JP2679414B2 - Vehicle braking force left / right distribution control device - Google Patents

Vehicle braking force left / right distribution control device

Info

Publication number
JP2679414B2
JP2679414B2 JP2412732A JP41273290A JP2679414B2 JP 2679414 B2 JP2679414 B2 JP 2679414B2 JP 2412732 A JP2412732 A JP 2412732A JP 41273290 A JP41273290 A JP 41273290A JP 2679414 B2 JP2679414 B2 JP 2679414B2
Authority
JP
Japan
Prior art keywords
turning
rear wheel
wheel brake
hydraulic pressure
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2412732A
Other languages
Japanese (ja)
Other versions
JPH04221261A (en
Inventor
俊郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2412732A priority Critical patent/JP2679414B2/en
Publication of JPH04221261A publication Critical patent/JPH04221261A/en
Application granted granted Critical
Publication of JP2679414B2 publication Critical patent/JP2679414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は車両の旋回中における制
動力左右配分を旋回軌跡が適正となるよう制御する装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the lateral distribution of braking force during turning of a vehicle so that the turning locus becomes appropriate.

【0002】[0002]

【従来の技術】車両の液圧ブレーキ装置は、ブレーキペ
ダル踏力に応じたマスターシリンダからの液圧で各車輪
のホイールシリンダを作動させて個々の車輪を制動す
る。ところでこの制動時は車体の荷重移動で前輪荷重が
増し、後輪荷重が減少することから、前後輪ブレーキ液
圧を同じにすると、後輪が前輪より先にロックし、車両
のオーバーステア傾向を生ずる。逆に、前輪が後輪より
先にロックする場合は、少なくとも車両のオーバーステ
ア傾向を生ずることがない。この観点から一般の液圧ブ
レーキ装置にあっては、前後輪が同時にロックする理想
的な前後輪ブレーキ液圧配分が図5に点線で例示する如
きものであることから、同図中a−b−cで示すように
後輪ブレーキ液圧PR をスプリットポイントb(臨界液
圧PS1) 以上の領域で前輪ブレーキ液圧PF に対し上昇
制限する液圧制御弁が後輪ブレーキ液圧系に挿入されて
いる。図5の特性a−b−cは点線の理想特性より図中
下側の領域に位置し、従って前輪の方が後輪より先にロ
ックすることとなって車両のオーバーステア傾向を回避
し得る。
2. Description of the Related Art A hydraulic brake system for a vehicle brakes each wheel by operating a wheel cylinder of each wheel with hydraulic pressure from a master cylinder in accordance with a brake pedal depression force. By the way, at the time of this braking, the front wheel load increases and the rear wheel load decreases due to the movement of the vehicle body.Therefore, if the front and rear wheel brake fluid pressures are the same, the rear wheels will lock before the front wheels and the oversteer tendency of the vehicle Occurs. On the contrary, when the front wheels lock before the rear wheels, at least the tendency of oversteering of the vehicle does not occur. From this point of view, in the general hydraulic brake device, the ideal front and rear wheel brake hydraulic pressure distribution in which the front and rear wheels are locked simultaneously is as shown by the dotted line in FIG. As shown by -c, the rear wheel brake hydraulic pressure system has a hydraulic control valve that limits the increase of the rear wheel brake hydraulic pressure P R with respect to the front wheel brake hydraulic pressure P F in the region above the split point b (critical hydraulic pressure P S1 ). Has been inserted into. The characteristics a-b-c of FIG. 5 are located in the lower region of the figure than the ideal characteristics of the dotted line, and therefore the front wheels lock before the rear wheels, and the oversteering tendency of the vehicle can be avoided. .

【0003】[0003]

【発明が解決しようとする課題】しかして、限界付近で
の旋回走行中に軽い制動を行うと、前後輪共ロックに至
ることがないことから、制動にともなう荷重移動で前輪
コーナリングフォースが増し、後輪コーナリングフォー
スが低下する。このため当該軽い制動時、車両はオーバ
ーステア傾向となる。ところで、同じ限界付近の旋回状
態でも強い制動時は、左右液圧制御弁による前記の制動
力前後配分制御がなされるため、前輪が後輪より先にロ
ックし、前輪コーナリングフォースが後輪コーナリング
フォースに対し低下することとなって、車両は旋回方向
外方へふくらむような旋回軌跡をたどり、軽い制動時と
は逆にアンダーステア傾向となる。本発明は旋回状態で
このオーバーステア傾向やアンダーステア傾向を打消す
ヨーモーメントが生ずるよう左右間に制動力差を持たせ
ることにより上述の問題を解消することを目的とする。
However, if light braking is performed while the vehicle is turning near the limit, both front and rear wheels will not be locked. Therefore, the front wheel cornering force increases due to the load movement accompanying braking, Rear wheel cornering force is reduced. Therefore, during the light braking, the vehicle tends to oversteer. By the way, during strong braking even when turning around the same limit, the front and rear wheels lock before the rear wheels because the left and right hydraulic pressure control valves control the front and rear distribution of the braking force. As a result, the vehicle follows a turning locus that bulges outward in the turning direction, and tends to understeer, contrary to light braking. An object of the present invention is to eliminate the above-mentioned problem by providing a braking force difference between the left and right sides so that a yaw moment that cancels the oversteering tendency and the understeering tendency is generated in a turning state.

【0004】[0004]

【課題を解決するための手段】上記オーバーステア傾向
の対策のため及び上記アンダーステア傾向の対策のため
本発明はスプリットポイント以上の領域で前後輪ブレー
キ液圧配分を前輪ブレーキ液圧に対し後輪ブレーキ液圧
の方が低くなるようにする液圧制御弁を左右の後輪ブレ
ーキ液圧系で別々に具えた車両の液圧ブレーキ装置にお
いて、前記左右の後輪ブレーキ液圧系の液圧制御弁夫々
は、前輪ブレーキ液圧に対し後輪ブレーキ液圧の方が低
くなるようにする、その前後輪ブレーキ液圧配分のスプ
リットポイントを変更可能な構成とし、更に、車両の旋
回状態を検出する旋回検知手段と、車両制動力の強さを
検出する制動力検出手段と、これら手段からの信号に応
答して、旋回制動時のその制動力の強弱に応じ、前記前
後輪ブレーキ液圧配分のスプリットポイントを夫々有す
るスプリットポイント変更可能な左右後輪ブレーキ液圧
系の液圧制御弁の当該前後輪ブレーキ液圧配分のスプリ
ットポイントを変更する手段であって、旋回中、制動力
が設定値未満の軽い制動時では左右後輪ブレーキ液圧系
の液圧制御弁のうち旋回方向外輪に係る液圧制御弁の前
後輪ブレーキ液圧配分のスプリットポイントが旋回方向
内輪に係る液圧制御弁の前後輪ブレーキ液圧配分のスプ
リットポイントよりも高くなるように、かつ逆に、制動
力が前記設定値以上の強い制動時では左右後輪ブレーキ
液圧系の液圧制御弁のうち旋回方向内輪に係る液圧制御
弁の前後輪ブレーキ液圧配分のスプリットポイントが旋
回方向外輪に係る液圧制御弁の前後輪ブレーキ液圧配分
のスプリットポイントよりも高くなるように制御する、
スプリットポイント変更手段とを具備して構成したもの
である。
In order to prevent the oversteer tendency and to prevent the understeer tendency, the present invention distributes the front and rear wheel brake fluid pressure to the front wheel brake fluid pressure in the region above the split point. A hydraulic brake device for a vehicle, wherein hydraulic pressure control valves for lowering the hydraulic pressure are provided separately for the left and right rear wheel brake hydraulic pressure systems. Each has a configuration in which the rear wheel brake fluid pressure is lower than the front wheel brake fluid pressure, and the split points of the front and rear wheel brake fluid pressure distributions can be changed. Detecting means, braking force detecting means for detecting the strength of the vehicle braking force, and, in response to signals from these means, the front and rear wheel brake fluid pressures according to the strength of the braking force during turning braking. It is a means for changing the split point of the front and rear wheel brake fluid pressure distribution of the left and right rear wheel brake fluid pressure hydraulic control valves that can change the split point each having a minute split point, and the braking force is set during turning. When the braking is less than the specified value, the split point of the front and rear wheel brake fluid pressure distribution of the hydraulic control valve for the outer wheels in the turning direction is the hydraulic control valve for the inner wheel in the turning direction among the hydraulic control valves for the left and right rear wheel hydraulic pressure systems. Of the front and rear wheels, and on the contrary, when the braking force is stronger than the set value, the left and right rear wheels of the hydraulic control valve of the brake hydraulic system in the turning direction are The split point of the front / rear wheel brake fluid pressure distribution of the hydraulic pressure control valve related to is higher than the split point of the front / rear wheel brake fluid pressure distribution of the hydraulic pressure control valve related to the outer wheel in the turning direction. Is controlled so as,
And a split point changing means.

【0005】この際、上記旋回検知手段は旋回の度合を
検出するよう構成し、又上記スプリットポイント変更手
段は旋回の度合が強くなるほど左右液圧制御弁間のスプ
リットポイントの差を大きくするよう構成するのが良
い。
At this time, the turning detection means is configured to detect the turning degree, and the split point changing means is configured to increase the split point difference between the left and right hydraulic pressure control valves as the turning degree becomes stronger. Good to do.

【0006】[0006]

【作用】液圧ブレーキ装置による制動時、左右の後輪ブ
レーキ液圧系で別々に具える左右液圧制御弁は夫々スプ
リットポイント以上の領域で後輪ブレーキ液圧の方が前
輪ブレーキ液圧より低くなるよう前後輪ブレーキ液圧配
分を制御する。ところで左右後輪ブレーキ液圧系の液圧
制御弁夫々は、前輪ブレーキ液圧に対し後輪ブレーキ液
圧の方が低くなるようにする、その前後輪ブレーキ液圧
配分のスプリットポイントを変更可能とされており、更
には、スプリットポイント変更手段が、旋回検知手段と
制動力検出手段からの信号に応答して、旋回制動時のそ
の制動力の強弱に応じ、上記前後輪ブレーキ液圧配分の
スプリットポイントを夫々有するスプリットポイント変
更可能な左右後輪ブレーキ液圧系の液圧制御弁の当該前
後輪ブレーキ液圧配分のスプリットポイントを下記の如
くに変更する。
[Operation] When braking by the hydraulic brake device, the left and right hydraulic control valves, which are separately provided for the left and right rear wheel brake hydraulic systems, are located above the split point and the rear wheel hydraulic pressure is greater than the front wheel hydraulic pressure. The front and rear wheel brake fluid pressure distribution is controlled to be low. By the way, each of the left and right rear wheel brake fluid pressure control valves can change the split point of the front and rear wheel brake fluid pressure distribution so that the rear wheel brake fluid pressure is lower than the front wheel brake fluid pressure. Further, the split point changing means responds to the signals from the turning detection means and the braking force detection means in accordance with the strength of the braking force at the time of turning braking, and splits the front and rear wheel brake hydraulic pressure distribution. The split points of the front and rear wheel brake fluid pressure distributions of the left and right rear wheel brake fluid pressure hydraulic control valves, each of which has a respective point, can be changed as follows.

【0007】即ち、旋回検知手段が車両の旋回状態を検
知する旋回中に、制動力検出手段で検出した車両制動力
が設定値未満である軽制動時、スプリットポイント変更
手段は左右後輪ブレーキ液圧系の液圧制御弁のうち旋回
方向外輪に係る液圧制御弁の前後輪ブレーキ液圧配分の
スプリットポイントが旋回方向内輪に係る液圧制御弁の
前後輪ブレーキ液圧配分のスプリットポイントよりも高
くなるようにスプリットポイントを変更制御する。これ
により旋回方向外側の制動力が旋回方向内側の制動力よ
りも大きくされ、旋回中の軽制動時に前記した通りに生
ずる車両のオーバーステア傾向を打消すヨーモーメント
を発生する。よって、車両は当該旋回制動状態で本来な
らオーバーステア傾向の旋回軌跡をたどるところなが
ら、これを補正されて正規の旋回軌跡に沿い走行するこ
とができる。
That is, during turning in which the turning detection means detects the turning state of the vehicle, during light braking in which the vehicle braking force detected by the braking force detection means is less than a set value, the split point changing means changes the left and right rear wheel brake fluid. Of the hydraulic control valves of the pressure system, the split point of the front and rear wheel brake hydraulic pressure distribution of the hydraulic control valve for the outer wheel in the turning direction is greater than the split point of the front and rear wheel brake hydraulic pressure distribution of the hydraulic control valve for the inner wheel in the turning direction. Change and control the split point to be higher. As a result, the braking force on the outside in the turning direction is made larger than the braking force on the inside in the turning direction, and a yaw moment that cancels the oversteer tendency of the vehicle that occurs as described above during light braking during turning is generated. Therefore, while the vehicle normally follows a turning locus that tends to oversteer in the turning braking state, the vehicle can be corrected and travel along the regular turning locus.

【0008】一方旋回検知手段が車両の旋回状態を検知
する旋回中に、制動力検出手段で検出した車両制動力が
上記設定値以上である強制動時、スプリットポイント変
更手段は、逆に、左右後輪ブレーキ液圧系の液圧制御弁
のうち旋回方向内輪に係る液圧制御弁の前後輪ブレーキ
液圧配分のスプリットポイントが旋回方向外輪に係る液
圧制御弁の前後輪ブレーキ液圧配分のスプリットポイン
トよりも高くなるようにスプリットポイントを変更制御
する。これにより旋回方向内側の制動力が旋回方向外側
の制動力よりも大きくされ、旋回中の強制動時に前記し
た通りに生ずる車両のアンダーステア傾向を打消すヨー
モーメントを発生する。よって、車両は当該旋回制動状
態で本来ならアンダーステア傾向の旋回軌跡をたどると
ころながら、これを補正されて正規の旋回軌跡に沿い走
行することができる。以上より、非旋回時の制動時に
は、上記左右液圧制御弁によってスプリットポイント以
上の領域で後輪ブレーキ液圧の方が前輪ブレーキ液圧よ
り低くなるよう前後輪ブレーキ液圧配分を制御すること
ができ、その本来の機能を発揮させることができるのは
勿論、旋回中の制動時も、かかる左右液圧制御弁を用い
て、制動力が設定値未満の弱制動では旋回外輪側のスプ
リットポイントを旋回内輪側より高め、制動力が設定値
以上の強制動では、これと逆に、旋回内輪側のスプリッ
トポイントを旋回外輪側より高めることができ、同じ旋
回状態での制動時であっても、制動力の強弱によりステ
ア特性が変わるという既述の如くの問題が解消され、制
動力の強弱に応じてステア特性が変化しても適切に対応
し得る。
On the other hand, during turning when the turning detection means detects the turning state of the vehicle, when the vehicle braking force detected by the braking force detection means is equal to or more than the set value, the split point changing means, conversely, Among the hydraulic control valves of the rear wheel brake hydraulic system, the split point of the front and rear wheel brake hydraulic pressure distribution of the hydraulic pressure control valve for the inner wheel in the turning direction is the front and rear wheel brake hydraulic pressure distribution of the hydraulic control valve for the outer wheel in the turning direction. Change and control the split point so that it is higher than the split point. As a result, the braking force on the inner side in the turning direction is made larger than the braking force on the outer side in the turning direction, and a yaw moment is generated that cancels the understeer tendency of the vehicle that occurs during forced movement during turning as described above. Therefore, the vehicle can travel along the regular turning locus after being corrected, while following the turning locus which tends to be understeer in the turning braking state. From the above, during braking during non-turning, the front and rear wheel brake fluid pressure distribution can be controlled by the left and right fluid pressure control valves so that the rear wheel brake fluid pressure becomes lower than the front wheel brake fluid pressure in the region above the split point. It is possible to achieve its original function, and of course, even during braking during turning, the left and right hydraulic pressure control valves are used to set the split point on the outer side of the turning wheel in weak braking where the braking force is less than the set value. On the contrary, in the case of a forced motion in which the braking force is higher than the turning inner wheel side and the braking force is equal to or more than the set value, the split point on the turning inner wheel side can be raised higher than the turning outer wheel side, and even when braking in the same turning state, The problem that the steer characteristic changes depending on the strength of the braking force has been solved, and even if the steer characteristic changes according to the strength of the braking force, it is possible to appropriately cope with the change.

【0009】この際、旋回検知手段が旋回の度合を検知
し、スプリットポイント変更手段が旋回の度合に応じて
左右液圧制御弁間におけるスプリットポイントの差を大
きくするようなものである場合、上記の補正があらゆる
旋回状態において適正になされ、車両の旋回軌跡を旋回
の度合に関係なく常時適正に保つことができる。
In this case, when the turning detection means detects the degree of turning, and the split point changing means increases the split point difference between the left and right hydraulic pressure control valves in accordance with the degree of turning, Is properly corrected in all turning states, and the turning locus of the vehicle can always be properly maintained regardless of the degree of turning.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基き詳細に説
明する。図1及び図2は本発明による制動力左右配分制
御装置の一実施例を示し、図1はブレーキ液圧配管図、
図2は制御回路図である。図1において、1はブレーキ
ペダル、2はその踏力に応じた液圧を出力する2系統ブ
レーキマスターシリンダ、3L, 3Rは左右前輪ホイールシ
リンダ、4L, 4Rは左右後輪ホイールシリンダを示す。マ
スターシリンダ2の両出口から出力されるマスターシリ
ンダ液圧の一方は左右前輪ホイールシリンダ3L, 3Rへ前
輪ブレーキ液圧PF として、又他方は左右後輪ホイール
シリンダ4L, 4Rへ後輪ブレーキ液圧PRL, PRRとして夫
々供給される。なお、5は周知の4チャンネルアンチス
キッド制御ユニットで、左右前輪ブレーキ液圧PF を個
々に、又左右後輪ブレーキ液圧PRL, PRRを個々に、対
応車輪がロックしたままとなるの防止するよう制御す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. 1 and 2 show an embodiment of a braking force left / right distribution control device according to the present invention, and FIG. 1 is a brake hydraulic piping diagram,
FIG. 2 is a control circuit diagram. In FIG. 1, 1 is a brake pedal, 2 is a two-system brake master cylinder that outputs hydraulic pressure according to the pedaling force, 3L and 3R are left and right front wheel cylinders, and 4L and 4R are left and right rear wheel cylinders. While the left and right front wheel cylinder 3L of the master cylinder hydraulic pressure outputted from both the outlet of the master cylinder 2, as the front wheel brake fluid pressure P F to the 3R, also the other left and right rear wheel cylinder 4L, rear to 4R-wheel brake hydraulic pressure They are supplied as P RL and P RR , respectively. Reference numeral 5 is a well-known 4-channel anti-skid control unit in which the left and right front wheel brake fluid pressures P F are individually locked and the left and right rear wheel brake fluid pressures P RL and P RR are individually locked. Control to prevent.

【0011】左右後輪ブレーキ液圧系には夫々例えばプ
ロポーショニングバルブとして特開昭61−238554号公報
により周知の液圧制御弁6L, 6Rを挿置する。これらの弁
は同じ構成のため弁6Lについてのみ詳述し、弁6Rについ
ては対応部分をLに代えRのサフィックスを付した同一
符号で図示するにとどめ、重複説明を避けた。弁6Lは入
口ポート7Lへ入力されるマスターシリンダ液圧を制御し
て出口ポート8Lより出力し、この出力圧を後輪ブレーキ
液圧PRLとしてホイールシリンダ4Lに供給するもので、
段付プランジャ9Lを調圧ばね10L により図示の限界位置
に弾支して具える。段付プランジャ9Lの大径端部内にポ
ペット弁体11L を挿置し、これをリターンスプリング12
L により弁座13L に向け付勢する。段付プランジャ9Lの
図示の限界位置において、ポペット弁体11L は弁座13L
から離れた開弁位置となり、ポート7L,8L間を通じて後
輪ブレーキ液圧PRLをマスターシリンダ液圧、従って前
輪ブレーキ液圧PF と同じにする。従って、前後輪ブレ
ーキ液圧配分は当初図6の特性a−bの如きものとな
る。ところでこの間、液圧の上昇につれプランジャ9Lは
調圧ばね10L に抗し図中左行し、図5にPS1で示す臨界
液圧(ばね10L のセット荷重により決まる) になったと
ころで、ポペット弁体11L がリターンスプリング12L に
より弁座13L に着座して自閉する。この時、ポート7L,
8L間が遮断され、マスターシリンダ液圧の上昇分がその
まま後輪ブレーキ液圧PRLの上昇分とならず、後輪ブレ
ーキ液圧PRLの上昇が以下の如くに制限される。即ち、
ポペット弁体11L の閉止時、プランジャ9Lの大径端に後
輪ブレーキ液圧PRLによる図中左向きの力が、又プラン
ジャ9Lの段差部にマスターシリンダ液圧(前輪ブレーキ
液圧PF と同じ)による図中右向きの力が夫々作用する
ようになる。ここでマスターシリンダ液圧が或る値だけ
上昇すると、これによりプランジャ9Lは図中右行されて
ポペット弁体11L を再度開弁位置となし、後輪ブレーキ
液圧PRLを上昇させる。かかる後輪ブレーキ液圧の上昇
によりプランジャ9Lは図中左行されてポペット弁体11L
を再度閉じ、後輪ブレーキ液圧をマスターシリンダ液圧
の上昇分未満の或る値だけ上昇させる。かかる作用の繰
返しにより、後輪ブレーキ液圧PRLは図5に示す如くス
プリットポイントb以後b−c特性の如くマスターシリ
ンダ液圧(前輪ブレーキ液圧PF )に対し上昇を制限さ
れ、前後輪ブレーキ液圧配分特性を点線で示す理想特性
に近似させることができる。液圧制御弁6Rも対応する右
後輪ブレーキ液圧PRRを同様に制御して同様の前後輪ブ
レーキ液圧配分特性を達成する。
Hydraulic pressure control valves 6L and 6R, which are well known from Japanese Patent Laid-Open No. 61-238554, are inserted in the left and right rear wheel brake hydraulic systems, respectively, as proportioning valves. Since these valves have the same configuration, only the valve 6L will be described in detail, and the corresponding portion of the valve 6R will be illustrated by the same reference numerals with a suffix of R instead of L, and redundant description will be avoided. The valve 6L controls the master cylinder hydraulic pressure input to the inlet port 7L and outputs it from the outlet port 8L, and supplies this output pressure to the wheel cylinder 4L as the rear wheel brake hydraulic pressure P RL .
The stepped plunger 9L is elastically supported at the limit position shown by the pressure adjusting spring 10L. Insert the poppet valve body 11L into the large diameter end of the stepped plunger 9L, and insert the poppet valve body 11L into the return spring 12
Energize toward valve seat 13L with L. At the limit position of the stepped plunger 9L, the poppet valve body 11L is seated on the valve seat 13L.
And the rear wheel brake fluid pressure P RL is made equal to the master cylinder fluid pressure, and therefore the front wheel brake fluid pressure P F , through the ports 7L and 8L. Therefore, the front and rear wheel brake hydraulic pressure distribution initially has a characteristic ab shown in FIG. By the way, during this time, as the hydraulic pressure rises, the plunger 9L moves leftward in the figure against the pressure adjusting spring 10L, and when the critical hydraulic pressure shown by P S1 in FIG. 5 (determined by the set load of the spring 10L) is reached, the poppet valve Body 11L is seated on valve seat 13L by return spring 12L and self-closes. At this time, port 7L,
8L is cut off, the increase in the master cylinder hydraulic pressure does not directly increase the rear wheel brake hydraulic pressure P RL , and the increase in the rear wheel brake hydraulic pressure P RL is limited as follows. That is,
When the poppet valve body 11L is closed, the force to the left in the figure due to the rear wheel brake fluid pressure P RL is applied to the large diameter end of the plunger 9L, and the master cylinder fluid pressure (the same as the front wheel brake fluid pressure P F is applied to the stepped portion of the plunger 9L). ), The rightward force in the figure acts on each. When the master cylinder hydraulic pressure rises by a certain value, the plunger 9L is moved rightward in the figure to set the poppet valve body 11L to the open valve position again, and the rear wheel brake hydraulic pressure P RL is increased. Due to the increase in the rear wheel brake fluid pressure, the plunger 9L is moved to the left in the figure to move the poppet valve body 11L.
Is closed again, and the rear wheel brake hydraulic pressure is increased by a certain value that is less than the increase in the master cylinder hydraulic pressure. By repeating such an action, the rear wheel brake fluid pressure P RL is restricted from increasing relative to the master cylinder fluid pressure (front wheel brake fluid pressure P F ) as shown by the bc characteristic after the split point b as shown in FIG. The brake fluid pressure distribution characteristic can be approximated to the ideal characteristic shown by the dotted line. The hydraulic pressure control valve 6R also controls the corresponding right rear wheel brake hydraulic pressure P RR in the same manner to achieve similar front and rear wheel brake hydraulic pressure distribution characteristics.

【0012】図5において、スプリットポイントをdに
上昇させたり、fに低下させたりし得るようにするため
に、図1に示す如くプランジャ9Lから遠い調圧ばね10L
の端部が着座するばね座14L をボール15L を介して調整
ねじ16L に突当て、ねじ16L により調圧ばね10L のセッ
ト荷重を変更可能とする。これがため、ねじ16L をモー
タ17L の出力軸17Laに対し軸線方向変位可能に回転係合
させる。モータ17L 及び17R はスプリットポイント変更
手段の用をなす可逆転モータとし、夫々の駆動方向及び
駆動量を個々にコントローラ18により制御する。このコ
ントローラ18には調圧ばね10L, 10Rのセット荷重を検出
する荷重センサ19L, 19Rからの信号と、車両の横加速度
G を検出する旋回検知手段としての横Gセンサ20から
出力された信号と、車両の前後加速度XG を検出する制
動力検出手段としての前後Gセンサ21から出力された信
号とを夫々入力する。
In FIG. 5, in order to allow the split point to be raised to d or lowered to f, as shown in FIG. 1, the pressure adjusting spring 10L far from the plunger 9L.
The spring seat 14L on which the end of the seat is seated abuts against the adjusting screw 16L via the ball 15L, and the set load of the pressure adjusting spring 10L can be changed by the screw 16L. Therefore, the screw 16L is rotationally engaged with the output shaft 17La of the motor 17L so as to be displaceable in the axial direction. The motors 17L and 17R are reversible motors that serve as split point changing means, and their respective drive directions and drive amounts are individually controlled by the controller 18. The pressure control spring 10L in the controller 18, the load sensor 19L for detecting the set load of 10R, and the signal from the 19R, the signal output from the lateral G sensor 20 as the turning detection means for detecting a lateral acceleration Y G of the vehicle And a signal output from the front / rear G sensor 21 as a braking force detecting means for detecting the front / rear acceleration X G of the vehicle.

【0013】コントローラ18はこれら入力情報を基にモ
ータ17L, 17Rを個々に駆動制御するために図2の左側用
制御回路18L と、同様な図示せざる右側用制御回路( モ
ータ17L をモータ17R に、荷重センサ19L を荷重センサ
19R に夫々置換えたものに相当) とを組合せた構成とす
る。モータ17L はバッテリEに対しイグニッションスイ
ッチIG、主リレー接点S1を順次介し、又モータ回転方向
切換用リレー接点S2, S3を介して接続する。リレー接点
S1はリレーコイルRL1 のON時に閉じる常開接点とし、リ
レー接点S2, S3はリレーコイルRL2 のON時に実線位置か
ら点線位置に切換ってモータ17L の回転方向を通電方向
の変更により切換えるものとする。リレーRL1, RL2は夫
々一端を電源に接続し、他端をトランジスタT1, T2のコ
レクタ・エミッタ通路を経てアースする。トランジスタ
T1のベースはORゲートOR1 の出力に接続し、該ORゲート
の2入力及びトランジスタT2のベースを夫々比較回路31
に接続する。比較回路31は比較器32, 33と、分圧抵抗R
1, R2と、ダイオードD1とを具え、このダイオードを挟
んで抵抗R1, R2を直列に接続し、抵抗R2をアースする。
ダイオードD1と抵抗R1, R2との間を夫々比較器32, 33の
プラス入力に接続し、比較器32, 33のマイナス入力を分
圧抵抗R3, R4間に接続する。分圧抵抗R3には増幅器34を
介して荷重センサ19Lからの出力、つまり調圧ばね10L
(図1参照) のセット荷重に対応した電圧を印加する。
The controller 18 controls the motors 17L and 17R individually based on these input information to control the left side control circuit 18L in FIG. 2 and a similar unillustrated right side control circuit (the motor 17L to the motor 17R). , Load sensor 19L load sensor
19R) (equivalent to the ones replaced with 19R). The motor 17L is connected to the battery E through the ignition switch IG, the main relay contact S1 in sequence, and the motor rotation direction switching relay contacts S2, S3. Relay contact
S1 is a normally open contact that closes when the relay coil RL1 is ON, and relay contacts S2 and S3 are switched from the solid line position to the dotted line position when the relay coil RL2 is ON to switch the rotation direction of the motor 17L by changing the energizing direction. . The relays RL1 and RL2 each have one end connected to a power supply and the other end grounded through the collector-emitter paths of the transistors T1 and T2. Transistor
The base of T1 is connected to the output of the OR gate OR1, and the two inputs of the OR gate and the base of the transistor T2 are respectively connected to the comparison circuit 31.
Connect to The comparison circuit 31 includes comparators 32 and 33 and a voltage dividing resistor R.
1, R2 and a diode D1 are provided, and the resistors R1 and R2 are connected in series with the diode sandwiched therebetween, and the resistor R2 is grounded.
The diode D1 and the resistors R1 and R2 are connected to the positive inputs of the comparators 32 and 33, respectively, and the negative inputs of the comparators 32 and 33 are connected between the voltage dividing resistors R3 and R4. The output from the load sensor 19L via the amplifier 34, that is, the pressure adjusting spring 10L, is applied to the voltage dividing resistor R3.
Apply a voltage corresponding to the set load (see Fig. 1).

【0014】分圧抵抗R1には左側目標臨界液圧演算回路
35からの目標臨界液圧に対応した電圧を印加し、この回
路は横Gセンサ20及び前後Gセンサ21からの情報に基き
目標とすべき左側液圧制御弁6Lの臨界液圧を求め、対応
した電圧を出力するものとする。この電圧は抵抗R1, R2
により分圧されて目標臨界液圧を得るに必要な調圧ばね
10L のセット荷重に対応した電圧が抵抗R1, R2間には現
れる。但し、ダイオードD1の設置によりヒステリシスに
相当する電圧Vdの差をもって比較器32, 33のプラス入力
には夫々電圧V1とV2 (V2=V1-Vd)が印加され、比較器3
2, 33のマイナス入力に印加される調圧ばね10L の実際
のセット荷重に対応した電圧V3と比較される。
The left target critical hydraulic pressure calculation circuit is used for the voltage dividing resistor R1.
A voltage corresponding to the target critical hydraulic pressure from 35 is applied, and this circuit finds the critical hydraulic pressure of the left hydraulic pressure control valve 6L to be targeted based on the information from the lateral G sensor 20 and the front and rear G sensor 21, and responds. Shall output the voltage. This voltage is the resistance R1, R2
Pressure spring required to obtain the target critical hydraulic pressure by being divided by
The voltage corresponding to the set load of 10L appears between the resistors R1 and R2. However, by installing the diode D1, the voltages V1 and V2 (V2 = V1-Vd) are applied to the positive inputs of the comparators 32 and 33, respectively, due to the difference in voltage Vd corresponding to hysteresis, and the comparator 3
It is compared with the voltage V3 corresponding to the actual set load of the pressure regulating spring 10L applied to the negative inputs of 2, 33.

【0015】左側目標臨界液圧演算回路35はセンサ20で
検出した横加速度YG を基に図3に対応するテーブルデ
ータから、又は対応するPSL=PS1+B・YG の演算に
より左側目標臨界液圧PSLを求める。図2におけると同
様な図示せざる右側用制御回路中の右側目標臨界液圧演
算回路は図3の実線に対応するテーブルデータから、又
は対応するPSR=PS1−B・YG の演算により右側目標
臨界液圧PSRを求める。図3は横加速度YG が0の時、
つまり非旋回中は左右目標臨界液圧PSL, PSRを共に図
5にPS1で示す如きものとなし、前後輪ブレーキ液圧配
分特性を左右共に点線の理想特性に近似させ、横加速度
G が生ずる旋回中はその度合に比例して旋回方向外側
輪に係る液圧制御弁の目標臨界液圧( 右旋回中はPSL
左旋回中はPSR) を高め、旋回度合に反比例して旋回方
向内側輪に係る液圧制御弁の目標臨界液圧(右旋回中は
SR、左旋回中はPSL)を低下させることを示す。
The left-side target critical hydraulic pressure calculation circuit 35 calculates the left-side target from the table data corresponding to FIG. 3 based on the lateral acceleration Y G detected by the sensor 20 or by calculating the corresponding P SL = P S1 + B · Y G. Determine the critical fluid pressure P SL . The right target critical hydraulic pressure calculation circuit in the right side control circuit (not shown) similar to that in FIG. 2 is obtained from the table data corresponding to the solid line in FIG. 3 or the corresponding calculation of P SR = P S1 −B · Y G The right target critical hydraulic pressure P SR is calculated. In Fig. 3, when the lateral acceleration Y G is 0,
That is, during non-turning, both the left and right target critical hydraulic pressures P SL and P SR are not as shown by P S1 in FIG. 5, and the front and rear wheel brake hydraulic pressure distribution characteristics are approximated to the ideal characteristics on the left and right sides, and the lateral acceleration Y During the turn in which G occurs, the target critical hydraulic pressure of the hydraulic control valve for the outer wheel in the turning direction is proportional to the degree (P SL during right turn,
During left turning enhance P SR), target critical fluid pressure in the hydraulic pressure control valve according to the turning direction inside wheel in inverse proportion to the turning degree (turning right is P SR, it is turning left to lower the P SL) Indicates that.

【0016】ところで、図3においける比例定数Bは図
4に示す如く前後Gセンサ21で検出した車両域速度 XG
の関数としてB=B0 −D・XG の通りに定め、XG
0の非制動時は正の最大値BO とし、減速度XG の増大
に反比例(比例定数D)して漸減するものとする。従っ
て、比例定数Bは設定減速度XGS未満の軽制動時、XGS
から遠いほど絶対値が大きな正の値をとり、XGS以上の
強制動時、XGSから遠いほど絶対値が大きな負の値をと
る。
By the way, the proportional constant B in FIG. 3 is the vehicle region speed X G detected by the front and rear G sensor 21 as shown in FIG.
As a function of B = B 0 −D · X G , and X G =
When 0 is not applied, the maximum positive value B O is set, and it is inversely proportional to the increase of the deceleration X G (proportional constant D) and gradually decreased. Therefore, the proportional constant B At light braking less than the set deceleration X GS, X GS
Farther from the absolute value takes a large positive value, when X GS more forced dynamic, absolute value farther from X GS takes a large negative value.

【0017】図3の実線はXG =0の非制動時における
左右臨界液圧PSL, PSRの特性を示し、図4の比例定数
Bにより、制動力が大きくなる強制動ほどこれら特性は
接近してXG =XGSの時図3の点線上に一致し、更なる
強制動時左右臨界液圧PSL, PSRの特性は夫々PSL1,
SR1 により例示する如くになって上下関係が逆転す
る。この逆転時、旋回方向内輪に係る液圧制御弁の目標
臨界液圧(右旋回中はPSR1 、左旋回中はPSL1 )の方
が、旋回方向外輪に係る液圧制御弁の目標臨界液圧(右
旋回中はPSL1 、左旋回中はPSR1 )よりも高くなる。
The solid line in FIG. 3 shows the characteristics of the left and right critical hydraulic pressures P SL , P SR at the time of non-braking with X G = 0. The proportional constant B shown in FIG. When approaching and X G = X GS , they coincide with the dotted line in FIG. 3, and the characteristics of the left and right critical hydraulic pressures P SL , P SR at the time of further forced movement are P SL1 ,
The vertical relationship is reversed as illustrated by P SR1 . At the time of this reverse rotation, the target critical hydraulic pressure of the hydraulic control valve for the inner wheel in the turning direction (P SR1 during the right turn and P SL1 for the left turn) is the target critical pressure of the hydraulic control valve for the outer wheel in the turning direction. It becomes higher than the hydraulic pressure (P SL1 during right turn, P SR1 during left turn).

【0018】上記実施例の作用を次に説明する。図2の
回路35は上記により左側目標臨界液圧PSLを求め、これ
を図3に例示するように非旋回中はPS1とし、旋回中は
横加速度YG に対応して軽制動中(XG <XGS)なら、
例えばPS2とし、強制動中(XG ≧XGS)なら例えばP
S3と定める。分圧抵抗R1, R2間にはダイオードD1を挟ん
でその両側にこの左側目標臨界液圧を得るのに必要な調
圧ばね10L のセット荷重に対応した電圧の上限値V1及び
下限値V2が生ずる。比較器32, 33及びORゲートOR1 はこ
れら上下限値間の電圧範囲に分圧抵抗R3, R4間の電圧V3
がある時、つまり調圧ばね10L のセット荷重が左側目標
臨界液圧に対応していれば、トランジスタT1, T2を共に
OFF する。この時、リレー接点S1は開き、リレー接点S
2, S3は実線位置となり、モータ17L を停止して調圧ば
ね10L のセット荷重を今のままに保つ。
The operation of the above embodiment will now be described. The circuit 35 of FIG. 2 obtains the left-side target critical hydraulic pressure P SL from the above, and sets it to P S1 during non-turning and during light braking corresponding to the lateral acceleration Y G during turning (as illustrated in FIG. 3). If X G <X GS ),
For example, if P S2 is set, and if forcibly moving (X G ≧ X GS ), then for example P
Defined as S3 . The diode D1 is sandwiched between the voltage dividing resistors R1 and R2, and the upper limit value V1 and the lower limit value V2 of the voltage corresponding to the set load of the pressure regulating spring 10L necessary to obtain the left target critical hydraulic pressure are generated on both sides of the diode D1. . The comparators 32 and 33 and the OR gate OR1 have a voltage range V3 between the voltage dividing resistors R3 and R4 within the voltage range between the upper and lower limits.
When the set load of the pressure regulating spring 10L corresponds to the left-side target critical hydraulic pressure, both transistors T1 and T2 are turned on.
Turn off. At this time, the relay contact S1 opens and the relay contact S
2, S3 is in the solid line position, the motor 17L is stopped and the set load of the pressure regulating spring 10L is kept as it is.

【0019】V3<V2なら、つまり調圧ばね10L のセット
荷重が左側目標臨界液圧PSL(PS2,PS3)に対し小さ
過ぎる場合、トランジスタT1, T2が共にONされ、リレー
接点S1を閉じ、リレー接点S2, S3を点線位置にする。こ
れによりモータ17L が正転されることとなり、モータ17
L は調圧ばね10L のセット荷重を高め、これが目標臨界
液圧に対応するものになったところで、上記の通りモー
タ17L は停止する。
If V3 <V2, that is, if the set load of the pressure-adjusting spring 10L is too small for the left-side target critical hydraulic pressure P SL (P S2 , P S3 ), both transistors T1 and T2 are turned on and relay contact S1 is turned on. Close and put relay contacts S2 and S3 in dotted line position. This causes the motor 17L to rotate in the normal direction, and the motor 17L
L increases the set load of the pressure regulating spring 10L, and when this becomes the one that corresponds to the target critical hydraulic pressure, the motor 17L stops as described above.

【0020】V3>V1なら、つまり調圧ばね10L のセット
荷重が目標臨界液圧に対し大き過ぎる場合、トランジス
タT1がONされ、トランジスタT2がOFF されて、リレー接
点S1を閉じ、リレー接点S2, S3を実線位置にする。これ
によりモータ17L は逆転され、調圧ばね10L のセット荷
重を低下させ、これが目標臨界液圧に対応したものにな
ったところで、前記の通りモータ17L は停止する。
If V3> V1, that is, if the set load of the pressure regulating spring 10L is too large for the target critical hydraulic pressure, the transistor T1 is turned on, the transistor T2 is turned off, the relay contact S1 is closed, and the relay contact S2, Set S3 to the solid line position. As a result, the motor 17L is rotated in the reverse direction, the set load of the pressure regulating spring 10L is reduced, and when it reaches the target critical hydraulic pressure, the motor 17L is stopped as described above.

【0021】右側目標臨界液圧 PSRについても図3に例
示するように、右側目標臨界液圧は非旋回中はPS1と定
められ、旋回中は横加速度YG に対応して軽制動中(X
G <XGS)なら例えばPS4とし、強制動中(XG
GS)ならPS5と定める。そして、調圧ばね 10Rのセッ
ト荷重がこの右側目標臨界液圧PSR(PS4, PS5)に対
応したものとなるよう調圧ばね 10Rをモータ 17Rにより
調整する。
As for the right-side target critical hydraulic pressure P SR , as shown in FIG. 3, the right-side target critical hydraulic pressure is determined as P S1 during non-turning and during light turning in response to the lateral acceleration Y G. (X
If G <X GS ), for example, P S4 is set, and forcibly operating (X G
X GS ) is defined as P S5 . Then, the pressure adjusting spring 10R is adjusted by the motor 17R so that the set load of the pressure adjusting spring 10R corresponds to this right side target critical hydraulic pressure P SR (P S4 , P S5 ).

【0022】かかる作用により調圧ばね 10L, 10R のセ
ット荷重は目標臨界液圧 PSL, PSRを達成し得るよう調
整されるが、これら左右目標臨界液圧 PSL, PSRが夫々
図3に示す通り非旋回中は同じ PS1にセットされ、旋回
中は例えば右旋回について例示するよう横加速度 Y
G (旋回度合) に応じ軽制動なら左側(旋回外輪側)の
目標臨界液圧 PSLを PS2へと上昇させ、右側(旋回内輪
側)の目標臨界液圧 PSRをPS4へと低下させ、同じ旋回
中でも強制動なら逆に右側(旋回内輪側)の目標臨界液
圧PSRをPS5へと上昇させ、左側(旋回外輪側)の目標
臨界液圧PSLをPS3へと低下させる。このため図5に示
すように前後輪ブレーキ液圧配分特性は、非旋回中左右
共に同じa−b−c特性となり、旋回中は軽制動(XG
<XGS)なら左側(旋回外輪側)の後輪ブレーキ液圧P
RLがa−d−e特性、右側(旋回内輪側)の後輪ブレー
キ液圧PRRがa−f−g特性となるよう制御される。又
同じ旋回中でも強制動(XG ≧XGS)なら右側(旋回内
輪側)の後輪ブレーキ液圧PRRがa−h−i特性、左側
(旋回外輪側)の後輪ブレーキ液圧PRLがa−j−k特
性となるよう制御される。
By this action, the set loads of the pressure-adjusting springs 10L and 10R are adjusted so that the target critical hydraulic pressures P SL and P SR can be achieved. These left and right target critical hydraulic pressures P SL and P SR are respectively shown in FIG. As shown in, the same P S1 is set during non-turning, and during turning, the lateral acceleration Y
For light braking according to G (turning degree), increase the target critical hydraulic pressure P SL on the left side (outer turning wheel side) to P S2 and decrease the target critical hydraulic pressure P SR on the right side (turning inner wheel side) to P S4 On the contrary, if it is forced motion even during the same turn, the target critical hydraulic pressure P SR on the right side (turning inner wheel side) is increased to P S5 , and the target critical hydraulic pressure P SL on the left side (turning outer wheel side) is decreased to P S3 . Let Therefore, as shown in FIG. 5, the front and rear wheel brake fluid pressure distribution characteristics are the same abc characteristics on the left and right during non-turning, and light braking (X G
<X GS ) Left side (turning outer wheel side) Rear wheel brake fluid pressure P
RL is controlled so as to have a-d-e characteristics, and right side (turning inner wheel side) rear wheel brake hydraulic pressure P RR has a-f-g characteristics. If forced motion (X G ≧ X GS ) even during the same turn, the rear wheel brake fluid pressure P RR on the right side (inner wheel side of the turn) is the ah -i characteristic, and the rear wheel brake fluid pressure P RL on the left side (outer wheel side of the turn). Are controlled so as to have a-j-k characteristics.

【0023】これにより旋回中は、軽制動なる外側後輪
が内側後輪より大きな制動力を与えられ、強制動なら内
側後輪が外側後輪より大きな制動力を与えられることと
なり、かかる左右制動力差により車両は、旋回中の軽制
動時におけるオーバーステア傾向を打消すヨーモーメン
トや、旋回中の強制動時におけるアンダーステア傾向を
打消すヨーモーメントを与えられ、本来ならオーバース
テア傾向(軽制動時)やアンダーステア傾向(強制動
時)の旋回軌跡をたどるところながら、これらを補正さ
れて正規の旋回軌跡に沿い走行することができる。
As a result, during turning, the outer rear wheel, which is lightly braked, is given a larger braking force than the inner rear wheel, and if it is forced, the inner rear wheel is given a larger braking force than the outer rear wheel. Due to the power difference, the vehicle is given a yaw moment that counteracts the oversteer tendency during light braking during turning and a yaw moment that counteracts the understeer tendency during forced motion during turning, and should normally be oversteered (during light braking). ) And understeer tendency (during forced movement) while tracing the turning locus, these can be corrected and the vehicle can travel along the regular turning locus.

【0024】なお本例では、旋回中の左右臨界液圧差
(左右制動力差)を横加速度YG ( 旋回の度合) に比例
させることから、旋回の度合に応じて高くなるオーバー
ステア傾向やアンダーステア傾向に呼応して左右制動力
差を与え得ることとなって、いかなる旋回状態において
も上記旋回軌跡の補正効果を確実に達成することができ
る。また、旋回状態は前記のように横加速度のみなら
ず、車両のヨーレートや、操舵角や、左右輪速度差や、
或いはこれらの組合せからも検出し得ること勿論であ
る。又、本例においては制動強度を検出するのに前後加
速度 XG を測定する前後Gセンサ21を用いたが、この代
わりにマスターシリンダ2の出口液圧を検出したり、ブ
レーキペダル1の踏力を検出してもよいことは言うまで
もない。
In this example, since the left-right critical hydraulic pressure difference (left-right braking force difference) during turning is proportional to the lateral acceleration Y G (degree of turning), the oversteer tendency and the understeer that become higher depending on the degree of turning. Since a left-right braking force difference can be given in response to the tendency, the effect of correcting the turning locus can be reliably achieved in any turning state. In addition, the turning state is not limited to the lateral acceleration as described above, but also the yaw rate of the vehicle, the steering angle, the difference between the left and right wheel speeds,
Alternatively, it goes without saying that it can be detected from a combination thereof. Further, in this example, the longitudinal G sensor 21 that measures the longitudinal acceleration X G is used to detect the braking strength, but instead of this, the outlet hydraulic pressure of the master cylinder 2 is detected or the pedaling force of the brake pedal 1 is detected. It goes without saying that it may be detected.

【0025】[0025]

【発明の効果】かくして本発明制動力左右配分制御装置
は請求項1に記載の如く、スプリットポイント以上の領
域で前後輪ブレーキ液圧配分を前輪ブレーキ液圧に対し
後輪ブレーキ液圧の方が低くなるようにする左右後輪ブ
レーキ液圧系の液圧制御弁夫々は、前輪ブレーキ液圧に
対し後輪ブレーキ液圧の方が低くなるようにする、その
前後輪ブレーキ液圧配分のスプリットポイントを変更可
能な構成とし、更に、旋回中弱制動なら、前後輪ブレー
キ液圧配分のスプリットポイントを夫々有するスプリッ
トポイント変更可能なその左右後輪ブレーキ液圧系の液
圧制御弁のうち外輪側液圧制御弁のスプリットポイント
を内輪側液圧制御弁のスプリットポイントより高くする
構成としたから、非旋回時の制動時には、上記左右液圧
制御弁によってスプリットポイント以上の領域で後輪ブ
レーキ液圧の方が前輪ブレーキ液圧より低くなるよう前
後輪ブレーキ液圧配分を制御することができ、その本来
の機能を発揮させることができるのは勿論、旋回中の制
動時も、かかる左右液圧制御弁を用いて、旋回中の弱制
動時外輪側制動力が内輪側制動力より大きくなるような
左右制動力差を与えて、旋回軽制動時の車両のオーバー
ステア傾向を打消すヨーモーメントを車両に付与するこ
とができ、車両の旋回軽制動時における旋回軌跡を適正
に保つことができる。なお、かように外輪側制動力の方
が高くなるようにすることで、この外輪が旋回遠心力に
より車輪荷重を重くされていることから、制動効率が向
上し、制動距離を短縮することができる。かつ又、旋回
中強制動なら、逆に、その左右液圧制御弁のうち内輪側
液圧制御弁のスプリットポイントを外輪側液圧制御弁の
スプリットポイントより高くする構成としたから、旋回
中の強制動時内輪側制動力が外輪側制動力より大きくな
るような左右制動力差を与えて、旋回強制動時の車両の
アンダーステア傾向を打消すヨーモーメントを車両に付
与することができ、車両の旋回強制動時における旋回軌
跡を適正に保つことができる。従って、同じ旋回状態で
の制動時であっても、制動力の強弱によりステア特性が
変わるという既述の如くの問題は解消され、制動力の強
弱に応じてステア特性が変化しても適切に対応し得る。
又請求項2の如く、左右液圧制御弁間のスプリットポイ
ントの差を旋回の度合が強くなるほど大きくする構成に
すれば、この差が旋回度合に応じて異なるオーバーステ
ア傾向やアンダーステア傾向にマッチして上記旋回軌跡
の補正を常時過不足なく行い得る。
As described above, according to the braking force left / right distribution control device of the present invention, the front / rear wheel brake fluid pressure is distributed more than the front wheel brake fluid pressure in the region above the split point. Each of the left and right rear wheel brake fluid pressure hydraulic control valves is designed so that the rear wheel brake fluid pressure is lower than the front wheel brake fluid pressure. In the case of weak braking during turning, the split points that have split points for front and rear wheel brake fluid pressure distribution can be changed. Since the split point of the pressure control valve is set higher than the split point of the inner ring side hydraulic pressure control valve, the left and right hydraulic pressure control valves described above are used for braking during non-turning braking. It is possible to control the front and rear wheel brake fluid pressure distribution so that the rear wheel brake fluid pressure becomes lower than the front wheel brake fluid pressure in the region above the lit point, and of course the original function can be exerted, as well as turning. Even during middle braking, the left and right hydraulic pressure control valves are used to provide a left and right braking force difference such that the braking force on the outer wheel side becomes larger than the braking force on the inner wheel side during weak braking during turning, and the vehicle is controlled during turning light braking. A yaw moment that cancels the oversteering tendency can be applied to the vehicle, and the turning locus can be appropriately maintained during the turning light braking of the vehicle. By thus increasing the braking force on the outer wheel side, the wheel load on this outer wheel is made heavier by the turning centrifugal force, so that the braking efficiency is improved and the braking distance can be shortened. it can. Also, if the forced motion during turning, conversely, the split point of the inner-wheel side hydraulic control valve of the left and right hydraulic pressure control valves is made higher than the split point of the outer-wheel side hydraulic control valve. A left-right braking force difference that makes the inner-wheel braking force greater than the outer-wheel braking force during forced motion is applied, and a yaw moment that cancels the understeer tendency of the vehicle during forced turning can be imparted to the vehicle. It is possible to properly maintain the turning locus during the forced turning motion. Therefore, even when braking in the same turning state, the problem as described above that the steering characteristic changes depending on the strength of the braking force is solved, and even if the steering characteristic changes according to the strength of the braking force, the steering characteristic can be properly adjusted. Can respond.
When the difference between the split points between the left and right hydraulic pressure control valves is made larger as the degree of turning becomes stronger, this difference matches oversteering tendency and understeering tendency which differ depending on the turning degree. Therefore, the turning trajectory can be corrected at all times without excess or deficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による制動力左右配分制御装置の一実施
例を示す液圧ブレーキ配管図である。
FIG. 1 is a hydraulic brake piping diagram showing an embodiment of a braking force left / right distribution control device according to the present invention.

【図2】図1における左側液圧制御弁の制御回路図であ
る。
FIG. 2 is a control circuit diagram of a left hydraulic pressure control valve in FIG.

【図3】目標臨界液圧の制御特性を例示する特性図であ
る。
FIG. 3 is a characteristic diagram illustrating a control characteristic of a target critical hydraulic pressure.

【図4】目標臨界液圧の制御比例定数の変化特性を示す
特性図である。
FIG. 4 is a characteristic diagram showing a change characteristic of a control proportional constant of a target critical hydraulic pressure.

【図5】 本発明装置を用いた場合の左右の前後輪ブレ
ーキ液圧配分特性を例示する線図である。
FIG. 5 is a diagram illustrating the left and right front and rear wheel brake fluid pressure distribution characteristics when the device of the present invention is used.

【符号の説明】[Explanation of symbols]

1 ブレーキペダル 2 ブレーキマスターシリンダ 3L 左前輪ホイールシリンダ 3R 右前輪ホイールシリンダ 4L 左後輪ホイールシリンダ 4R 右後輪ホイールシリンダ 5 アンチスキッド制御ユニット 6L 左側液圧制御弁 6R 右側液圧制御弁 10L 調圧ばね 10R 調圧ばね 16L 調整ねじ 16R 調整ねじ 17L モータ (スプリットポイント変更手段) 17R モータ (スプリットポイント変更手段) 18 コントローラ 19L 荷重センサ 19R 荷重センサ 20 横Gセンサ(旋回検知手段) 21 前後Gセンサ(制動力検出手段) 31 比較回路 35 左側目標臨界液圧演算回路 1 Brake pedal 2 Brake master cylinder 3L Left front wheel wheel cylinder 3R Right front wheel wheel cylinder 4L Left rear wheel wheel cylinder 4R Right rear wheel wheel cylinder 5 Anti-skid control unit 6L Left hydraulic pressure control valve 6R Right hydraulic pressure control valve 10L Pressure adjusting spring 10R Pressure adjusting spring 16L Adjusting screw 16R Adjusting screw 17L Motor (split point changing means) 17R Motor (split point changing means) 18 Controller 19L Load sensor 19R Load sensor 20 Lateral G sensor (turn detection means) 21 Front / rear G sensor (braking force) Detection means) 31 Comparison circuit 35 Left side target critical hydraulic pressure calculation circuit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スプリットポイント以上の領域で前後輪
ブレーキ液圧配分を前輪ブレーキ液圧に対し後輪ブレー
キ液圧の方が低くなるようにする液圧制御弁を左右の後
輪ブレーキ液圧系で別々に具えた車両の液圧ブレーキ装
置において、前記左右の後輪ブレーキ液圧系の液圧制御
弁夫々は、前輪ブレーキ液圧に対し後輪ブレーキ液圧の
方が低くなるようにする、その前後輪ブレーキ液圧配分
のスプリットポイントを変更可能な構成とし、更に、 車両の旋回状態を検出する旋回検知手段と、 車両制動力の強さを検出する制動力検出手段と、 これら手段からの信号に応答して、旋回制動時のその制
動力の強弱に応じ、前記前後輪ブレーキ液圧配分のスプ
リットポイントを夫々有するスプリットポイント変更可
能な左右後輪ブレーキ液圧系の液圧制御弁の当該前後輪
ブレーキ液圧配分のスプリットポイントを変更する手段
であって、旋回中、制動力が設定値未満の軽い制動時で
は左右後輪ブレーキ液圧系の液圧制御弁のうち旋回方向
外輪に係る液圧制御弁の前後輪ブレーキ液圧配分のスプ
リットポイントが旋回方向内輪に係る液圧制御弁の前後
輪ブレーキ液圧配分のスプリットポイントよりも高くな
るように、かつ逆に、制動力が前記設定値以上の強い制
動時では左右後輪ブレーキ液圧系の液圧制御弁のうち旋
回方向内輪に係る液圧制御弁の前後輪ブレーキ液圧配分
のスプリットポイントが旋回方向外輪に係る液圧制御弁
の前後輪ブレーキ液圧配分のスプリットポイントよりも
高くなるように制御する、スプリットポイント変更手段
とを具備してなることを特徴とする車両の制動力左右配
分制御装置。
1. A hydraulic control valve for controlling the distribution of front and rear brake fluid pressure in the region above the split point so that the rear brake fluid pressure is lower than the front brake fluid pressure. In the vehicle hydraulic brake device separately provided with, the respective hydraulic control valves of the left and right rear wheel brake hydraulic systems are such that the rear wheel brake hydraulic pressure is lower than the front wheel brake hydraulic pressure. The split point of the front and rear wheel brake fluid pressure distribution is changeable, and further, a turning detection means for detecting the turning state of the vehicle, a braking force detection means for detecting the strength of the vehicle braking force, and In response to a signal, the left and right rear wheel brake hydraulic system hydraulic pressure control is capable of changing the split points, each having a split point of the front and rear wheel brake hydraulic pressure distribution according to the strength of the braking force during turning braking. A means for changing the split point of the front-rear wheel brake fluid pressure distribution of the control valve, which is one of the hydraulic control valves of the left and right rear wheel brake fluid pressure system during turning when light braking with a braking force less than a set value. Direction, the split point of the front and rear wheel brake hydraulic pressure distribution of the hydraulic control valve is higher than the split point of the front and rear wheel brake hydraulic pressure distribution of the hydraulic control valve related to the turning direction, and vice versa. When the power is strongly braked above the set value, the split point of the front and rear wheel brake fluid pressure distribution of the hydraulic pressure control valve of the left and right rear wheel brake hydraulic pressure system related to the inner wheel in the turning direction is related to the outer wheel in the turning direction. A braking force left / right distribution for a vehicle, comprising: split point changing means for controlling the front / rear wheel brake fluid pressure distribution of the fluid pressure control valve to be higher than the split point. The control device.
【請求項2】 請求項において、前記旋回検知手段は
旋回の度合いを検知するよう構成し、前記スプリットポ
イント変更手段は旋回の度合が強くなるほど左右液圧制
御弁間のスプリットポイントの差を大きくするよう構成
したことを特徴とする車両の制動力左右配分制御装置。
2. The turning detection means according to claim 1 , wherein the turning detection means detects the degree of turning, and the split point changing means increases the difference in split points between the left and right hydraulic control valves as the turning degree increases. A braking force left / right distribution control device for a vehicle, characterized in that
JP2412732A 1990-12-21 1990-12-21 Vehicle braking force left / right distribution control device Expired - Lifetime JP2679414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412732A JP2679414B2 (en) 1990-12-21 1990-12-21 Vehicle braking force left / right distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412732A JP2679414B2 (en) 1990-12-21 1990-12-21 Vehicle braking force left / right distribution control device

Publications (2)

Publication Number Publication Date
JPH04221261A JPH04221261A (en) 1992-08-11
JP2679414B2 true JP2679414B2 (en) 1997-11-19

Family

ID=18521513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412732A Expired - Lifetime JP2679414B2 (en) 1990-12-21 1990-12-21 Vehicle braking force left / right distribution control device

Country Status (1)

Country Link
JP (1) JP2679414B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898431A (en) * 1988-06-15 1990-02-06 Aisin Seiki Kabushiki Kaisha Brake controlling system
JPH027167U (en) * 1988-06-29 1990-01-17

Also Published As

Publication number Publication date
JPH04221261A (en) 1992-08-11

Similar Documents

Publication Publication Date Title
JP2679415B2 (en) Vehicle braking force left / right distribution control device
JP2679416B2 (en) Front / rear distribution control device for vehicle braking force
JPH08216909A (en) Vehicle behavior controller
US5015041A (en) Anti-skid control system for an automotive vehicle
JP2000135974A (en) Motion control device for vehicle
US5488557A (en) Anti-skid controlling system and method for automotive vehicle
JP2877084B2 (en) Braking force control device
JP2600876B2 (en) Vehicle turning control device
JP2572860B2 (en) Vehicle turning behavior control device
JP2679414B2 (en) Vehicle braking force left / right distribution control device
JP2002104155A (en) Motion control device for vehicle
JP2588310B2 (en) Rear wheel lock prevention device for vehicles
JP3522157B2 (en) Vehicle braking operation state determining means and front / rear braking force distribution control device provided with the braking operation state determining means
JPH0345452A (en) Turning behavior controller of vehicle
JPH03112756A (en) Turn action control device for vehicle
JPH04243652A (en) Antiskid control device for vehicle
KR101962446B1 (en) Brake apparatus for electric car using load sensing proportioning valve device
JP3275576B2 (en) Vehicle behavior control device
KR100241833B1 (en) Vehicle stability control device to distinguish road surface friction coefficient
JP2572857B2 (en) Vehicle turning behavior control device
JPH10273022A (en) Braking force control device
JPH03112755A (en) Turn action control device for vehicle
JP2572858B2 (en) Vehicle turning behavior control device
JP4174879B2 (en) Vehicle motion control device
JP3275646B2 (en) Vehicle braking force control device