JP2678359B2 - Flame retardant resin composition - Google Patents

Flame retardant resin composition

Info

Publication number
JP2678359B2
JP2678359B2 JP62259213A JP25921387A JP2678359B2 JP 2678359 B2 JP2678359 B2 JP 2678359B2 JP 62259213 A JP62259213 A JP 62259213A JP 25921387 A JP25921387 A JP 25921387A JP 2678359 B2 JP2678359 B2 JP 2678359B2
Authority
JP
Japan
Prior art keywords
flame
resin composition
resin
retardant
retardant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62259213A
Other languages
Japanese (ja)
Other versions
JPH01101350A (en
Inventor
勝治 高橋
卓 北村
雄二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP62259213A priority Critical patent/JP2678359B2/en
Publication of JPH01101350A publication Critical patent/JPH01101350A/en
Application granted granted Critical
Publication of JP2678359B2 publication Critical patent/JP2678359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は良好な熱安定性と流動安定性とを有し、しか
も耐候性にも優れる難燃性樹脂組成物に関するものであ
る。 (従来の技術) 近年、高分子材料は、すぐれた成形加工性、機械特
性、電気特性を生かして種々の広汎な用途に使用されて
いる。しかし高分子材料は、一般に易燃性であるため、
UL規格などにより難燃化に関する各種の規制が強化・義
務づけられるに伴ない多くの使用上の制限をうけてい
る。特に、これらの高分子材料はOA機器、家電製品のハ
ウジング材およびコネクターなどの良好な成形加工性が
もとめられる電気・電子材料の部品として使用されるこ
とが多いが、このためには樹脂の難燃化が必須であり、
種々の難燃化の手段が検討されている。 なかでも最も一般的な方法は、樹脂に難燃剤を添加す
る方法である。難燃剤としては、ハロゲン系化合物、リ
ン系化合物、アンチモン酸化物あるいはこれらの併用が
選択されている。このうちハロゲン系化合物は、ABS樹
脂、HIPS(耐衝撃性ポリスチレン)などの樹脂に対して
特に効果的であり、高度な難燃性を付与できるものとし
てテトラブロモビスフェノールA、これを骨格主成分に
もつエポキシ樹脂やポリカーボネートオリゴマーおよび
デカブロモジフェニルエーテルなどがよく知られてい
る。 (発明が解決しようとする問題点) しかし、これらの難燃剤を使用した場合は、樹脂の耐
熱性、流動安定性が大巾に低下することが知られてお
り、成形物の熱着色が生じ易く、極端な場合には成形機
中でのポリマーの劣化分解をひきおこすものもある。更
に、これらの難燃剤の添加は、一般に樹脂の耐候性を著
しく損なうものであり、製品の美麗さを求められる家電
製品、OA機器のハウジング材料等には使用することがで
きない場合が多い。このように現在知られている難燃剤
の使用は樹脂の難燃性を向上させる一方で高分子材料特
有の成形加工性、機械特性、外観の美麗さといった長所
を生かしきれないあるいは損なっているのが実情であ
る。 (問題点を解決するための手段) 本発明者等は、スチレン系樹脂の難燃化に伴う上記諸
問題を解決するため鋭意研究を重ねた結果、スチレン系
樹脂に特定の含臭素又は塩素化合物と三酸化アンチモン
と共に塩基性無機化合物を添加すると、溶融混練条件下
での樹脂組成物の熱劣化が抑制され、耐候性も損なわれ
ないことを見い出し本発明を完成するに至った。 すなわち、本発明は、 (A) スチレン系樹脂と、 (B) 一般式[式中、Rは水素原子、 (R′は低級アルキル基および/又は臭素又は塩素原子
で置換されてもよいフェニル基を示す。)、Xは臭素又
は塩素原子、iは1〜4の整数、nは0〜30の整数を示
す。] で表わされる重量平均分子量が500〜20,000の化合物
と、 (C) 三酸化アンチモンと、 (D) 塩基性無機化合物 とを配合してなることを特徴とする難燃性樹脂組成物を
提供するものである。 本発明で用いるスチレン系樹脂(A)としては、スチ
レン又は置換スチレン類の単独あるいは共重合体類、例
えばポリスチレン、スチレン−アクリロニトリル共重合
体(AS樹脂)、ポリブタジエン系ゴムにスチレンモノマ
ーあるいはスチレンモノマーと他のモノマー類とをグラ
フト重合して得られるスチレン系高分子(例えばHIPS、
ABS樹脂など)が挙げられる。なかでもHIPSやABS樹脂を
用いた場合に効果的である。 本発明で用いる前記一般式(I)で表わされる重量平
均分子量が500〜20,000の化合物(B)〔以下、一般式
(I)の難燃剤(B)と称す。〕としては、例えば含臭
素又は塩素ビスフェノールAとエピクロルヒドリンとか
らなるエポキシ樹脂、このエポシ樹脂と含臭素又は塩素
ビスフェノールAから得られるフェノール性水酸基片末
端高分子量エポキシ樹脂あるいはエポキシ基末端高分子
量エポキシ樹脂、このエポキシ基末端エポキシ樹脂にフ
ェノール、アルキルフェノール、臭素化フェノール、塩
素化フェノール、トリブロムフェノール、トリクロロフ
ェノール、ペンタブロムフェノール、ペンタクロロフェ
ノールなどを反応させて得られる片末端フェニルエーテ
ル化誘導体などが挙げられる。なかでも好ましいものと
してはフェノール性水酸基片末端高分子量エポキシ樹
脂、エポキシ基末端高分子量エポキシ樹脂および片末端
フェニルエーテル化誘導体である。なかでも特に耐候性
の点からエポキシ基末端高分子量エポキシ樹脂が好まし
い。また、フェノール性水酸基片末端高分子量エポキシ
樹脂及び片末端フェニルエーテル化誘導体においては、
エポキシ基の変性率は特に制限されないが、原料エポキ
シ樹脂の全エポキシ基数の60%以下、なかでも50%以下
で変性されていることが耐候性の点から好ましい。 ここで使用する含臭素又は塩素ビスフェノールAとし
ては、テトラブロモビスフェノールA、ジブロモビスフ
ェノールA、テトラクロロビスフェノールA、ジブロモ
ビスフェノールAなどがあげられる。 上記一般式(I)の難燃剤(B)の分子量は、重量平
均分子量が500〜20,000であることが好ましい。即ち、5
00以上では得られる難燃性樹脂組成物の成型時の熱安定
性および成型物の耐熱性が良好となり、一方、20,000以
下では樹脂との相溶性が向上し、成形品の耐衝撃性が良
好なものとなる。 この一般式(I)の難燃剤(B)の使用量は、ポリス
チレン系樹脂(A)100重量部に対して通常1〜60重量
部であるが、なかでも1〜30重量部が好ましく、粉末
状、フレーク状、ペレット状といった種々の形状でスチ
レン系樹脂に配合することができる。 また、本発明で使用する三酸化アンチモン(C)の使
用量は、スチレン系樹脂100重量部に対して通常0.5〜30
重量部、好ましくは1〜10重量部である。 更に、本発明で使用する塩基性無機化合物(D)とし
ては、ナトリウム、カリウム、リチウムといったアルカ
リ金属類、マグネシウム、カルシウムといったアルカリ
土類金属類、アルミニウムなどの第三族金属類等の水酸
化物、酸化物、炭酸塩、およびハイドロタルサイト、カ
オリン、ベントナイト、モンモリロナイトといった上記
金属化合物類を含有する天然鉱産物およびこれらの工業
合成品等が挙げられる。 これらのなかでも特にアルカリ土類金属類の酸化物、
および、ハイドロタルサイトが、熱安定性および流動安
定性に優れる点から好ましい。 塩基性無機化合物(D)の使用量は、スチレン系樹脂
(A)、一般式(I)の難燃剤(B)および三酸化アン
チモン(C)の種類、使用量および混練条件によって異
なるが、一般的にはスチレン系樹脂(A)100重量部に
対して通常0.1〜10重量部、好ましくは0.5〜3重量部で
あり、使用量が10重量部を越えると無機化合物による充
填効果も同時に発生し、スチレン系樹脂本来の特性とは
異なる特性を与えることとなり、注意を要する。 本発明の難燃性熱可塑性樹脂組成物は、従来公知の方
法によって調整できるが、例えば、上記各成分を所定量
配合し、ヘンシェルミキサー、タンブラーミキサー等の
混合機で予備混合した後、内部に撹拌翼を有する撹拌式
混合機、押出機、ニーダー、熱ロール、バンバリーミキ
サー等で溶融混練をすることによって製造することがで
きる。 溶融混練の条件は特に制限されず、通常、180〜260℃
であることが好ましい。 (実施例) 以下に実施例および比較例を挙げて本発明の説明を行
うが、これのみに本発明の範囲が限定されるものではな
い。尚、例中の部はすべて重量部である。 実施例1 ABS樹脂〔ダイセル化学工業(株)製セビアンV−30
0〕100部、粉末状のエポキシ基末端高分子量エポキシ樹
脂(大日本インキ化学工業(株)製「プラサームEP−1
6」、テトラブロモビスフェノールAジグリシジルエー
テルとテトラブロモビスフェノールAの共重合体、重量
平均分子量:1,600)22部と三酸化アンチモン(日本精鉱
製ATOX−F)7部と合成ハイドロタルサイト(協和化学
製DHT−4A−2)1部とを混合して粉末状の難燃性樹脂
組成物とした後、220℃の押出機で混練し、ペレット化
して難燃性樹脂組成物ペレットを得、以下の様にして混
練試験および耐候性試験を実施した。結果を第1表に示
す。 混練試験 ペレット状の難燃性樹脂組成物60gをラボプラストミ
ル〔東洋精機(株)製モデル20C200〕を用いて混練温度
250℃、ミキサー回転数100rpmの条件で混練し、5分
後、10分後および20分後のトルクの大きさを測定すると
共に、着色の程度およびゲル化が生じた場合はその程度
を目視により観察した。 耐候性試験 難燃性樹脂組成物ペレットを230℃で射出成形して得
た試験片を、光源280〜380nm、相対湿度56%、温度64
℃、水分12分間噴霧60分間停止の繰り返しの条件でウェ
ーサー・メーターにかけて、0時間、50時間および200
時間後の変色の程度を目視により観察した。 比較例1 合成ハイドロタルサイトの添加を省略した以外は実施
例1と同様にして難燃性樹脂組成物を得、次いで同様に
して混練試験および耐候性試験を実施した。結果を第1
表に示す。 実施例2〜5 合成ハイドロタルサイトの代わりに、実施例2ではMg
(OH)を、実施例3ではCaOを、実施例4ではMgCO
3を、実施例5ではCaCO3をそれぞれ用いた以外は実施例
1と同様にして難燃性樹脂組成物を得、次いで同様にし
て混練試験および耐候性試験を実施した。結果を第1表
に示す。 実施例6 合成ハイドロタルサイトの使用量を2.5部に変更した
以外は実施例1と同様にして難燃性樹脂組成物を得、次
いで同様にして混練試験および耐候性試験を実施した。
結果を第1表に示す。 実施例7 ABS樹脂の代わりにHIPS樹脂〔大日本インキ化学工業
(株)製ディックスチレンGH−7000〕を用いた以外は実
施例1と同様にして粉末状の難燃性樹脂組成物とした
後、210℃の押出機で混練し、ペレット化して難燃性樹
脂組成物ペレットを得、次いで同様にして混練試験およ
び耐候性試験(ただし試験片は220℃で射出成形し
た。)を実施した。結果を第1表に示す。 比較例2 合成ハイドロタルサイトの添加を省略した以外は、実
施例7と同様にして難燃性樹脂ペレットを得、次いで実
施例7と同様にして混練試験および耐候性試験を実施し
た。結果を第1表に示す。 比較例3 粉末状のエポキシ基末端高分子量エポキシ樹脂(大日
本インキ化学工業(株)製「プラサームEP−16」)の22
部を、両末端がトリブロモフェニルエーテル化誘導体の
構造を有する両末端変性高分子量エポキシ樹脂(大日本
インキ化学工業(株)製「プラサームEC−20」、テトラ
ブロモビスフェノールAジグリシジルエーテルとテトラ
ブロモビスフェノールAとトリブロモフェノールとの共
重合体、重量平均分子量2,000)22部に変える他は実施
例1と同様にして難燃性樹脂組成物を得、次いで実施例
1と同様にして混練試験及び耐候性試験を行った。結果
を第2表に示す。(両末端封止型エポキシ樹脂の例、ゲ
ル化は生じないが、耐候性は落ちる例) 比較例4 粉末状のエポキシ基末端高分子量エポキシ樹脂「プラ
サームEP−16」の22部をデカブロモジフェニルエーテル
(エチル社製「SAYTEX 102」)の15部に変える他は実
施例1と同様にして難燃性樹脂組成物を得、次いで実施
例1と同様にして混練試験及び耐候性試験を行った。結
果を第2表に示す。 (尚、第1表及び第2表の混練試験及び耐候性試験にお
ける変色の程度の評価は、以下の黄変差(ΔYI)に対応
するものである。 白色:ΔYI=10以下 淡黄色:ΔYI=12〜16 黄色:ΔYI=20〜28 黄褐色:ΔYI=32〜40 褐色:ΔYI=60〜80 ここで、ΔYI=YI(50,200Hrs)−YI(0Hr)の値であ
り、YIは式差計「TC−1500MC型」(東京電色(株)製)
による値である。) (発明の効果) 以上の説明から明らかな様に、本発明の難燃性樹脂組
成物は、熱安定性および流動安定性に優れ、しかも耐候
性も良好であり、機械的特性、外観等に優れる成形物が
容易に成形加工できるという利点がある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flame-retardant resin composition having good thermal stability and flow stability, and also having excellent weather resistance. (Prior Art) In recent years, polymer materials have been used for various wide-ranging applications by taking advantage of excellent moldability, mechanical properties, and electrical properties. However, since polymeric materials are generally flammable,
As various regulations regarding flame retardancy are strengthened / mandated by UL standards, etc., many restrictions on use have been received. In particular, these polymer materials are often used as parts of electrical and electronic materials that require good molding processability such as housing materials and connectors for OA equipment and home electric appliances. Burning is essential,
Various flame-retardant means have been studied. The most general method among them is to add a flame retardant to the resin. As the flame retardant, a halogen compound, a phosphorus compound, an antimony oxide, or a combination thereof is selected. Of these, halogen compounds are particularly effective for resins such as ABS resin and HIPS (high impact polystyrene), and tetrabromobisphenol A, which has a high degree of flame retardancy, is used as the main constituent of the skeleton. Well-known are epoxy resins, polycarbonate oligomers, decabromodiphenyl ether, and the like. (Problems to be solved by the invention) However, it is known that when these flame retardants are used, the heat resistance and the flow stability of the resin are significantly lowered, and the heat coloring of the molded product occurs. Some of them are easy and, in extreme cases, cause deterioration and decomposition of the polymer in the molding machine. Furthermore, the addition of these flame retardants generally impairs the weather resistance of the resin, and in many cases cannot be used for home appliances, housing materials of OA equipment, etc., which require beautiful products. As described above, the use of the flame retardant currently known cannot improve or reduce the flame retardancy of the resin, but cannot utilize or lose the advantages such as molding processability, mechanical properties and beautiful appearance peculiar to polymer materials. Is the reality. (Means for Solving Problems) The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems associated with flame retardancy of styrene-based resins, and as a result, have found that specific bromine-containing or chlorine-containing compounds are contained in styrene-based resins. It was found that the addition of a basic inorganic compound together with antimony trioxide suppresses the thermal deterioration of the resin composition under melt-kneading conditions and does not impair the weather resistance, and thus completed the present invention. That is, the present invention includes (A) a styrene resin, and (B) a general formula [In the formula, R is a hydrogen atom, (R 'represents a lower alkyl group and / or a phenyl group which may be substituted with a bromine or chlorine atom.), X represents a bromine or chlorine atom, i represents an integer of 1 to 4, and n represents an integer of 0 to 30. Show. ] A flame-retardant resin composition comprising a compound having a weight average molecular weight of 500 to 20,000, (C) antimony trioxide, and (D) a basic inorganic compound. It is a thing. Examples of the styrene resin (A) used in the present invention include homopolymers or copolymers of styrene or substituted styrenes such as polystyrene, styrene-acrylonitrile copolymer (AS resin), polybutadiene rubber and styrene monomer or styrene monomer. Styrene-based polymer obtained by graft polymerization with other monomers (eg HIPS,
ABS resin). Above all, it is effective when HIPS or ABS resin is used. The compound (B) represented by the general formula (I) and having a weight average molecular weight of 500 to 20,000 used in the present invention [hereinafter referred to as the flame retardant (B) of the general formula (I). ], For example, an epoxy resin composed of bromine-containing or chlorine bisphenol A and epichlorohydrin, a phenolic hydroxyl group-terminated high molecular weight epoxy resin or an epoxy group-terminated high molecular weight epoxy resin obtained from this epoxy resin and bromine-containing or chlorine bisphenol A, One terminal phenyl etherified derivative obtained by reacting this epoxy group-terminated epoxy resin with phenol, alkylphenol, brominated phenol, chlorinated phenol, tribromophenol, trichlorophenol, pentabromophenol, pentachlorophenol, etc. . Of these, preferred are phenolic hydroxyl group-terminated high molecular weight epoxy resins, epoxy group-terminated high molecular weight epoxy resins and one-terminal phenyl etherified derivatives. Of these, an epoxy group-terminated high molecular weight epoxy resin is particularly preferable from the viewpoint of weather resistance. Further, in the phenolic hydroxyl group one end high molecular weight epoxy resin and one end phenyl etherified derivative,
The modification ratio of the epoxy group is not particularly limited, but it is preferable that the modification ratio is 60% or less, especially 50% or less of the total number of epoxy groups of the raw material epoxy resin from the viewpoint of weather resistance. Examples of the bromine-containing or chlorine bisphenol A used here include tetrabromobisphenol A, dibromobisphenol A, tetrachlorobisphenol A and dibromobisphenol A. The weight average molecular weight of the flame retardant (B) of the general formula (I) is preferably 500 to 20,000. That is, 5
When it is 00 or more, the thermal stability at the time of molding of the flame-retardant resin composition obtained and the heat resistance of the molded article are good, while when it is 20,000 or less, the compatibility with the resin is improved and the impact resistance of the molded article is good. It will be The amount of the flame retardant (B) of the general formula (I) to be used is usually 1 to 60 parts by weight with respect to 100 parts by weight of the polystyrene resin (A), but preferably 1 to 30 parts by weight, and powder. It can be mixed with the styrene resin in various shapes such as a shape, a flake shape, and a pellet shape. The amount of antimony trioxide (C) used in the present invention is usually 0.5 to 30 with respect to 100 parts by weight of the styrene resin.
Parts by weight, preferably 1 to 10 parts by weight. Further, the basic inorganic compound (D) used in the present invention includes alkali metals such as sodium, potassium and lithium, alkaline earth metals such as magnesium and calcium, and hydroxides of Group 3 metals such as aluminum. , Oxides, carbonates, natural mineral products containing the above metal compounds such as hydrotalcite, kaolin, bentonite, and montmorillonite, and industrial synthetic products thereof. Among these, especially oxides of alkaline earth metals,
Also, hydrotalcite is preferable because it is excellent in thermal stability and flow stability. The amount of the basic inorganic compound (D) used varies depending on the type, the amount of use and the kneading conditions of the styrene resin (A), the flame retardant (B) of the general formula (I) and the antimony trioxide (C). In general, it is usually 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the styrene resin (A). If the amount used exceeds 10 parts by weight, the filling effect by the inorganic compound is also generated. However, caution is required because it gives characteristics different from the original characteristics of styrene resin. The flame-retardant thermoplastic resin composition of the present invention can be prepared by a conventionally known method. For example, the above components are blended in a predetermined amount, preliminarily mixed with a mixer such as a Henschel mixer, a tumbler mixer, and the like. It can be produced by melt-kneading with a stirring mixer having a stirring blade, an extruder, a kneader, a heat roll, a Banbury mixer, or the like. The conditions of melt kneading are not particularly limited, and usually 180 to 260 ° C.
It is preferred that (Examples) The present invention will be described below with reference to Examples and Comparative Examples, but the scope of the present invention is not limited thereto. All parts in the examples are parts by weight. Example 1 ABS resin [Cevian V-30 manufactured by Daicel Chemical Industries, Ltd.
0] 100 parts, powdery epoxy group-terminated high molecular weight epoxy resin (manufactured by Dainippon Ink and Chemicals, Inc., “Prasam EP-1
6 ", a copolymer of tetrabromobisphenol A diglycidyl ether and tetrabromobisphenol A, weight average molecular weight: 1,600) 22 parts, antimony trioxide (ATOX-F manufactured by Nippon Concentrate) 7 parts and synthetic hydrotalcite (Kyowa DHT-4A-2) manufactured by Kagaku Co., Ltd. was mixed with 1 part to give a powdery flame-retardant resin composition, which was then kneaded with an extruder at 220 ° C. and pelletized to obtain a flame-retardant resin composition pellets, A kneading test and a weather resistance test were carried out as follows. The results are shown in Table 1. Kneading test 60g of pelletized flame-retardant resin composition was kneaded using Labo Plastmill [Model 20C200 manufactured by Toyo Seiki Co., Ltd.]
Kneading at 250 ° C and a mixer rotation speed of 100 rpm, measuring the torque magnitude after 5 minutes, 10 minutes and 20 minutes, and visually observing the degree of coloring and gelation. I observed. Weather resistance test A test piece obtained by injection-molding the flame-retardant resin composition pellets at 230 ° C was used as a light source 280 to 380 nm, relative humidity 56%, temperature 64.
0 hours, 50 hours, 200
The degree of discoloration after the elapse of time was visually observed. Comparative Example 1 A flame-retardant resin composition was obtained in the same manner as in Example 1 except that the addition of synthetic hydrotalcite was omitted, and then a kneading test and a weather resistance test were performed in the same manner. First result
It is shown in the table. Examples 2-5 Instead of synthetic hydrotalcite, in Example 2 Mg
(OH) 2 , CaO in Example 3, MgCO in Example 4
A flame-retardant resin composition was obtained in the same manner as in Example 1 except that CaCO 3 was used in Example 3, and then kneading test and weather resistance test were performed in the same manner. The results are shown in Table 1. Example 6 A flame-retardant resin composition was obtained in the same manner as in Example 1 except that the amount of synthetic hydrotalcite used was changed to 2.5 parts, and then a kneading test and a weather resistance test were performed in the same manner.
The results are shown in Table 1. Example 7 A powdery flame-retardant resin composition was prepared in the same manner as in Example 1 except that HIPS resin [Dick Styrene GH-7000 manufactured by Dainippon Ink and Chemicals, Inc.] was used instead of the ABS resin. , 210 ° C. extruder was kneaded and pelletized to obtain flame-retardant resin composition pellets, and then, similarly, a kneading test and a weather resistance test (however, the test piece was injection molded at 220 ° C.) were carried out. The results are shown in Table 1. Comparative Example 2 A flame-retardant resin pellet was obtained in the same manner as in Example 7 except that the addition of synthetic hydrotalcite was omitted, and then a kneading test and a weather resistance test were performed in the same manner as in Example 7. The results are shown in Table 1. Comparative Example 3 22 of powdery epoxy group-terminated high molecular weight epoxy resin (“Prasam EP-16” manufactured by Dainippon Ink and Chemicals, Inc.)
Both ends are modified with a high molecular weight epoxy resin having a structure of a tribromophenyl etherified derivative at both ends (“Prasam EC-20” manufactured by Dainippon Ink and Chemicals Inc., tetrabromobisphenol A diglycidyl ether and tetrabromo). A flame-retardant resin composition was obtained in the same manner as in Example 1 except that the copolymer of bisphenol A and tribromophenol, the weight average molecular weight of 2,000) was changed to 22 parts. A weather resistance test was conducted. The results are shown in Table 2. (Example of both ends-capped epoxy resin, example in which gelation does not occur but weather resistance deteriorates) Comparative Example 4 22 parts of powdery epoxy group-terminated high molecular weight epoxy resin "Prasam EP-16" was added to decabromodiphenyl ether. A flame-retardant resin composition was obtained in the same manner as in Example 1 except that the amount was changed to 15 parts (“SAYTEX 102” manufactured by Ethyl Co.), and then a kneading test and a weather resistance test were performed in the same manner as in Example 1. The results are shown in Table 2. (In addition, the evaluation of the degree of discoloration in the kneading test and the weather resistance test in Tables 1 and 2 corresponds to the following yellowing difference (ΔYI). White: ΔYI = 10 or less Light yellow: ΔYI = 12 to 16 Yellow: ΔYI = 20 to 28 Yellowish brown: ΔYI = 32 to 40 Brown: ΔYI = 60 to 80 where ΔYI = YI (50,200Hrs) -YI (0Hr), and YI is the difference in formula. Total "TC-1500MC type" (manufactured by Tokyo Denshoku Co., Ltd.)
Is the value. (Effects of the Invention) As is clear from the above description, the flame-retardant resin composition of the present invention has excellent thermal stability and flow stability, and also has good weather resistance, mechanical properties, appearance, etc. There is an advantage that a molded product having excellent properties can be easily molded and processed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−69457(JP,A) 特開 昭53−88051(JP,A) 特開 昭53−88052(JP,A) 特開 昭59−38249(JP,A) 特開 昭60−1241(JP,A) 特開 昭61−211354(JP,A) 特開 昭62−4737(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-52-69457 (JP, A)                 JP-A-53-88051 (JP, A)                 JP-A-53-88052 (JP, A)                 JP-A-59-38249 (JP, A)                 JP-A-60-1241 (JP, A)                 JP-A-61-211354 (JP, A)                 JP 62-4737 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.(A)スチレン系樹脂と、 (B)一般式[式中、Rは水素原子、 (R′は低級アルキル基および/又は臭素又は塩素原子
で置換されてもよいフェニル基を示す。)、Xは臭素又
は塩素原子、iは1〜4の整数、nは0〜30の整数を示
す。] で表わされる重量平均分子量が500〜20,000の化合物
と、 (C) 三酸化アンチモンと、 (D) 塩基性無機化合物 とを配合してなることを特徴とする難燃性樹脂組成物。
(57) [Claims] (A) styrene resin, (B) general formula [In the formula, R is a hydrogen atom, (R 'represents a lower alkyl group and / or a phenyl group which may be substituted with a bromine or chlorine atom.), X represents a bromine or chlorine atom, i represents an integer of 1 to 4, and n represents an integer of 0 to 30. Show. ] The flame-retardant resin composition comprising a compound having a weight average molecular weight of 500 to 20,000, (C) antimony trioxide, and (D) a basic inorganic compound.
JP62259213A 1987-10-14 1987-10-14 Flame retardant resin composition Expired - Fee Related JP2678359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259213A JP2678359B2 (en) 1987-10-14 1987-10-14 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259213A JP2678359B2 (en) 1987-10-14 1987-10-14 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPH01101350A JPH01101350A (en) 1989-04-19
JP2678359B2 true JP2678359B2 (en) 1997-11-17

Family

ID=17330967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259213A Expired - Fee Related JP2678359B2 (en) 1987-10-14 1987-10-14 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP2678359B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735464B2 (en) * 1988-05-16 1995-04-19 旭化成工業株式会社 Flame-retardant resin composition
JP2738104B2 (en) * 1990-01-31 1998-04-08 大日本インキ化学工業株式会社 Flame retardant masterbatch
EP0445001A1 (en) * 1990-03-02 1991-09-04 Elf Atochem S.A. Composition of thermoplastic flame retardant styrene resins with improved heat resistance
JP3582808B2 (en) * 1996-03-26 2004-10-27 ダイセル化学工業株式会社 Flame retardant thermoplastic resin composition
KR100384473B1 (en) * 1997-12-22 2003-11-17 제일모직주식회사 Flame retardant resin composition with excellent thermal stability
KR100506123B1 (en) * 2001-12-27 2005-08-03 제일모직주식회사 UL 94 V-2 Rating Acrylonitrile-Butadiene-Styrene Flame Retardant Resin Composition with Good Thermal Stability, Heat Resistance, UV Resistance and Easy Colorability
KR20030056032A (en) * 2001-12-27 2003-07-04 제일모직주식회사 Flame Retardant Thermoplastic Acrylonitrile-Butadiene-Styrene(ABS) Copolymer Resin Composition with Good Heat Resistance
CN114539731B (en) * 2022-02-09 2023-06-13 佛山市鑫诚环保新材料有限公司 Flame-retardant material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269457A (en) * 1975-12-08 1977-06-09 Toshiba Corp Flame-retarded acrylonitrile-butadiene styrene copolymer compositions
JPS5931539B2 (en) * 1977-01-13 1984-08-02 住友化学工業株式会社 Flame retardant resin composition
JPS5388051A (en) * 1977-01-12 1978-08-03 Sumitomo Chem Co Ltd Flame retardant resin composition
JPS5938249A (en) * 1982-08-30 1984-03-02 Daicel Chem Ind Ltd Flame-retardant resin composition having excellent thermal stability
JPS601241A (en) * 1983-06-17 1985-01-07 Kyowa Chem Ind Co Ltd Flame-retardant resin composition
JPS61211354A (en) * 1985-03-15 1986-09-19 Asahi Chem Ind Co Ltd Flame-retardant styrene resin composition
JPS624737A (en) * 1985-06-28 1987-01-10 Hitachi Chem Co Ltd Flame-retarding resin composition

Also Published As

Publication number Publication date
JPH01101350A (en) 1989-04-19

Similar Documents

Publication Publication Date Title
JP3547910B2 (en) Flame retardant polymer composition
JP2678359B2 (en) Flame retardant resin composition
US4879329A (en) Impact resistant flame-retardant resin composition
EP0471852A1 (en) Flame-retardant resin composition
JPS6210264B2 (en)
US6391967B1 (en) Flame retarding thermoplastic resin composition
EP0085834B1 (en) Colour inhibiting flame-retardant consisting of a stable halogenated organic compound and a boron compound
JP4196861B2 (en) Flame retardant, flame retardant resin composition, method for producing flame retardant
JP2911285B2 (en) Flame retardant thermoplastic resin composition
JP2781649B2 (en) Flame retardant styrenic resin composition
JP2793350B2 (en) Flame retardant styrenic resin composition
EP0183276A2 (en) Flame-retardant resin composition
JP3434330B2 (en) Flame retardant rubber-modified styrenic composition
GB2300860A (en) Flame retardant styrene polymer
JPS61241343A (en) Styrene based resin flame retardant composition
JPH06192513A (en) Flame-retardant resin composition
JP4376046B2 (en) Flame retardant for thermoplastic resin and flame retardant styrene resin composition containing the flame retardant
JP3301496B2 (en) Flame retardant resin composition
JP2696098B2 (en) Flame retardant styrenic resin composition
JP3246627B2 (en) Flame retardant polycarbonate resin composition
JPH0892445A (en) Flame-retardant styrenic resin composition
JP4623704B2 (en) Flame retardant polystyrene resin composition
JPH06287400A (en) Flame-retardant rubber-modified styrene resin composition and molded item thereof
JPH111587A (en) Flame retardant styrene-based resin composition
JP4717255B2 (en) Antimony-containing flame retardant for thermoplastic resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees