP2682473B2 - Polarization method of piezoelectric transformer - Google Patents

Polarization method of piezoelectric transformer

Info

Publication number
JP2682473B2
JP2682473B2 JP26690994A JP26690994A JP2682473B2 JP 2682473 B2 JP2682473 B2 JP 2682473B2 JP 26690994 A JP26690994 A JP 26690994A JP 26690994 A JP26690994 A JP 26690994A JP 2682473 B2 JP2682473 B2 JP 2682473B2
Authority
JP
Japan
Prior art keywords
voltage
polarization
output
input
piezoelectric transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26690994A
Other languages
Japanese (ja)
Other versions
JPH08130336A (en
Inventor
晃 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26690994A priority Critical patent/JP2682473B2/en
Publication of JPH08130336A publication Critical patent/JPH08130336A/en
Application granted granted Critical
Publication of JP2682473B2 publication Critical patent/JP2682473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧電素子の分極方法に
係り、特に、入力部と出力部を有する圧電トランスの分
極方法関する。
The present invention relates to relates to a polarization process of the piezoelectric element, in particular, it relates to a method of polarization piezoelectric transformer having an output and an input unit.

【0002】[0002]

【従来の技術】圧電トランス等の圧電デバイスは、チタ
ン酸ジルコニウム酸鉛(PZT:PbZrTi 3 )等
の圧電セラミック材料の焼成後の表面に、1対の入力電
極と1対又は1個の出力電極を設け、入力部と出力部を
分極処理することにより作成される。分極処理は、入力
部は入力電極間に、出力部は1対または出力電極が1個
の場合は入力電極と出力電極間に、一定直流電圧を印加
し、セラミック結晶内の分極方向を一定方向に揃えるこ
とにより分極が行われる。
A piezoelectric device such BACKGROUND ART piezoelectric transformer, lead zirconate titanate: the (PZT PbZrTi O 3) surface after firing the piezoelectric ceramic material, such as a pair of input electrodes and one pair or one output It is prepared by providing electrodes and subjecting the input part and the output part to polarization processing. In the polarization process, a constant DC voltage is applied between the input electrodes between the input electrodes and a pair of output parts or between the input and output electrodes when there is one output electrode, and the polarization direction in the ceramic crystal is fixed. Polarization is performed by aligning with.

【0003】図5乃至図6に、一対の入力電極を有する
圧電素子の分極時に印加される直流パルス波形の例を示
す(特開昭61−268085号公報,特開平2−14
3474号公報参照)。この種の直流パルス電圧を入力
電極間に印加することにより高電圧による絶縁破壊を防
止し、圧電特性の向上が図られている。そして、かかる
従来例においては、いづれも同電圧の一定周期の直流パ
ルス電圧を印加して一定方向の分極を行うものである点
に特徴を備えている。
5 to 6 show examples of DC pulse waveforms applied during polarization of a piezoelectric element having a pair of input electrodes (JP-A-61-268085 and JP-A-2-14).
3474 publication). By applying this kind of DC pulse voltage between the input electrodes, dielectric breakdown due to a high voltage is prevented and the piezoelectric characteristics are improved. The conventional example is characterized in that a direct-current pulse voltage of the same voltage with a constant cycle is applied to perform polarization in a constant direction.

【0004】圧電トランスは、一般に2回の分極処理を
行うことにより、所定の機能を発揮することができるこ
とが知られている。
It is known that a piezoelectric transformer can generally exhibit a predetermined function by performing polarization processing twice.

【0005】また、圧電トランス等に用いられるセラミ
ック材料では、印加電界による残留歪みの影響を押さえ
るため、加熱炉やシリコンオイル中で処理温度を高くし
低目の電界で処理することが従来より行われている。
Further, in ceramic materials used for piezoelectric transformers and the like, in order to suppress the effect of residual strain due to an applied electric field, it has been conventionally performed to raise the processing temperature in a heating furnace or silicon oil and perform processing with a lower electric field. It is being appreciated.

【0006】図7に、この場合の実験結果を示す。この
図7に示す実験結果は、 NEPEC8(商品名:(株)トー
キン製)の焼結体を用いて、37×5.3〔mm〕で厚
さ1.3〔mm〕の圧電素子を作製し、その上下面に電
極を設け、150〔℃〕のシリコンオイル中で、厚さ方
向に1.5〔kV/mm〕の一定直流電界を30分間印
加し、洗浄乾燥し放置後、圧電特性(K31,Qm)を測
定したものを示す。そして、このサンプルを、恒温槽中
に各所定温度で各30分間保持後、放置し、分極度合
(熱処理後k 31 /初期測定値)の低下を測定したもので
あるが、温度が高い程、分極度合の低下が激しいことが
解る。特に、キューリー点の3/4以上の温度で2回目
の分極処理を行うと、圧電トランスとして使用困難なレ
ベルまで低下することを確認することができた。
FIG. 7 shows the experimental result in this case. The experimental result shown in FIG. 7 shows that a piezoelectric element having a size of 37 × 5.3 [mm] and a thickness of 1.3 [mm] was produced using a sintered body of NEPEC8 (trade name: manufactured by Tokin Co., Ltd.). Then, electrodes are provided on the upper and lower surfaces thereof, and a constant DC electric field of 1.5 [kV / mm] is applied in the thickness direction of 150 [° C.] silicon oil for 30 minutes. The measured values of (K 31 , Qm) are shown. Then, this sample was held in a constant temperature bath at each predetermined temperature for 30 minutes and then allowed to stand, and the decrease in polarization degree (k 31 after heat treatment / initial measurement value) was measured. The higher the temperature, the higher the temperature. , It can be seen that the degree of polarization is severely reduced. In particular, it was confirmed that when the second polarization treatment was performed at a temperature of 3/4 or more of the Curie point, the piezoelectric transformer was reduced to a level at which it was difficult to use.

【0007】圧電素子の分極度合は、分極時の温度,電
界強度,時間の関数であり、それぞれ比例関係にある。
そして、ある一定の分極度合を得るには、処理温度が高
い場合には低い電界強度で処理可能であり、素子の絶縁
破壊や分極時の応力割れ等を防止することができる。こ
の分極度合は、圧電トランスの昇圧比や効率に大きく寄
与する値であり、できるだけ高い値に分極処理する必要
がある。
The degree of polarization of the piezoelectric element is a function of temperature, electric field strength, and time during polarization and is in a proportional relationship.
Further, in order to obtain a certain degree of polarization, it is possible to perform processing with a low electric field strength when the processing temperature is high, and it is possible to prevent dielectric breakdown of the element, stress cracking during polarization, and the like. This polarization degree is a value that greatly contributes to the step-up ratio and efficiency of the piezoelectric transformer, and it is necessary to perform polarization processing to a value as high as possible.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、圧電ト
ランスのような圧電素子を、入力部と出力部の2回に分
けて分極を行うと、最初に分極処理をした部分の分極処
理が2回目の分極処理により影響され、分極度合を示す
電気機械結合係数Keff や機械品質係数Qm が低下する
という不都合が生じている。特に、分極処理温度が高い
場合に、その傾向が顕著に現れる。
However, when a piezoelectric element such as a piezoelectric transformer is divided into two parts, that is, an input part and an output part, and polarization is performed twice, the polarization process of the first polarization process is performed for the second time. There is an inconvenience that the electromechanical coupling coefficient Keff and the mechanical quality coefficient Qm, which indicate the degree of polarization, are affected by the polarization process and are reduced. In particular, when the polarization treatment temperature is high, the tendency becomes remarkable.

【0009】[0009]

【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、とくに圧電素子の分極の度合いを向上させ且
つ圧電トランスの昇圧比を高く設定し得ると共に、分極
作業の迅速化を図った圧電トランスの分極方法を提供す
ることを、その目的とする。
The object of the present invention is to improve the disadvantages of the conventional example, in particular to improve the degree of polarization of the piezoelectric element and to set the step-up ratio of the piezoelectric transformer high, and to speed up the polarization work. It is an object of the present invention to provide a method for polarizing a piezoelectric transformer.

【0010】[0010]

【課題を解決するための手段】本発明では、入力部と出
力部とが形成された圧電トランスの入力部と出力部に、
それぞれ異なるレベルの直流パルス電圧を印加するとと
もに、このとき当該入力部と出力部とで交互に印加す
る、という構成を採っている。これによって前述した目
的を達成しようとするものである。
According to the present invention, an input portion and an output portion of a piezoelectric transformer having an input portion and an output portion are formed,
The application of different levels of the DC pulse voltage DOO
However, at this time , a configuration is adopted in which the input section and the output section are alternately applied. This aims to achieve the above-mentioned object.

【0011】[0011]

【実施例1】以下、本発明の第1実施例を図1乃至図2
に基づいて説明する。
Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
It will be described based on.

【0012】この図1乃至図2において、符号1は分極
試料である圧電トランスを示す。この圧電トランス1
は、図1の中央部に出力部である出力電極2を有し、左
右両端部にそれぞれ入力部である入力電極が付されてい
る。符号3A,4Aは入力電極を示す。この入力電極3
A,4Aの背面側には、これに対応した出力電極3B,
4Bが付されている。
1 and 2, reference numeral 1 indicates a piezoelectric transformer which is a polarized sample. This piezoelectric transformer 1
Has an output electrode 2 which is an output part at the center of FIG. Reference numerals 3A and 4A indicate input electrodes. This input electrode 3
On the back side of A, 4A, the corresponding output electrodes 3B,
4B is attached.

【0013】また、出力電極2には出力端子2aが装備
され、入力電極3A,4Aには共通の入力端子3aが装
備されている。符号5が入力電極3A,4Aに対応して
圧電トランス1の背面側に付された電極の端子(入出力
共通端子)を示す。
The output electrode 2 is equipped with an output terminal 2a, and the input electrodes 3A and 4A are equipped with a common input terminal 3a. Reference numeral 5 indicates an electrode terminal (input / output common terminal) attached to the back surface side of the piezoelectric transformer 1 corresponding to the input electrodes 3A and 4A.

【0014】そして、これらの各電極2,3A,4A
は、切り換えスイッチであるトランスファリレー8を介
してパルス電圧制御電源7に接続されている。このトラ
ンスファリレー8により、入力電極3A,4Aと出力電
極2に、異なるレベルの直流パルス電圧が多数回連続し
て印加されるとともに、このとき入力電極3A,4Aと
出力電極2とで交互に印加されるようになっている。
Each of these electrodes 2, 3A, 4A
Is connected to the pulse voltage control power supply 7 via a transfer relay 8 which is a changeover switch. This transfer relay 8, the input electrode 3A, the 4A and the output electrode 2, together with the DC pulse voltage of different levels are applied many times in succession, the input electrode 3A at this time, and 4A
The output electrode 2 and the output electrode 2 are alternately applied.

【0015】ここで、上記圧電トランス1の分極方法に
ついて更に詳述する。
Here, the polarization method of the piezoelectric transformer 1 will be described in more detail.

【0016】まず、圧電トランス素子をシリコンオイル
中で加熱し、200〔℃〕の温度で図2に示す電圧印加
回路を用い、1.0〔V/mm〕の矩形波直流パルス
電圧(入力部1.3V,出力部6V)を印加して分
極を行った。具体的には、図3のタイムチャートに示す
ように、同図a)の入力部電極電圧9と出力部分極電圧
10とが交互に多数回繰り返されるパルス電源電圧を、
リレー接点を用いて、同図b)のA状態で出力部分に,
同図b)のB状態では入力部分に印加されるようにして
40分間分極状態を継続した。
[0016] First, the piezoelectric transformer element was heated in a silicone oil in 200 using a voltage applying circuit shown in FIG. 2 at a temperature of [℃], 1.0 [k V / mm] square wave DC pulse voltage (input Polarization was performed by applying a part (1.3 kV , an output part 6 kV ). More specifically, in the other im chart of FIG. 3
As such, the pulsed power supply voltage and the output portion pole voltage 10 and the input electrode voltage 9 in FIG a) is repeated a number of times alternately,
Using the relay contact, in the A state of b) in the figure , to the output part,
In the state B of FIG. 6B, the polarization state was continued for 40 minutes so that it was applied to the input portion.

【0017】そして、洗浄乾燥し放置後、5個の試料に
つき確認したところ、1回の分極で入力部と出力部の分
極度合が平均値で95%という比較的良好な分極特性値
を得ることができた。この時の高電圧維持と低電圧(ほ
ぼ電圧零の値)維持との時間比(ディーティー比)は約
70%であった。
Then, after washing, drying and standing, the five samples were checked, and a relatively good polarization characteristic value was obtained in which the polarization degree of the input portion and the output portion was 95% on average in one polarization. I was able to. At this time, the time ratio (duty ratio) of maintaining the high voltage and maintaining the low voltage (value of almost zero voltage) was about 70%.

【0018】又、追加検討として、パルス幅について検
討した結果、高電圧維持及び低電圧維持の時間を1〜6
秒範囲で使用すれば入出力部ともほぼ同等の分極度合に
なることを確認した。
As an additional examination, as a result of examining the pulse width, the time for maintaining the high voltage and maintaining the low voltage is 1 to 6.
It was confirmed that the polarization degree was almost the same in both the input and output parts when used in the second range.

【0019】次に、比較の意味で、従来の分極方法で、
入力部,出力部を別々に分極した。処理温度を同じ20
0〔℃〕で、出力部を1〔kV/mm〕の直流電圧で
(6.0kV)20分間分極後、入力部を1〔kV/m
m〕の直流電圧で(1.3kV)20の分間分極し、洗
浄乾燥し放置後5個の試料つき確認にしたところ、入力
部は平均値95%の分極度合を示したが、出力部は90
%と分極度合の低下が見られた。
Next, for comparison, the conventional polarization method
The input part and the output part were polarized separately. Same processing temperature 20
At 0 [° C.], the output part was polarized with a DC voltage of 1 [kV / mm] (6.0 kV) for 20 minutes, and then the input part was 1 [kV / m].
m] DC voltage (1.3 kV) for 20 minutes, washed, dried, left to stand, and confirmed with 5 samples. Is 90
% And the degree of polarization decreased.

【0020】ここで、圧電トランスの素子は(圧電セラ
ミック)は、 NEPEC8(商品名:(株)トーキン製)の
焼結体を用い、37×5.3mmで厚さ1.3mmに加
工した長板状の素子を使用した。また、電極は、銀ペー
ストを使用し、厚膜スクリーン印刷法でパターン形成
し、600℃で焼き付けて形成した。そして、圧電特性
の測定にさいしては、分極完了後、機械振動の節点に相
当する位置にて、電極中央部に0.1φの銅線を半田付
けにより取付た後、所定の測定器を用いて、k31eff
又はk33effを測定することにより、分極度合の設定
を行った(機械品質係数Qmについても値は異なるが同
様の傾向を示した)。
Here, the element of the piezoelectric transformer (piezoelectric ceramic) is a sintered body of NEPEC8 (trade name: manufactured by Tokin Co., Ltd.) , and the length is 37 mm x 5.3 mm and the thickness is 1.3 mm. A plate-shaped element was used. The electrode was formed by using silver paste, patterning it by a thick film screen printing method, and baking it at 600 ° C. When measuring the piezoelectric characteristics, after the polarization is completed, a 0.1φ copper wire is attached to the center of the electrode by soldering at a position corresponding to the node of mechanical vibration, and then a predetermined measuring device is used. K 31 eff
Alternatively, the degree of polarization was set by measuring k 33 eff (the mechanical quality factor Qm also showed the same tendency although the value was different).

【0021】[0021]

【実施例2】前述した実施例1の場合と同様に構成に基
づいて、条件を変えた場合の例を以下説明する。
[Embodiment 2] An example in which conditions are changed based on the configuration similar to the case of Embodiment 1 described above will be described below.

【0022】まず、処理温度を同じ200〔℃〕で、
1.5〔kV/mm〕の矩形波直流パルス電圧を印加し
分極を試みたが、セラミックが絶縁破壊するという状況
が発生した。そこで、パルス波形を図4に示す昇圧,高
電圧維持,降圧,低電圧(ほぼ電圧零の値)維持からな
る台形波とすると共に、低電圧状態で入出力電極間の切
替えを行うこととし、1.5〔kV/mm〕の台形直流
パルス電圧を印加し40分間分極した。
First, at the same processing temperature of 200 ° C.,
An attempt was made to polarize by applying a rectangular wave DC pulse voltage of 1.5 [kV / mm], but a situation occurred in which the ceramic was dielectrically broken down. Therefore, the pulse waveform is a trapezoidal wave composed of step-up, high-voltage maintenance, step-down, and low-voltage (value of almost zero voltage) maintenance shown in FIG. 4, and switching between input and output electrodes is performed in the low-voltage state, A trapezoidal DC pulse voltage of 1.5 [kV / mm] was applied and polarization was performed for 40 minutes.

【0023】洗浄乾燥し放置後、5個の試料について確
認した結果、入力部,出力部ともに100%の分極度合
を示した。このときの各時間は、昇圧0.5秒,高電圧
維持0.5〜5秒,降圧0.1秒,低電圧維持0.5〜
2秒の範囲のパルス幅について検討の結果(総合時間
1.5〜7秒の範囲)、入出力部ともほぼ100%の分
極度合が得られることを確認した。また昇圧時間につい
ては、別検討により分極電圧1〔kV〕当り0.1秒以
上が必要との結果を得たが、ここでは0.5秒一定とし
た。
After washing, drying and standing, the five samples were checked, and as a result, the input part and the output part each showed a polarization degree of 100%. Each time at this time is 0.5 seconds for boosting, 0.5 to 5 seconds for maintaining high voltage, 0.1 second for stepping down, 0.5 to maintaining low voltage.
As a result of studying the pulse width in the range of 2 seconds (total time range of 1.5 to 7 seconds), it was confirmed that a polarization degree of almost 100% was obtained in both the input and output sections. Further, regarding the boosting time, it was obtained by another examination that 0.1 second or more was required per polarization voltage of 1 [kV], but here it was set to a constant 0.5 second.

【0024】[0024]

【実施例3】前述した実施例1の場合と同様に構成に基
づいて、条件を変えた場合の例を以下説明する。
Third Embodiment An example in which conditions are changed based on the configuration similar to the case of the first embodiment described above will be described below.

【0025】まず、圧電トランス素子を恒温槽に入れ、
25分で320〔℃〕という圧電素子のキューリー点
(310℃)より高い温度まで加熱後、0.5〔kV/
mm〕の前述した実施例2の直流パルス電圧を印加し、
25分で100〔℃〕まで冷却後、パルス電圧を停止す
る方法で分極を行った。分極後放置し5個の試料につい
て確認した結果、入力部,出力部共に100%の分極度
合を示した。同様条件で250〔℃〕,1〔kV/m
m〕の台形直流パルス電圧による分極試料についても同
様の結果を示した。
First, the piezoelectric transformer element is placed in a constant temperature bath,
After heating to a temperature higher than the Curie point (310 ° C.) of the piezoelectric element of 320 [° C.] in 25 minutes, 0.5 [kV /
mm] of the above-described DC pulse voltage of Example 2,
After cooling to 100 [° C.] in 25 minutes, polarization was performed by a method of stopping the pulse voltage. As a result of confirming 5 samples left after polarization, a polarization degree of 100% was shown in both the input part and the output part. Under the same conditions, 250 [° C], 1 [kV / m
The same result was also shown for the polarized sample by the trapezoidal DC pulse voltage of [m].

【0026】このように、上記実施例によると、圧電ト
ランスの入出力部に、切り換えにより交互に矩形又は台
形の直流パルス電圧を印加することにより、1工程で分
極処理可能な圧電特性(分極度合)の良い低コストの圧
電トランスを得ることができる。また、キューリー点の
3/4以上の温度で分極を行えば、分極電界を比較的低
くすることができ、このため、圧電素子での残留歪みが
軽減されるという利点がある。
As described above, according to the above-described embodiment, by alternately applying a rectangular or trapezoidal DC pulse voltage to the input / output portion of the piezoelectric transformer, the piezoelectric characteristic (polarization degree) that can be polarized in one step is obtained. It is possible to obtain a low-cost piezoelectric transformer having good combination. Further, if polarization is performed at a temperature of 3/4 or more of the Curie point, the polarization electric field can be made relatively low, and therefore, there is an advantage that residual strain in the piezoelectric element is reduced.

【0027】また、本実施例では、3端子の三次振動モ
ードの圧電トランスを用いたが、ローゼン型や4端子絶
縁構造の圧電トランスの分極に対しても、そのまま適用
されるものである。
Further, in the present embodiment, the three-terminal third-order vibration mode piezoelectric transformer is used, but the present invention can be applied to the polarization of the Rosen type or the four-terminal insulating structure piezoelectric transformer as it is.

【0028】[0028]

【発明の効果】本発明は以上のように構成され機能する
ので、これによると、圧電トランスの入出力部に切り換
えにより交互に矩形又は台形の直流パルス電圧を印加す
るようにしたので、1工程で分極処理可能な圧電特性
(分極度合)の良い低コストの圧電トランスを得ること
ができ、そのための工程が従来例では2工程必要であっ
たのに対して1工程で完了することから、かかる点にお
いて分極処理をより迅速に成し得るという従来にない優
れた圧電トランスの分極方法を提供することができる。
Since the present invention is constructed and functions as described above, according to the present invention, the rectangular or trapezoidal DC pulse voltage is alternately applied to the input / output portion of the piezoelectric transformer by switching, so that one step is performed. It is possible to obtain a low-cost piezoelectric transformer having good piezoelectric characteristics (degree of polarization) that can be polarized with, and the process for that is completed in one step, whereas two steps were required in the conventional example. In this respect, it is possible to provide an unprecedented excellent piezoelectric transformer polarization method capable of performing the polarization treatment more quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例における分極方法の確認に
使用した圧電トランスを示す斜視図である。
FIG. 1 is a perspective view showing a piezoelectric transformer used for confirmation of a polarization method in a first embodiment of the present invention.

【図2】図1に示す実施例の分極方法に使用した直流パ
ルス電圧の切り換え動作を含む電圧印加回路図である。
FIG. 2 is a voltage application circuit diagram including a DC pulse voltage switching operation used in the polarization method of the embodiment shown in FIG.

【図3】図2における実施例で使用した直流パルス電圧
と切り換えのタイミングとを示すタイムチャート図であ
る。
FIG. 3 is a time chart showing the DC pulse voltage used in the embodiment of FIG. 2 and the switching timing.

【図4】本発明の第2実施例における台形直流パルス電
圧を示す波形図である。
FIG. 4 is a waveform diagram showing a trapezoidal DC pulse voltage according to the second embodiment of the present invention.

【図5】従来例の2工程分極に使用される直流パルス電
圧を示す波形図で、図5(a)は通常の場合を示す図、
図5(b)はデューティ比が小さい場合を示す図、図5
(c)はデューティ比が大きい場合を示す図である。
FIG. 5 is a waveform diagram showing a DC pulse voltage used for conventional two-step polarization, and FIG. 5A is a diagram showing a normal case;
FIG. 5B is a diagram showing a case where the duty ratio is small, and FIG.
FIG. 7C is a diagram showing a case where the duty ratio is large.

【図6】従来例の2工程分極に使用される直流パルス電
圧を示す他の波形図で、図6(a)は正弦波を半整流
したのと同等の通常の場合を示す図、図6(b)は時間
幅を小さくした場合を示す図、図5(c)は時間幅を大
きくした場合を示す図である。
[6] In another waveform diagram showing a DC pulse voltage to be used in two steps polarization in the conventional example, FIG. 6 (a) shows a case where a sine wave equal to that half-wave rectification of a normal, Fig. 6B is a diagram showing a case where the time width is reduced, and FIG. 5C is a diagram showing a case where the time width is increased.

【図7】温度が高い場合に生じる分極の度合の低下を示
す線図である。
FIG. 7 is a diagram showing a decrease in the degree of polarization that occurs when the temperature is high.

【符号の説明】[Explanation of symbols]

1 圧電トランス 2 出力電極 3A,4A 入力電極 5 入出力共通端子 7 パルス電圧制御電源 8 電極切換え用リレー 9 入力部分極電圧 10 出力部分極電圧 11 昇圧 12 高電圧維持 13 降圧低電圧 1 Piezoelectric transformer 2 Output electrodes 3A, 4A Input electrode 5 Input / output common terminal 7 Pulse voltage control power supply 8 Electrode switching relay 9 Input partial pole voltage 10 Output partial pole voltage 11 Boost 12 High voltage maintenance 13 Step down low voltage

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力部と出力部とが形成された圧電トラ
ンスの前記入力部と出力部に、それぞれ異なるレベルの
直流パルス電圧を印加するとともに、このとき当該入力
部と出力部とで交互に印加することを特徴とする圧電ト
ランスの分極方法。
To claim 1 wherein said input portion and the output portion of the input portion and the output portion are formed piezoelectric transformer, to apply a different level of the DC pulse voltage, respectively, the input at this time
A method of polarizing a piezoelectric transformer, characterized in that the voltage is applied alternately between the output part and the output part .
【請求項2】 前記異なるレベルの直流パルス電圧は、
それぞれ昇圧,高電圧維持,降圧,低電圧維持を1サイ
クルとすると共に単一の電源端子から交互に出力され、 この降圧後の低電圧維持時に出力先を切り換えることに
より、それぞれの前記直流パルス電圧を前記入力部と出
力部とで交互に印加するようにした ことを特徴とする請
求項1記載の圧電トランスの分極方法。
2. The DC pulse voltages of different levels are
Each step of boosting, maintaining high voltage, maintaining step-down, maintaining low voltage is output at the same time, and output is alternated from a single power supply terminal, and the output destination is switched when maintaining low voltage after this step-down.
Output each DC pulse voltage to the input section.
The method for polarizing a piezoelectric transformer according to claim 1 , wherein the voltage is applied alternately to the force portion .
【請求項3】 圧電素子のキューリー点温度の3/4以
上の温度で直流パルス電圧を印加し始めると共に、その
後,当該温度を下げつつ圧電素子の圧電特性変化のない
低い温度になるまで直流パルス電圧を印加し続けること
を特徴とした請求項1又は2記載の圧電トランスの分極
方法。
3. A DC pulse voltage starts to be applied at a temperature of 3/4 or more of the Curie point temperature of the piezoelectric element, and thereafter, the DC pulse voltage is lowered while the temperature is lowered to a low temperature at which the piezoelectric characteristic of the piezoelectric element does not change. The method for polarizing a piezoelectric transformer according to claim 1 or 2, wherein the voltage is continuously applied.
JP26690994A 1994-10-31 1994-10-31 Polarization method of piezoelectric transformer Expired - Fee Related JP2682473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26690994A JP2682473B2 (en) 1994-10-31 1994-10-31 Polarization method of piezoelectric transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26690994A JP2682473B2 (en) 1994-10-31 1994-10-31 Polarization method of piezoelectric transformer

Publications (2)

Publication Number Publication Date
JPH08130336A JPH08130336A (en) 1996-05-21
JP2682473B2 true JP2682473B2 (en) 1997-11-26

Family

ID=17437354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26690994A Expired - Fee Related JP2682473B2 (en) 1994-10-31 1994-10-31 Polarization method of piezoelectric transformer

Country Status (1)

Country Link
JP (1) JP2682473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109501A1 (en) * 2005-03-18 2006-10-19 Ngk Insulators, Ltd. Piezoelectric element inspection method, inspection device, and polarization processing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347890A (en) * 2004-05-31 2005-12-15 Kyocera Kinseki Corp Manufacturing method of piezoelectric vibrator and manufacturing apparatus thereof
JP5313904B2 (en) * 2007-08-27 2013-10-09 日本碍子株式会社 Method for polarization treatment of laminated piezoelectric / electrostrictive element
JP4582235B2 (en) * 2008-10-31 2010-11-17 株式会社村田製作所 Method for manufacturing piezoelectric device
GB2570707B (en) * 2018-02-05 2021-09-08 Xaar Technology Ltd A method of poling piezoelectric elements of an actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109501A1 (en) * 2005-03-18 2006-10-19 Ngk Insulators, Ltd. Piezoelectric element inspection method, inspection device, and polarization processing method
US7525324B2 (en) 2005-03-18 2009-04-28 Ngk Insulators, Ltd. Inspection method, inspection apparatus, and polarization method for piezoelectric element
JP4845879B2 (en) * 2005-03-18 2011-12-28 日本碍子株式会社 Piezoelectric element inspection method, inspection apparatus, and polarization treatment method

Also Published As

Publication number Publication date
JPH08130336A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JP2682473B2 (en) Polarization method of piezoelectric transformer
JP2671871B2 (en) Piezoelectric transformer and manufacturing method thereof
JPWO2009028348A1 (en) Method for polarization treatment of laminated piezoelectric / electrostrictive element
JP2001189229A (en) Capacitor
JPH0616459B2 (en) Method for manufacturing porcelain capacitor
JP2001316181A (en) Piezoelectric ceramic composition, and high power piezoelectric transformer
JP3706509B2 (en) Piezoelectric transformer
US7490753B2 (en) Method for producing electrical contacting of a piezoelectric actuator and polarization of the piezoelectric actuator
JP3803207B2 (en) Piezoelectric ceramic composition and piezoelectric transformer
JP3008831B2 (en) Manufacturing method of piezoelectric transformer
JP2000307166A (en) Piezoelectric transformer and drive stabilizing device thereof
JP4721540B2 (en) Piezoelectric transformer and power supply device
JP2531087B2 (en) Piezoelectric transformer and driving method thereof
KR980012653A (en) Piezoelectric transformer
JP2003046157A (en) Laminated piezoelectric device and its manufacturing method
JP2548458B2 (en) PTC thermistor device
JP2755177B2 (en) Piezoelectric transformer
JP3080033B2 (en) Multilayer piezoelectric transformer
JP3080052B2 (en) Piezoelectric transformer
JP4831859B2 (en) Piezoelectric transformer
JPH0864883A (en) Piezoelectric ceramic transformer
JPH0320546Y2 (en)
JPH0465557B2 (en)
JPH09275230A (en) Piezoelectric transformer
JPH04359577A (en) Manufacture of laminated piezoelectric actuator element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees