JP2696098B2 - Flame retardant styrenic resin composition - Google Patents

Flame retardant styrenic resin composition

Info

Publication number
JP2696098B2
JP2696098B2 JP62330407A JP33040787A JP2696098B2 JP 2696098 B2 JP2696098 B2 JP 2696098B2 JP 62330407 A JP62330407 A JP 62330407A JP 33040787 A JP33040787 A JP 33040787A JP 2696098 B2 JP2696098 B2 JP 2696098B2
Authority
JP
Japan
Prior art keywords
flame retardant
resin composition
group
flame
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62330407A
Other languages
Japanese (ja)
Other versions
JPH01170630A (en
Inventor
克之 田村
成夫 奥田
Original Assignee
阪本薬品工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阪本薬品工業 株式会社 filed Critical 阪本薬品工業 株式会社
Priority to JP62330407A priority Critical patent/JP2696098B2/en
Publication of JPH01170630A publication Critical patent/JPH01170630A/en
Application granted granted Critical
Publication of JP2696098B2 publication Critical patent/JP2696098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、難燃性スチレン系樹脂組成物に関するもの
である。 更に詳しくは、スチレン系樹脂に対して一般式(I)
で表されるハロゲン含有エポキシモノマー変性物を配合
することにより、難燃剤による衝撃性の低下を防止する
ことを特徴とする難燃性スチレン系樹脂組成物に関する
ものである。 スチレン系樹脂は、現在、家庭用電気製品、自動車な
どの各方面に大量に使用されており、又各種の難燃規制
に合わせた難燃グレードも数多く使用されている。一般
に、スチンレ系樹脂の難燃剤としては、テトラブロモビ
スフェノールA(以下TBAと略す)、デカブロモジフェ
ニルオキシド(以下DBDPOと略す)などのハロゲン系難
燃剤と、三酸化アンチモンとを併用して使用されてい
る。しかしながら、このような難燃剤の欠点として、TB
Aを使用した場合、熱焼けによる成形品の変色や耐熱性
の低下が起こり、又、DBDPOを使用した場合には、難燃
剤の分散性の悪さ、成形品の耐光性の劣化といった問題
点があった。このような問題点のない難燃剤として、臭
素化エポキシオリゴマー型難燃剤を使用すると耐熱性、
耐光性に優れた成形品が得られることが本発明者らによ
り、見いだされている。しかしながら、臭素化エポキシ
オリゴマー型難燃剤のうち、両末端エポキシ基を持つ化
合物は、スチレン系樹脂に配合した場合、耐熱性、耐光
性には優れるが、衝撃性の著しい低下を引き起こすとい
う欠点があった。 本発明者らは、この欠点に関し、臭素化エポキシオリ
ゴマー型難燃剤の優れた特徴を持ち、更に衝撃性の低下
を引き起こさない難燃剤を開発するため、鋭意検討を重
ねた結果、スチレン系樹脂100重量部に対して一般式
(I) (式中R1は炭素数1−4のアルキリデン基、アルキレン
基または−SO2−基、R2及びR3はグリシジル基または で、R2及びR3の50−100%は X、Yはハロゲン原子、p、qは0−4の整数、rは0
−5の整数を示す)で示されるハロゲン含有エポキシモ
ノマー変性物を5−50重量部配合し、そのとき組成物中
に一般式(II) (式中R1は炭素数1−4のアルキリデン基、アルキレン
基または−SO2−基、R2及びR3はグリシジル基、水素ま
たは X、Yはハロゲン原子、p、qは0−4の整数、rは0
−5の整数を示す)で示される化合物が難燃剤100重量
部に対して3重量部以下にすることにより、難燃剤によ
る衝撃性の低下を防止することを見いだした。 本発明でいうスチレン系樹脂とは、スチレンまたはα
−メチルスチンレン、ビニルトルエン等のスチレン誘導
体の単独重合体または共重合体、これらの単量体とアク
リロニトリル、メチルメタクリレート等のビニルモノマ
ーとの共重合体、ポリブタジエン等のジエン系ゴム、エ
チレン/プロピレン系ゴム、アクリル系ゴム等にステレ
ンまたはスチレン誘導体及び他のビニルモノマーをグラ
フト重合させたものであり、例えば、ポリスチレン、ハ
イインパクトポリスチレン、AS樹脂、ABS樹脂、AAS樹
脂、AES樹脂等である。 本発明による一般式(I)で表されるハロゲン含有エ
ポキシモノマー変性物を難燃剤として使用するにあたっ
ては、単独使用でも良く、また、耐衝撃性の改良という
目的で、耐熱性、耐光性のよい臭素化エポキシオリゴマ
ー型難燃剤と併用してもよい。 また、本発明に係る樹脂組成物には、耐熱性、耐光
性、耐衝撃性を著しく損わない範囲で、他の公知の難燃
剤(窒素系化合物、リン化合物、ハロゲン系化合物な
ど)や難燃助剤(酸化アンチモン、酸化モリブデン、酸
化スズなど)を配合しても良く、更に、他の各種の添加
剤、例えば、紫外線吸収剤、可塑剤、着色剤、充填剤、
滑剤、安定剤などを添加してもよい。 この様にして配合された難燃性スチレン系樹脂組成物
は、難燃効果が高く、耐熱性、耐光性、成形性に優れ、
各種機械特性のバランスの良い、特に耐衝撃性に優れた
ものとなる。 以下に合成例及び実施例を挙げて本発明を具体的に説
明するが、本発明は、その要旨をこえないかぎり、以下
に示す合成例及び実施例に制約されるものではない。 構成例1 臭素化ビスフェノールA型エポキシ樹脂(SR−BS、エ
ポキシ当量331(阪本薬品工業))662g(1モル)と、
トリブロモフェノール(以下TBPと略す)596g(1.9モ
ル)をセパラブル四つ口フラスコにとり、トリブチルア
ミン0.6gを添加した後、窒素気流下120〜130℃で7時間
反応し、その後140〜160℃で更に2時間反応した。反応
終了後、冷却、粉砕して、淡黄色粉末の生成物を得た。
この生成物は、酸価0.1(mg KOH/g)、エポキシ当量130
30、軟化点94℃、臭素含有量60.0重量%であった。以
下、難燃剤(a)という。 合成例2 臭素化ビスフェノールA型エポキシ樹脂(SR−BS、エ
ポキシ当量331(阪本薬品工業))662g(1モル)と、T
BP331g(1モル)をセパラブル四つ口フラスコにとり、
テトラメチルアンモニウムクロライド0.5gを添加した
後、窒素気流下120〜130℃で6時間反応し、その後140
〜160℃で更に2時間反応した。反応終了後、冷却、粉
砕して、淡黄色粉末の生成物を得た。この生成物は、酸
価0.1(mg KOH/g)、エポキシ当量1010、軟化点81℃、
臭素含有量56.4重量%であった。以下、難燃剤(b)と
いう。 次に、比較のため、一般のエポキシオリゴマー型難燃
剤の合成を、以下のとおり行った。 合成例3 臭素化ビスフェノールA型エポキシ樹脂(SR−TBA40
0、エポキシ当量395(阪本薬品工業))790g(1モル)
と、TBA253g(0.46モル)をセパラブル四つ口フラスコ
にとり、トリブチルアミン0.6gを添加した後、窒素気流
下140〜170℃で8時間反応した。反応終了後、冷却、粉
砕して、淡黄色粉末の生成物を得た。この生成物は、酸
価0.3(mg KOH/g)、エポキシ当量990、軟化点130℃、
臭素含有量50.8重量%であった。以下、難燃剤(c)と
いう。 合成例4 臭素化ビスフェノールA型エポキシ樹脂(SR−TBA40
0、エポキシ当量395(阪本薬品工業))790g(1モル)
と、TBA275g(0.50モル)をセパラブル四つ口フラスコ
にとり、テトラメチルアンモニウムクロライド0.5gを添
加した後、窒素気流下140〜170℃で8時間反応した。反
応終了後、冷却、粉砕して、淡黄色粉末の生成物を得
た。この生成物は、酸価0.3(mg KOH/g)、エポキシ当
量2150、軟化点163.5℃、臭素含有量52.2重量%であっ
た。以下、難燃剤(d)という。 合成例5 合成例3で得た生成物990g(1エポキシ当量と)、TB
P331g(1モル)をセパラブル四つ口フラスコにとり、
トリブチルアミン0.6gを添加した後、窒素気流下120〜1
30℃で6時間反応し、その後140〜170℃で更に6時間反
応した。反応終了後、冷却、粉砕して、淡黄色粉末の生
成物を得た。この生成物は、酸価1.7(mg KOH/g)、エ
ポキシ当量24250、軟化点132℃、臭素含有量56.2重量%
であった。以下、難燃剤(e)という。 実施例1〜5 ABS樹脂(スタイラック101(旭化成))、合成例1及
び2で得られた化合物又はそれを含むもの、三酸化アン
チモンを第1表の割合で配合し、押出機にてペレタイズ
し、射出成型機にそれぞれUL−94難燃試験、アイゾット
衝撃試験、引張試験、曲げ試験、耐光性試験、熱変形温
度測定の各種試験片を成型し、各試験を行った。その結
果を第1表に示した。 比較例1〜5 実施例1〜5と同様に合成例3〜5の化合物及びTB
A、デカブロモジフェニルオキシド(以下DBDPOと略す)
を第1表の割合で配合して試験片を成型し、各試験を行
った。その結果を第1表に示した。 実施例6、7及び比較例6、7 実施例1〜5と同様に、ABS樹脂(スタイラック301
(旭化成))に、合成例1〜5の化合物を第2表の割合
で配合して試験片を成形し、各試験を行った。その結果
を第2表に示した。 各試験方法 引張強度試験はJIS K7113、曲げ強度試験はJIS K720
3、アイゾット衝撃試験はJIS K7110(Vノッチつき、1/
8″)、熱変形温度測定はJIS K7207(18.6kg/cm2)、メ
ルトインデックス(以下M.I.と略す)はJIS K7210、耐
光性試験はJIS K7102、難燃性試験はUL−94に準じて行
なった。 以上、本発明による一般式(I)で表される化合物を
単独もしくは他の難燃剤と併用して使用することによ
り、難燃効果が良く、耐光性、耐熱性に優れ、しかも衝
撃性の低下の少ない各種機械特性のバランスがとれた難
燃性スチレン系樹脂組成物が得られる。
The present invention relates to a flame-retardant styrenic resin composition. More specifically, the styrene resin has the general formula (I)
The present invention relates to a flame-retardant styrenic resin composition characterized in that a modified halogen-containing epoxy monomer represented by the formula (1) is blended to prevent a drop in impact resistance due to a flame retardant. Styrene-based resins are currently used in large quantities in various fields such as household electric appliances and automobiles, and many flame-retardant grades complying with various flame-retardant regulations are also used. Generally, a halogen-based flame retardant such as tetrabromobisphenol A (hereinafter abbreviated as TBA) or decabromodiphenyl oxide (hereinafter abbreviated as DBDPO) is used in combination with antimony trioxide as a flame retardant for a styrenic resin. ing. However, a disadvantage of such flame retardants is that TB
When A is used, discoloration and heat resistance of molded articles due to heat burning occur, and when DBDPO is used, there are problems such as poor dispersibility of flame retardant and deterioration of light resistance of molded articles. there were. When a brominated epoxy oligomer type flame retardant is used as a flame retardant without such problems, heat resistance,
The present inventors have found that a molded article having excellent light resistance can be obtained. However, among the brominated epoxy oligomer type flame retardants, compounds having epoxy groups at both ends are excellent in heat resistance and light resistance when blended with a styrene resin, but have the drawback of causing a significant drop in impact resistance. Was. The present inventors have conducted intensive studies on this drawback in order to develop a flame retardant which has the excellent characteristics of a brominated epoxy oligomer type flame retardant and does not cause a decrease in impact resistance. Formula (I) based on parts by weight (Wherein R 1 is an alkylidene group having 1-4 carbon atoms, an alkylene group or a —SO 2 — group, and R 2 and R 3 are a glycidyl group or And 50-100% of R 2 and R 3 is X and Y are halogen atoms, p and q are integers of 0-4, r is 0
5 to 50 parts by weight of a halogen-containing epoxy monomer modified product represented by the following formula (II): (Wherein R 1 is an alkylidene group having 1-4 carbon atoms, an alkylene group or a —SO 2 — group, and R 2 and R 3 are a glycidyl group, hydrogen or X and Y are halogen atoms, p and q are integers of 0-4, r is 0
It has been found that by setting the compound represented by the formula (3) to 3 parts by weight or less based on 100 parts by weight of the flame retardant, it is possible to prevent the impact resistance from being reduced by the flame retardant. The styrene resin referred to in the present invention is styrene or α
-Homopolymers or copolymers of styrene derivatives such as methylstilene and vinyltoluene; copolymers of these monomers with vinyl monomers such as acrylonitrile and methyl methacrylate; diene rubbers such as polybutadiene; ethylene / propylene It is obtained by graft-polymerizing a styrene or styrene derivative and another vinyl monomer to a system rubber, an acrylic rubber, or the like, and examples thereof include polystyrene, high-impact polystyrene, AS resin, ABS resin, AAS resin, and AES resin. When the halogen-containing epoxy monomer modified product represented by the general formula (I) according to the present invention is used as a flame retardant, it may be used alone or, for the purpose of improving impact resistance, has good heat resistance and light resistance. It may be used in combination with a brominated epoxy oligomer type flame retardant. In addition, the resin composition according to the present invention may contain other known flame retardants (such as nitrogen compounds, phosphorus compounds, and halogen compounds) as long as heat resistance, light resistance, and impact resistance are not significantly impaired. A fuel aid (antimony oxide, molybdenum oxide, tin oxide, etc.) may be blended, and further, various other additives such as an ultraviolet absorber, a plasticizer, a coloring agent, a filler,
A lubricant, a stabilizer and the like may be added. The flame-retardant styrenic resin composition blended in this way has a high flame-retardant effect, and is excellent in heat resistance, light resistance, moldability,
Good balance of various mechanical properties, especially excellent impact resistance. Hereinafter, the present invention will be described specifically with reference to Synthesis Examples and Examples. However, the present invention is not limited to the following Synthesis Examples and Examples unless the gist of the invention is exceeded. Structural Example 1 662 g (1 mol) of a brominated bisphenol A type epoxy resin (SR-BS, epoxy equivalent 331 (Sakamoto Yakuhin Kogyo))
Take 596 g (1.9 mol) of tribromophenol (hereinafter abbreviated as TBP) into a separable four-necked flask, add 0.6 g of tributylamine, and react at 120-130 ° C. for 7 hours under a nitrogen stream, then at 140-160 ° C. The reaction was continued for another 2 hours. After the reaction was completed, the mixture was cooled and pulverized to obtain a product as a pale yellow powder.
This product has an acid value of 0.1 (mg KOH / g) and an epoxy equivalent of 130.
The softening point was 30, and the bromine content was 60.0% by weight. Hereinafter, it is referred to as a flame retardant (a). Synthesis Example 2 662 g (1 mol) of brominated bisphenol A type epoxy resin (SR-BS, epoxy equivalent 331 (Sakamoto Yakuhin Kogyo))
Take BP331g (1 mol) in a separable four-necked flask,
After adding 0.5 g of tetramethylammonium chloride, the mixture was reacted at 120 to 130 ° C. for 6 hours under a nitrogen stream, and then reacted for 140 hours.
Reacted at ~ 160 ° C for another 2 hours. After the reaction was completed, the mixture was cooled and pulverized to obtain a product as a pale yellow powder. This product has an acid value of 0.1 (mg KOH / g), epoxy equivalent of 1010, softening point of 81 ° C,
The bromine content was 56.4% by weight. Hereinafter, it is referred to as a flame retardant (b). Next, for comparison, a general epoxy oligomer type flame retardant was synthesized as follows. Synthesis Example 3 Brominated bisphenol A type epoxy resin (SR-TBA40
0, epoxy equivalent 395 (Sakamoto Yakuhin Kogyo)) 790 g (1 mol)
And 253 g (0.46 mol) of TBA were placed in a separable four-necked flask, 0.6 g of tributylamine was added, and the mixture was reacted at 140 to 170 ° C. for 8 hours under a nitrogen stream. After the reaction was completed, the mixture was cooled and pulverized to obtain a product as a pale yellow powder. This product has an acid value of 0.3 (mg KOH / g), epoxy equivalent of 990, softening point of 130 ° C,
The bromine content was 50.8% by weight. Hereinafter, it is referred to as a flame retardant (c). Synthesis Example 4 Brominated bisphenol A type epoxy resin (SR-TBA40
0, epoxy equivalent 395 (Sakamoto Yakuhin Kogyo)) 790 g (1 mol)
And 275 g (0.50 mol) of TBA were placed in a separable four-necked flask, 0.5 g of tetramethylammonium chloride was added, and the mixture was reacted at 140 to 170 ° C. for 8 hours under a nitrogen stream. After the reaction was completed, the mixture was cooled and pulverized to obtain a product as a pale yellow powder. This product had an acid value of 0.3 (mg KOH / g), an epoxy equivalent of 2150, a softening point of 163.5 ° C., and a bromine content of 52.2% by weight. Hereinafter, it is referred to as a flame retardant (d). Synthesis Example 5 990 g (with one epoxy equivalent) of the product obtained in Synthesis Example 3, TB
Take P331g (1 mol) in a separable four-necked flask,
After adding 0.6 g of tributylamine, 120-1
The reaction was performed at 30 ° C. for 6 hours, and then at 140 to 170 ° C. for another 6 hours. After the reaction was completed, the mixture was cooled and pulverized to obtain a product as a pale yellow powder. This product has an acid value of 1.7 (mg KOH / g), an epoxy equivalent of 24,250, a softening point of 132 ° C, and a bromine content of 56.2% by weight.
Met. Hereinafter, it is referred to as a flame retardant (e). Examples 1 to 5 ABS resin (Stylac 101 (Asahi Kasei)), the compound obtained in Synthesis Examples 1 and 2, or a compound containing the same, and antimony trioxide were blended in the proportions shown in Table 1 and pelletized by an extruder. Then, various test pieces for UL-94 flame retardancy test, Izod impact test, tensile test, bending test, light resistance test, and heat distortion temperature measurement were molded on an injection molding machine, and each test was performed. The results are shown in Table 1. Comparative Examples 1 to 5 Compounds of Synthesis Examples 3 to 5 and TB as in Examples 1 to 5
A, Decabromodiphenyl oxide (hereinafter abbreviated as DBDPO)
Was blended in the proportions shown in Table 1 to form test pieces, and each test was performed. The results are shown in Table 1. Examples 6 and 7 and Comparative Examples 6 and 7 As in Examples 1 to 5, the ABS resin (Styrac 301
(Asahi Kasei)), the compounds of Synthesis Examples 1 to 5 were blended in the proportions shown in Table 2 to form test pieces, and each test was performed. The results are shown in Table 2. Each test method JIS K7113 for tensile strength test, JIS K720 for flexural strength test
3, Izod impact test is JIS K7110 (with V notch, 1 /
8 ”), heat distortion temperature measurement is based on JIS K7207 (18.6 kg / cm 2 ), melt index (hereinafter abbreviated as MI) is JIS K7210, light resistance test is JIS K7102, and flame retardancy test is UL-94. Was. As described above, by using the compound represented by the general formula (I) according to the present invention alone or in combination with another flame retardant, the flame retardant effect is good, the light resistance and the heat resistance are excellent, and the impact resistance is reduced. A flame-retardant styrenic resin composition with low balance of various mechanical properties can be obtained.

Claims (1)

(57)【特許請求の範囲】 1.一般式(I) (式中R1は炭素数1−4のアルキリデン基、アルキレン
基または−SO2−基、R2及びR3はグリシジル基または で、R2及びR3の50−100%は X、Yはハロゲン原子、p、qは0−4の整数、rは0
−5の整数を示す)で示されるハロゲン含有エポキシモ
ノマー変性物をスチレン系樹脂100重量部に対して、5
−50重量部配合してなる、難燃性スチレン系樹脂組成物
であり、その組成物中に一般式(II) (式中R1は炭素数1−4のアルキリデン基、アルキレン
基または−SO2−基、R2及びR3はグリシジル基、水素ま
たはX、Yはハロゲン原子、p、qは0−4の整数、rは0
−5の整数を示す)で示される化合物が難燃剤100重量
部に対して3重量部以下である難燃性スチレン系樹脂組
成物。
(57) [Claims] General formula (I) (Wherein R 1 is an alkylidene group having 1-4 carbon atoms, an alkylene group or a —SO 2 — group, and R 2 and R 3 are a glycidyl group or And 50-100% of R 2 and R 3 is X and Y are halogen atoms, p and q are integers of 0-4, r is 0
-5) with respect to 100 parts by weight of the styrene resin.
A flame-retardant styrenic resin composition comprising -50 parts by weight, wherein the composition has a general formula (II) (Wherein R 1 is an alkylidene group having 1-4 carbon atoms, an alkylene group or a —SO 2 — group, and R 2 and R 3 are a glycidyl group, hydrogen or X and Y are halogen atoms, p and q are integers of 0-4, r is 0
A flame retardant styrenic resin composition wherein the compound represented by the formula (1) is not more than 3 parts by weight per 100 parts by weight of the flame retardant.
JP62330407A 1987-12-25 1987-12-25 Flame retardant styrenic resin composition Expired - Fee Related JP2696098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330407A JP2696098B2 (en) 1987-12-25 1987-12-25 Flame retardant styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330407A JP2696098B2 (en) 1987-12-25 1987-12-25 Flame retardant styrenic resin composition

Publications (2)

Publication Number Publication Date
JPH01170630A JPH01170630A (en) 1989-07-05
JP2696098B2 true JP2696098B2 (en) 1998-01-14

Family

ID=18232255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330407A Expired - Fee Related JP2696098B2 (en) 1987-12-25 1987-12-25 Flame retardant styrenic resin composition

Country Status (1)

Country Link
JP (1) JP2696098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL153918A (en) 2003-01-13 2008-08-07 Bromine Compounds Ltd Flame-retardant for engineering thermoplastic applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241343A (en) * 1985-03-15 1986-10-27 Asahi Chem Ind Co Ltd Styrene based resin flame retardant composition
JPS624737A (en) * 1985-06-28 1987-01-10 Hitachi Chem Co Ltd Flame-retarding resin composition
JPS6216207A (en) * 1985-07-15 1987-01-24 Nec Kansai Ltd Manufacturing method for magnetic head

Also Published As

Publication number Publication date
JPH01170630A (en) 1989-07-05

Similar Documents

Publication Publication Date Title
JPH0598118A (en) Styrene-based flame-retardant and thermal shockresistant resin composition
JP2696098B2 (en) Flame retardant styrenic resin composition
US4467062A (en) Flame retarded polyethylene terephthalate blends
EP0085834B1 (en) Colour inhibiting flame-retardant consisting of a stable halogenated organic compound and a boron compound
JP3235378B2 (en) PBT resin molding material
JPH07126463A (en) Flame-retardant for styrenic resin
JP2968552B2 (en) Flame retardant resin composition
JPH0359941B2 (en)
EP0204819A1 (en) Thermoplastics containing brominated homopolymer
JPH04370134A (en) Halogen-free flame-retarding resin composition
JPS6128696B2 (en)
JPH0753879A (en) Flame retardant resin composition
JP3246627B2 (en) Flame retardant polycarbonate resin composition
JP2793350B2 (en) Flame retardant styrenic resin composition
JPS6112944B2 (en)
JPH03134049A (en) Flame-retardant resin composition
JPS61261337A (en) Flame-retarding resin composition
JPS63135442A (en) Flame-retarding rubber-reinforced resin composition
JPH05202251A (en) Flame-retarding styrene resin composition
JPH028234A (en) Styrene resin composition having excellent flame retardance
JPH0735464B2 (en) Flame-retardant resin composition
JPH02248450A (en) Flame-retarding resin composition
JPS6236443A (en) Production of flame-retardant styrene resin composition
JPS63152653A (en) Flame-retardant styrene resin composition
JPH0545622B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees